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ABSTRACT: We report a method for mild and atom-efficient synthesis of ketazines via nickel-catalyzed intermolecular hydroam-
ination of internal alkynes with NH2-hydrazones. This alkyne hydrohydrazonation process is promoted by [Ni(cod)2] as a Ni(0) pre-
catalyst and IPr as a N-heterocyclic carbene (NHC) ligand. A stoichiometric reaction between in situ generated [Ni(IPr)2] and ben-
zophenone hydrazone (Ph2C=NNH2) led to the isolation of IPr-coordinated and hydroxo-bridged dinuclear Ni(II) hydrazonato com-
plex [(IPr)Ni(HNN=CPh2)(2-OH)]2 that displayed high activity as a hydrohydrazonation pre-catalyst. We propose a catalytic cycle 
involving CN bond formation via alkyne insertion into the NiN linkage of Ni(II) hydrazonato intermediates. 

Hydrazones are important building blocks in organic syn-
thesis due to their convenient preparation via hydrazine-
carbonyl condensation and versatile reactivity with C=N and 
NN functionality.1 Synthetic applications of hydrazones have 
conventionally focused on their conversions into carbanion 
intermediates driven by N2 release, exemplified by the classic 
Wolff-Kishner reduction.2 Recent developments in organome-
tallic catalysis have significantly expanded the scope of hydra-
zone transformations. In particular, N-functionalized hydra-
zones are established as activated imine-analogs for catalytic 
hydrogenations and nucleophilic additions.1b,1c For catalytic 
CN bond formation with hydrazones, a well-documented 
approach is the Buchwald-Hartwig amination of aryl halides 
with N-unsubstituted hydrazones (NH2-hydrazones).3 In com-
parison, limited progress has been made on the hydroamina-
tion approach, the formal addition of a hydrazone NH bond 
across an un-activated CC  bond.4 Reports on such “hydro-
hydrazonation” mainly involve intramolecular transformations 
that are thermodynamically driven by stable N-heterocycle 
formation.5,6 By contrast, intermolecular hydrohydrazonation 
with simple alkene/alkyne substrates remains underexplored.7-9 
In comparison to the more successful development of hy-
droamination with NH2-hydrazines (i.e. hydrohyrazi-
nation),4,5c,9-11 hydrohydrazonation faces the obstacles of lower 
reactivity for hydrazones as NH-nucleophiles and base-
promoted hydrazone decomposition under heating conditions.2          

We report herein a nickel/N-heterocyclic carbene (NHC) 
catalyst system for intermolecular hydrohydrazonation of in-
ternal alkynes with NH2-hydrazones under mild conditions. 
This work is part of our continuous efforts to develop catalytic 
hydroamination processes following a prior study on Ni/NHC-
catalyzed alkyne hydroimination with N-H ketimines.12 Recent 
reports on transition metal-catalyzed intermolecular NH2-
hydrazone/alkyne couplings have focused on [4+2] and [3+2] 
annulations initiated by hydrazone-directed CH activa-
tion/cyclometalation and subsequent alkyne insertions 
(Scheme 1a).7,13,14 Notably, Bertrand and coworkers have re-
ported Au- and Cu-catalyzed hydrohydrazonation of terminal 

alkynes with methyl ketone-derived NH2-hydrazones at 100 
C (Scheme 1b),9 which was proposed to proceed by an outer-
sphere pathway via nucleophilic attack to Lewis acidic metal 
-alkyne complexes.4e In comparison, the current Ni/NHC 
catalyst enables coupling between various NH2-hydrazones (1) 
and internal alkynes (2) at reduced reaction temperatures of 
23-80 C (Scheme 1c).15 We also report preliminary mechanis-
tic results that support a migratory insertion pathway for CN 
bond formation via Ni(II) hydrazonato intermediates. Thus, 
the current method expands the scope of base metal-catalyzed 
hydroamination4 and provides atom-efficient access to valua-
ble azine products (3).16 Furthermore, this work provides new 
mechanistic insight into Ni/NHC-catalyzed transformations as 
a versatile toolbox for organic synthesis.17  

Our study began with a model reaction between benzophe-
none hydrazone (1a) and diphenylacetylene (2a). With prior 
results on alkyne hydroimination,12

 we chose to focus on 
Ni/NHC catalyst systems with [Ni(cod)2] (4) as a Ni(0) pre-
catalyst to evaluate reaction parameters by GC analysis. Key 
results from the catalyst development are summarized in Table 
1 and more details are described in Table S1-S2 in Supporting 
Information. Under previously reported hydroimination condi-
tions,12 a reaction between 0.50 mmol 1a and 1.5 equiv 2a was 
promoted by 10 mol% 4, 22 mol% IPr ligand (5a) and 1 equiv 
Cs2CO3 in m-xylene to form ketazine product 3a in 78% yield 
after heating at 120 °C for 24 hours (entry 1). Replacing IPr 
with other NHC ligands, such as the structurally related IMes 
(5b), SIPr (5c) and IPr*OMe (5d),18 led to significantly re-
duced catalyst reactivity (entries 2-4). In contrast, removing 
Cs2CO3 or replacing it with various inorganic bases did not 
have major impacts (entries 5-9). Thus, solvent effects on re-
activity were studied without using base additives (entries 9-
13), and toluene was found to give the highest 3a yield of 
81%. Further catalyst development involved changing cata-
lyst/ligand loadings, reaction temperatures, and reagent stoi-
chiometry (entries 14-18). In general, 3a was detected as a 
dominant (E)-stereoisomer (>50:1 selectivity) regarding the 
deoxybenzoin hydrazone moiety, which is sterically less 



 

strained than the corresponding (Z)-isomer. The structure of 
isolated 3a was established by NMR spectroscopy and X-ray 
crystallography (vide infra). Under the optimized conditions of 
heating at 80 °C in toluene solvent, reaction between 1a and 
2a (1.2 equiv) was promoted by 5 mol% 4 and 11 mol% 5a to 
form 3a in 81% yield over 24 hours (entry 15). Small amounts 
of byproducts (<10%) from hydrazone decomposition and 
alkyne oligomerization19 were detected under these conditions. 
The loadings of 4 and 5a could be reduced to 1 and 2 mol% to 
form 3a in 73% yield over 48 hours (entry 17). In addition, 
higher loadings of 15 mol% 4 and 31 mol% 5a promoted the 
reaction at room temperature (~23 C) to form 3a in 79% yield 
after 96 hours (entry 18). It should be noted that room-
temperature intermolecular alkyne hydroamination is only 
known for Au-based catalysts and limited to terminal al-
kynes.10,20 Lastly, the gram-scale hydrohydrazonation was 
demonstrated with a 10-fold scale-up of the optimized model 
reaction to give 3a in 78% yield (entry 19, 1.46 g isolated). 

Under the standard reaction conditions at 80 C, various 
NH2-hydrazones (1) and internal alkynes (2) were studied for 
Ni-catalyzed hydrohydrazonation (Table 2).21 In general, the 
reactions led to selective formation of ketazines (3) to the ex-
clusion of possible annulation byproducts,13,14 and most keta-
zines were formed as the less sterically strained stereoisomer 
in high selectivity (>20:1). Alkyne substrate scope and struc-
tural effects on hydrohydrazonation reactivity were evaluated 
with benzophenone hydrazone (1a) to generate products 3a-g. 
Symmetrical diaryl alkynes with electron-donating alkyl sub-
stituents at para- or meta-positions led to ketazine products 3b 
and 3c in high yields. In comparison, the electron-deficient 
bis(para-trifluoromethylphenyl)acetylene displayed high reac-
tivity but low ketazine production due to competitive alkyne 
trimerization.19 Thus, a modified procedure of slow alkyne 
addition and lower reaction temperature of 40 C was devel-
oped to suppress trimerization, giving product 3d in 81% 
yield. As a probe for regioselectivity with electronically dif-
ferentiated diarylacetylenes, a reaction between 1a and (p-
anisylethynyl)benzene was subjected to GC analysis.22 The 
result indicated formation of two ketazine isomers in 70% 
overall yield and 1.6:1 ratio (3e/3e’), favoring C-N bond for-
mation at the benzylic position of electron-rich para-anisyl 
over phenyl group. Reactions with symmetrical dialkylacety-
lenes face the dual challenges of competitive alkyne trimeriza-
tion19 and ketazine instability that hindered isolation attempts. 
Thus, a moderate yield of 63% for 4-octyne-derived product 3f 
was obtained via GC analysis.22 Similarly, a GC yield of 60% 
was determined for product 3g from room-temperature hydro-
hydrazonation of 1,4-dimethoxy-2-butyne. 3f and 3g were 
both detected as a  ~1:1 mixture of E/Z-stereoisomers, which 
is anticipated with their similar steric environments. Reactions 
between 1a and 1-alkyl-2-arylacetylenes (e.g. 1-ethyl-2-
phenylacetylene) suffered from dominant alkyne trimeriza-
tion19 and generated only traces of desired ketazine products.23   

Under standard hydrohydrazonation conditions, reactions 
between 2a and benzophenone hydrazone derivatives with 
para-methyl, -methoxy and -fluoro substituents gave ketazines 
3h-j in good yields. In particular, 4,4’-dimethylbenzophenone 
hydrazone (1b) gave product 3h in 91% yield, which suggests 
enhanced hydrazone nucleophilicity by electron-donating al-
kyl substitution. The high reactivity of 1b was also displayed 
in its coupling with diarylacetylenes with para-iPr or -CF3 
substituents that formed ketazine 3k and 3l in 93% and 88% 

yields. In addition, 1b reacted with di(2-thienyl)acetylene to 
form ketazine isomers 3m and 3m’ in 93% combined yield 
and 3.3:1 stereoselectivity.24 Similar to benzophenone-derived 
NH2-hydrazone, the acetophenone- and benzil-derived analogs 
displayed good reactivity towards 2a to form ketazines 3n and 
3o in high yields. In comparison, the sterically bulky and 
thermally unstable dicyclohexyl ketone hydrazone led to 
product 3p in a moderate yield of 65%. As demonstrated with 
the solid-state structures of 3a and 3n-p by X-ray crystallog-
raphy, the stereochemistry of diphenylacetylene-derived keta-
zine products was mainly affected by steric factors to favor 
(E)-stereoisomer regarding the deoxybenzoin hydrazone moie-
ty and twisted s-trans conformations.  

In-depth reaction mechanism understanding for current hy-
drohydrazonation is hindered by the lack of suitable probes for 
regioselectivity23 as well as stereochemical information, which 
was due to product detection in ketazine forms rather than 
isomeric enamines forms that would indicate a formally syn- 
or anti-alkyne addition by the NH bond.4,25 In our prior study 
on alkyne hydroimination using a similar Ni/IPr catalyst sys-
tem, the stereospecific formation of (Z)-enamine-type products 
supported a proposed anti-attack at Ni(0)-coordinated alkynes 
by NH-imine nucleophiles.12 In addition, a room-temperature 
reaction between benzophenone imine and in situ generated 
[Ni(IPr)2] via heating mixed [Ni(IPr)2]/IPr led to the formation 
of a Ni(0) bis(imine) complex, [(IPr)Ni(HN=CPh2)2] (6), that 
was catalytically active for alkyne hydroimination (Scheme 
2a). In current study, a similar reaction between benzophenone 
hydrazone (1a) and in situ generated [Ni(IPr)2] led to a com-
plex mixture of multiple Ni species. Attempted purification of 
such mixture by recrystallization did not generate analogous 
Ni(0) bis(hydrazone) complexes, but instead a hydroxo-
bridged, dinuclear Ni(II) hydrazonato complex [(IPr)Ni(1-
H2NN=CPh2)(2-OH)]2 (7a). The solid-state structure of 7a 
was established by single crystal X-ray diffraction and fea-
tured relatively short NiN bond length of 1.83 Å for the 
Ni(II) hydrazonato moieties.26 The formation of 7a was likely 
initiated by aerobic oxidation of [Ni(IPr)2] considering the 
high air-sensitivity of electron-rich, zero-valence metal bis-
NHC complexes.16,27 For example, Stahl and coworkers re-
ported rapid aerobic oxidation of [Pd(IMes)2] to form an η2-
peroxo complex [Pd(IMes)2(O2)].28 Thus, we propose a similar 
process of [Ni(IPr)2] oxidation by trace O2 in solvent to form 
[Ni(IPr)2(2-O2)] (A) (Scheme 2b).29 Subsequent reaction with 
another equivalent of [Ni(IPr)2] generated dinuclear Ni(I) oxo 
complex B, which underwent IPr dissociation and dinuclear 
oxidative addition process with 1a to form 7a. Notably, the 
Sigman group has reported facile aerobic oxidation of a IPr-
ligated Ni(II) -allyl chloro complex to generate 
[(IPr)NiCl(2-OH)]2 as a close structural analog of 7a.30   

Using complex 7a to replace mixed [Ni(cod)2]/IPr under 
hydrohydrazonation conditions (Scheme 2c), the reaction be-
tween 1a and 2a was effectively promoted at a low catalyst 
loading of 0.5 mol% 7a to give 3a in 83% GC yield (73% 
isolated). The same catalyst loading also enabled a 5-fold 
scale-up reaction to give 3a in 79% isolated yield after heating 
at 80 C for 48 hours. By increasing the loading of 7a to 5 
mol%, the scale-up reaction could proceed without heating to 
give 3a in 71% yield. Thus, complex 7a is a more reactive 
catalyst precursor compared to mixed [Ni(cod)2]/IPr, which 
presumably led to in situ generation of [Ni(IPr)2] as a common 
pre-catalyst for Ni/NHC catalysis.31   



 

Based on the isolation and high catalytic activity of complex 
7a, we propose a Ni(II)-based catalytic cycle for alkyne hy-
drohydrazonation as shown in Scheme 2d. Under current cata-
lytic conditions, oxidation by trace O2 of in situ Ni(IPr)2 and 
subsequent reaction with hydrazone substrate led to dinuclear 
Ni(II) complex 7. De-aggregation of 7 generated the IPr-
ligated Ni(II) hydroxo hydrazonato monomer C, which un-
derwent sequential alkyne coordination and 1,2-insertion into 
the NiN bond to form Ni(II) alkenyl intermediate (CD and 
DE). Subsequent protonation with NH2-hydrazone regener-
ated C to complete the catalytic cycle and released N-iminyl 
enamine product 3’, which underwent rapid isomerization to 
form the more stable ketazine 3 as detectable hydrohydrazona-
tion product. We hasten to add that alkyne 1,2-insertion into a 
late transition metalnitrogen -bond is not well-established 
as analogous alkene insertions, and the direct observations on 
such intermolecular amido transfer processes are limited to 
activated alkynes such as dimethyl acetylenedicarboxylate 
(DMAD).32-35 Thus, we cannot exclude the possibility of alter-
native, Ni(0)/Ni(II)-based hydrohydrazonation mechanisms 
involving different CN bond formation processes that have 
been proposed for catalytic alkyne hydroamination.4 We are 
particularly intrigued by the possibility of Ni(0)-mediated 
NH oxidative addition of NH2-hydrazone that forms a Ni(II) 
hydrido hydrazonato intermediate. Subsequent alkyne inser-
tion into the NiH bond and CN bond formation by reductive 
elimination from the resulting Ni(II) alkenyl hydrazonate 
forms the hydrohydrazonation product (3’) and regenerates 
Ni(0) catalyst.36 This alternative mechanism would resonate 
with reported mild Buchwald-Hartwig amination with NH2-
hydrazones using a similar Ni/IPr catalyst system, which in-
volved CN reductive elimination from Ni(II) aryl hydrazona-
to intermediates.3d Getting definitive evidence to distinguish 
between possible hydrohydrazonation pathways would require 
a comprehensive mechanism investigation that we wish to 
pursue in the near future. 

In summary, we have developed a Ni/NHC catalyst system 
for intermolecular hydrohydrazonation of internal alkynes 
under mild and base-free conditions. Based on the high cata-
lytic activity of an isolated Ni(II)/NHC complex, we propose a 
rare process of CN bond formation by alkyne insertion into 
the NiN linkage of Ni(II) hydrazonato intermediates. Future 
studies will focus on in-depth mechanism understanding of 
this catalyst system for broader synthetic applications involv-
ing N-H bond cleavage and C-N bond formation processes.  

 

 

 

 

 

 

 

 

 

Scheme 1. Transition Metal-Catalyzed Intermolecular 
Couplings between NH2-Hydrazones and Alkynes. 

 

 

Table 1. Optimization of Alkyne Hydrohydrazonation.a 

 
aGeneral conditions: 1a (0.50 mmol, 1.0 equiv), 2a, [Ni(cod)2] 
(4), NHC ligand (5), additive (1.0 equiv), solvent (2.0 mL), 24 h. 
bYields determined by GC analysis. c48 h reaction time. d96 h 
reaction time. eIsolated yield (1.46 g) from a scale-up reaction 
with 5.0 mmol 1a, 10 mL toluene and 18 h reaction time.  

 

 

 



 

Table 2. Scope of Ketazine Products from of Ni-Catalyzed 
Alkyne Hydrohydrazonation. 

R1 R2

NNH2

R3R3+

5 mol% [Ni(cod)2] (4)
11 mol% IPr (5a)

1 2 3
toluene (0.25 M) 

80oC, 24 h

R1

N
R2 N

R3

R3

Ph
N

Ph N
R

R

R = nPr
R = CH2OMe

Ph
N

Ph N
Ar

Ph
Ph

N
Ph N

Ph

Ar

3f 63%e

3g 60% (23 C)e,f

R' = Me
R' = CH2Ph

3n 83%
3o 92%

3e 3e'

70% (3e/3e' = 1.6:1)e

+

Ph
N

Ph N
Ar

Ar

Ar = Ph

Ar = p-tBuC6H4

Ar = m-iPrC6H4

Ar = p-CF3C6H4

3a 71% 

65% (23 C)b

3b 92%

3c 85%

3d 81% (40 C)d 3a (X-ray)c

Ar'
N

Ar' N
Ph

Ph

Ar' = p-MeC6H4

Ar = p-iPrC6H4

Ar = p-CF3C6H4

3h 91%

3i 89%

3j 84%

3k 93%

3l 88%

3m + 3m' 
93% (3.3:1)

Ar' = p-MeC6H4

Ar' = p-MeOC6H4

Ar' = p-FC6H4

N

N

S

S

Ar'
N

Ar' N
Ar

Ar

Ph
N

R N
Ph

Ph
Cy

N
Cy N

Ph

Ph

Cy = cyclohexyl
3p 65%3o (X-ray)c 3p (X-ray)c

Ar = p-MeOC6H4

(p-MeC6H4)2C=N-NH2 1b

 
aGeneral conditions: 1 (0.50 mmol, 1.0 equiv), 2 (1.2 equiv), 4 
(0.05 equiv), 5a (0.11 equiv), toluene (2.0 mL), 80 C, 24 h; aver-
aged isolated yield from two runs. bRoom-temperature reaction 
with 1.0 mmol 1, 1.2 mmol 2, 10 mol% 4, 21 mol% 5a; 96 h. 
cORTEP diagram displayed as 40% probability ellipsoids. dSlow 
addition protocol: alkyne was added portion-wise (4 x 0.3 equiv) 
over 6 h; 40 C reaction temperature. eYield is based on GC anal-
ysis of corresponding ketone from hydrolysis of ketazine product. 
fRoom-temperature reaction with 2.0 equiv 2; 48 h.  

 

 

 

 

 

 

 

 

 

 

 

Scheme 2. Results from Reaction Mechanism Studies. 
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