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Abstract 

 The lack of publicly available, large, and unbiased datasets is a key bottleneck for the 

application of machine learning (ML) methods in synthetic chemistry. Data from electronic 

laboratory notebooks (ELNs) could provide less biased, large datasets, but no such datasets have 

been made publicly available. The first real-world dataset from the ELNs of a large pharmaceutical 

company is disclosed and its relationship to high-throughput experimentation (HTE) datasets is 

described.  For chemical yield predictions, a key task in chemical synthesis, an attributed graph 

neural network (AGNN) performs as good or better than the best previous models on two HTE 

datasets for the Suzuki and Buchwald-Hartwig reactions. However, training of the AGNN on the 

ELN dataset does not lead to a predictive model. The implications of using ELN data for training 

ML-based models are discussed in the context of yield predictions. 

Introduction 

The development of predictive methods is a long-standing goal of computational 

chemistry. Initially, physics based modeling such as DFT or force field methods were used to 

understand reaction mechanisms and predict e.g. the stereochemical outcome of reactions1 or 

suitable catalysts for their acceleration.2 More recently, machine leaning (ML) methods3 were very 

successful in predicting the likely product of reactions (forward synthesis prediction)4,5 and 

promising pathways for the synthesis of organic molecules with a range of complexity.6-9  

 The prediction of yields of chemical reactions is a particularly challenging task because it 

is not only influenced by the variables of the reaction under study, but also from the influence of 

all possible side reactions. At the same time, it is an extremely important task due to the significant 

effort needed to optimize the yield of a reaction by variation of reaction conditions and catalysts. 

Doyle and coworkers10 demonstrated that this challenge can be met for the case of the widely used 
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Buchwald-Hartwig amination by training a ML model on a dataset of 4608 reactions from high-

throughput experimentation (HTE). Using a random forest model and computed physics-based 

features such as NMR shifts or HOMO/LUMO energies, an R2 of 0.92 was achieved (Fig.1 A). 

More complex models such as neural networks did not provide higher predictivity.10 Fu et al.11 

used a dataset of 387 Suzuki-Miyaura reactions12 and features from DFT calculations to train a 

deep neural network, resulting in a model with an R2 of 0.92.  Bayesian optimizers13 and deep 

reinforcement learning14 were also successful in the iterative optimization of reaction conditions 

for a variety of reactions. 

 

Figure 1:  Previous work on yield predictions using ML models: (A) HTE-generated datasets 

using random forest models (B) HTE (blue) and USPTO derived (red) datasets using the BERT 

model    
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In contrast, the use of legacy datasets from published scientific or patent literature for yield 

prediction has not been successful. The attempt to classify reaction yields as above or below 65% 

based on a training set of ~106 reactions from the Reaxsys database using a large number of 

descriptors and ML methods gave an accuracy of 65±5%, i.e. a 35% error.15 The authors of that 

study attributed this finding to the deficiencies of “currently available chemical descriptors”, but 

it should also be noted that the reaction space represented in their dataset is vast. Schwaller et al.16 

developed a modification of the bidirectional encoder representations from transformers (BERT) 

model,17 which uses natural language processing to build a reaction SMILES encoder trained on a 

large corpus of reactions, followed by a classification or regression layer for a specific task. This 

approach was very successful for product predictions5 as well as for reaction yield predictions of 

the Suzuki-Miyaura (blue in Fig. 1B) and Buchwald-Hartwig reactions.16 While this approach 

achieves R2 values of 0.81 and 0.95, respectively, in line with other ML models when trained on 

these HTE datasets,10,18 training on a dataset of Suzuki-Miyaura reactions from the PTSO19,20 led 

to a maximum R2 score of 0.388 (red in Fig. 1B). When the training set was limited to reactions 

run on a gram scale, the R2 value dropped further to 0.277, which was attributed to the strong bias 

of this dataset towards high-yielding reactions.16 When limiting the dataset to a single reaction, 

Reymond and coworkers21 constructed a more qualitative “data-driven cheat-sheet” for the 

recommendation of conditions for the Buchwald-Hartwig reaction based on a dataset of 62,000 

examples from a variety of databases.    

Taken together, these previous findings highlight the challenges in using legacy datasets to 

train ML yield prediction models. As in other areas of ML, there is a lack of suitable datasets to 

train and validate the models. Although most of the chemical literature is summarized in 

commercial databases, they are proprietary. The US Patent database, which was converted into a 



5 
 

widely used dataset,4 is an exception. As a result, studies using commercial databases do not 

include the data the models were built with.21,22  Furthermore, databases such as Reaxsys 

frequently do not contain complete reaction information and reflect the bias of the published 

literature towards high-yielding reactions and inevitable human error, e.g. in assigning product 

structures.23 Finally, the total chemical reaction space is enormous in comparison with even the 

biggest reaction databases, resulting in a sparse coverage. 

As part of our ongoing efforts to explore the potential and limitations of ML methods in 

synthetic chemistry, we sought to investigate distinct approaches to investigate multiple novel 

approaches to the use of legacy datasets for reaction yield prediction. Here we introduce a novel 

dataset extracted from the electronic laboratory notebooks (ELN) of a large pharmaceutical 

company and an automated procedure for the curation of the dataset using a Jupyter notebook. It 

has long been hypothesized8,24,25 that the use of ELNs to train ML models could unlock much 

larger datasets that are not subject to the publication bias towards high-yielding reactions. While 

this approach is pursued internally at a number of large organizations,8 the underlying datasets are 

proprietary. To the best of our knowledge no such ELN-derived datasets have been made publicly 

available, and therefore the frequently made assumption that they can be used for training ML 

models has not been tested. To investigate whether the sparsity, noise, and inherent bias of legacy 

datasets can be addressed by advanced ML models we developed an attributed graph neural 

network model and tested it on both HTE and ELN-derived datasets. Finally, we discuss the 

implications of the findings for the use of legacy data in the prediction of chemical yields.     
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Results 

Model design We hypothesize that the small size and sparsity of typical chemical datasets can be 

balanced by including the maximum amount of information about the chemical structures involved 

in the reaction. We propose to combine physically meaningful molecular properties, i.e. chemical 

features/descriptors, with features capturing the molecular graph structure in an attributed graph 

neural network (GNN). GNNs have been shown to successfully capture the higher-order 

interactions between neighboring components of a graph.26 An overview of the model named 

YieldGNN is shown in Figure 2. The top module represents the AGNN that learns the structural 

features while the bottom module captures the features describing the chemical properties.    

 

Figure 2: Overview of the YieldGNN model where the structural features are captured by 

aggregating atom and bond features over the neighborhood (top part) and are combined with the 

chemical features (lower part) to generate two yield scores Yield (Graph) and Yield (Chem). The 

two scores are passed through a linear layer to generate the final predicted yield .  

 

For the top module, we use Weisfeiler-Lehman Networks (WLN)27 to capture the structural 

features. WLNs are one of the most expressive GNNs studied so far.28 WLNs learn the structural 

features by iteratively aggregating features (using convolutional operations) over local node 
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neighborhoods. This allows WLNs to capture the higher-order neighborhood information in the 

graph structure. 

The bottom module in Figure 2 includes atomic features such as partial charges and NMR 

shifts as well as molecular features such as orbital energies, electronegativity, dipole moments, 

molecular volume, and surface area; each of which can be easily generated computationally 

through programs such as RDKit or Gaussian16. A full list of the features used is provided in the 

Supporting Information. To minimize the risk of overfitting in the AGNN owing to the large 

number of chemical features, we trained a random forest (RF) model to select the main chemical 

features that contribute to the RF model performance. This model serves as a baseline and also 

helps us reduce the number of the parameters used in our deep learning model. Note that we do 

not perform feature engineering on the structural features and they are automatically generated by 

the GNN model. 

Training data description The AGNN was trained on three different datasets. For comparison 

purposes, we used two HTE datasets designed for the Suzuki-Miyaura cross-coupling18 and the 

Buchwald-Hartwig amination10 reactions; both datasets have previously been modelled with ML 

to make yield predictions.11,16 As a representative example of a real-world dataset from the 

pharmaceutical industry, we collected a legacy dataset from electronic laboratory notebooks 

(ELN) at AstraZeneca. For this purpose, the NextMove software used at AstraZeneca was queried 

with the term “Buchwald-Hartwig”. The datasets thus obtained were filtered to only include 

publicly available products, and entries that were recorded prior to August 2016. This resulted in 

a raw dataset of 1000 entries subsequently saved in UDM format to include the structures of 

reactants, products, catalysts and bases as well as reaction conditions (e.g., solvents, reaction 
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temperatures and times) as well as yields. Where available, additional comments from the ELN 

were also included.      

As shown in Fig. 3, the HTE datasets are similar to each other in that they have a dense 

coverage of a narrow area of the chemical space. If all combinations of variables for the Suzuki-

Miyaura are considered 7392 combinations are possible,29 though the two-stage design of the study 

decreases this number to 4608. For the Buchwald-Hartwig reaction,10 a full fractional design was 

explored, leading to 3960 possible combinations. Both HTE datasets have a broad and relatively 

uniform yield distribution. The dataset extracted from the AstraZeneca ELNs has, as is typical for 

ELNs and other legacy datasets, very different characteristics. It covers a much wider chemical 

space, with 340 aryl halides, 260 amines, 24 ligands, 15 bases and 15 solvents. With 1000 

examples to cover ~4.7 x 108 possible combinations of reactants, ligands, bases and solvents, the 

dataset is much sparser. As a result, there are essentially no overlapping conditions for a given 

substrate combination. In addition, 39.9% of reactions in the ELN dataset did not yield a product 

for a variety of reasons (see Methods section). Overall, this dataset is much more representative of 

real-world datasets and the problems associated with them than the datasets from exhaustive HTE. 

It is therefore an important benchmark if AGNNs cannot only improve the predictive power of 

ML models for the designed dataset, but provide predictive models based on real-world datasets 

such as the one derived from the ELNs.     

The raw ELNs (in xlm format) were processed to generate a data table suitable for data 

cleaning. Using a Jupyter notebook, the dataset was converted into a form suitable for ML 

applications. Molecules were classified as reactants and reagents based on the reaction SMILES 

strings. As is common in most databases, some of the reaction conditions (e.g., temperature) or 

reaction components were not listed or had inconsistent structures which required manual curation 
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for a small subset of reactions, e.g., by correcting based on the product structure. Duplicate and 

empty entries were removed, reaction conditions were standardized and molecular structures were 

saved as SMILES files.  

As shown in Fig. 3B, a yield of 0% or incomplete reactions were reported for a significant 

number of entries due to a number of reasons (human error, trial run without yield determination 

etc.) that were annotated in the comment line of the dataset. These low- or no-yield reactions were 

classified using an ontology of the reaction description fields using a Jupyter notebook to minimize 

the need for manual curation and, where possible, adjusted based on duplicate entries. This 

processing of the ELN entries led to a final dataset of 781 reactions that, in contrast to previous 

applications of ELN datasets in ML,8 are made publically available (see Data Availability 

Statement). Therefore, the ELN dataset for the Buchwald-Hartwig reaction is, to the best of our 

knowledge, the first publicly available ELN reaction dataset for use in ML applications. Chemical 

space analysis using Multidimensional Scaling (MDS) as described by Schneider and coworkers.30 

Morgan substructure fingerprints (radius 0-4 bonds, 1024 bit length) were calculated in RDKit and 

the canonical MDS was calculated using Tanimoto similarity metric. This MDS analysis of the 

products of the Buchwald-Hartwig reaction (Fig. 3C) shows that the structural diversity of the 

ELN dataset (shown in gold) is much higher than for the HTE dataset10.  
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Figure 3 A) Overall reaction and variables for Suzuki-Miyaura (top) and Buchwald-Hartwig (B-

H, middle and bottom) datasets. B) yield distributions (middle). C) Chemical space analysis 

(MDS) of products for HTE (blue) and ELN (gold) datasets (right). 

 

Yield prediction Ten different train/test random 70:30 splits for each dataset were created and 

used to train and test our model on each respective set. For each dataset, the mean and standard 

deviation (over the ten test sets) of the R2 and mean absolute errors (MAE) are reported in Table 

1. We tested the YieldGNN without any chemical features (i.e., only the top part of the model 

shown in Fig. 2, YieldGNN w/o chem. Feat.), followed by tests that included either only the 

chemical features from the G16 calculations (YieldGNN w/o rdkit feat.) or the complete set of 

features, including the ones provided by RDKit (YieldGNN with rdkit feat.). Tests of 40 random 

splits for the case of the Buchwald-Hartwig HTE dataset with the full feature set in YieldGNN did 

not yield significantly different statistics (See Table S4 in Supporting Information). Further 

improvements to the YieldGNN were possible by adding the attention layer after the AGNN 

component, explicit inclusion of solvent and base, and addition of the chemical features into the 

model. The resulting model that uses the full information as shown in Figure 2 performs as well 

or better than previously available models, such as random forest or BERT, for the two HTE 
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datasets studied here. RF–1 and RF–2 are both random forest models with the same hyper-

parameters. The only difference between these models is that RF–1 contains all available features, 

while RF–2 does not contain features derived from RDKit. Thus, the features used in the RF–2 

model are very similar to the ones used in a previous study.10 Below we explain the model 

performance on HTE datasets and the ELN dataset from AstraZeneca.  

 

Table 1: Results for three reaction datasets. For each data, the mean and standard deviation of 
𝑅! and MAE (in parenthesis) obtained via training each model on 10 random data splits.  

 Suzuki-Miyaura 

[HTE]18 

Buchwald-Hartwig 

[HTE]10 

Buchwald-Hartwig 

[ELN] 

RF– 1 (with rdkit feat.) 0.824±0.005 
(0.083±0.001) 

0.899+0.007 
(0.059±0.001) 

0.259+0.0429 
(0.202±0.006) 

RF –2 (w/o rdkit feat.) 0.792+0.012 
(0.09±0.002) 

0.906+0.002 
(0.057±0.001) 

0.2619+0.038 
(0.204±0.007) 

BERT16 0.81±0.01  0.951±0.005  --- 

YieldGNN w/o chem. feat. 0.82+0.028 
(0.083±0.001) 

0.939+0.025 
(0.047±0.008) 

0.118+0.05 
(0.225±0.014) 

YieldGNN w/o rdkit feat. 
 

YieldGNN with rdkit feat. 

0.842±0.013 
(0.079±0.003) 

0.836±0.013 
(0.08±0.004) 

0.9±0.031 
(0.061±0.01) 

0.958 ± 0.003 
(0.04±0.001) 

- 0.023±0.099 
(0.244±0.01) 

-- 

 

Performance on HTE datasets.  The YieldGNN significantly outperforms the random forest 

models for the two HTE datasets as indicated by the higher R2 and lower MAE with the difference 

being larger in the case of the Buchwald-Hartwig HTE dataset than for the case of the Suzuki-

Miyaura reaction. Interestingly, the performance of the BERT and YieldGNN models are within 
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the standard deviation of each other.  Taken together, these results suggest that models that use 

connectivity data, which in case of the BERT model is encoded in the SMILES files, perform  

better than the random forest models that are based on chemical features alone. This is in line with 

the observations that during the training of the YieldGNN model, the weight of the graph features 

increases and the weight of the chemical features decreases as a function of the training epochs 

(see Fig.S1 in the Supporting Information). This suggests that the molecular structure provides key 

information in model training and thus improves the prediction of reaction yield. Although in 

previous studies, the neural network model performed slightly worse than the random forest model 

for the Buchwald-Hartwig HTE dataset,10 the combination of chemical features and structural 

information shows excellent performance for the focused datasets derived from HTE. This is 

further supported by “leave-one-group-out” analysis for the Buchwald-Hartwig HTE dataset10,31 

(see Table S5 in the Supporting Information) that shows a modest degradation in the performance 

as each of the additives is left out of the training set and the YieldGNN is retrained with the 

remaining 23 additives.  

 Performance on ELN dataset. Having shown that YieldGNN provides highly predictive models 

for HTE datasets, we tested whether this information rich, combined approach can treat the more 

diverse legacy data. The results shown in Table 1 demonstrate that this is not the case and the 

YieldGNN does not provide meaningful predictions of the yield. Extensive tuning of the 

hyperparameters of the network or pre-training the model on the HTE dataset for the same 

Buchwald-Hartwig reaction, followed by fine-tuning the trained model on the target dataset did 

not improve the performance and led to R2 values that were negative or close to zero. For this 

dataset, the random forest models provide better R2 values, nevertheless these are still too low to 

provide useful predictions.  
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Expansion of training data We hypothesize that the reason for the failure of the YieldGNN model 

to predict the yields for the legacy dataset after being highly successful for the HTE datasets is the 

much larger diversity and sparsity of the ELN dataset (see Fig. 3C). It should be noted that while 

the size of the legacy dataset is relatively small compared to the typical data sizes used in deep 

learning models, it is approximately twice the size of the dataset successfully used by Fu et al.11 

for a yield model of the Suzuki reaction. To improve the model generalizability by increasing the 

individual dataset sizes, thus decreasing the sparsity of the dataset, a GNN model was pre-trained 

using the method developed by Hu et al.32  using attribute masking, context prediction and edge 

prediction. The resulting model was then fine-tuned separately for the yield prediction task on each 

of the three datasets.  Note that the goal of the pre-training stage is to learn from existing patterns 

in the data independent of the downstream task. Thus, labels are not necessary at this stage. Two 

different datasets were used for the pre-training stage. The first dataset contains 2 million 

molecules sampled from the ZINC15 dataset33 used previously.32 For Suzuki-Miyaura reactions, a 

second dataset contains synthetic Suzuki reactions generated by permutating all commercial 

available reactants and ligands and generating all possible combinations. This resulted in 440K 

potential Suzuki reactions that can be used to pre-train the model on a dataset that is more closely 

related to the target data.  

However, none of the above methods resulted in significant improvement on the yield 

prediction task. The results are shown in Table 2. Note that the GNN model used here is based on 

the model developed by Hu et al.32, as a result the R2 scores after fine-tuning are not similar to our 

model results. Although we notice a slight improvement in Buchwald-Hartwig reactions from 

AstraZeneca, the R2 score of this model is still lower than that of RF–1 and RF–2 baselines. We 
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conclude that the best result is obtained by training separate models on each dataset. We leave the 

exploration of other methods to improve model generalizability for future work. 

 

Table 2: Results for three reaction datasets. For each data, the mean and standard deviation of 
𝑅! and MAE (in parenthesis) obtained via training each model on 10 random data splits. For 
Suzuki-Miyaura data, a second column is added which contains the results of the model pre-
trained on our synthetic Suzuki-Miyaura data. 

 Suzuki-Miyaura18 Suzuki-Miyaura18 

(Pretrain-Synthetic) 

Buchwald-Hartwig10 Buchwald-Hartwig 

[ELN] 

ContextPred 0.540±6e-4 
(0.152±0.0004) 

0.546±3e-4 
(0.151±1e-4) 

0.716±6e-4 
(0.103±4e-4) 

0.177±0.014 
(0.220±0.002) 

EdgePred 
 

AttrMasking 

0.540± 6e-4 
(0.152±3e-4) 

0.535±5e-4 
(0.152±0.0004) 

0.544±3e-4 
(0.152±1e-4) 

 
       0.545±4e-4 

(0.152±1e-4) 

0.721±0.001 
(0.102±1e-4) 

0.713± 0.001 
(0.102±0.004) 

0.129±0.011 
(0.231±0.002) 

0.143±0.008 
(0.222±0.002) 

 

Discussion 

The key limitation for the application of ML methods in synthesis is the availability of 

suitable datasets.  This is particularly evident in yield predictions which have the potential to 

greatly accelerate reaction optimization and development but have so far only been demonstrated 

for specific reactions sets where focused HTE datasets were generated for this purpose. This data 

challenge is widely acknowledged in the literature and the mining of ELN has been suggested as 

a possible solution because ELNs are perceived to be less biased towards high-yielding reactions 

and more information-rich than the primary literature or literature databases.8,34,35 Although 

potential problems in the extraction of data from ELNs have been acknowledged,36 the suggestion 

was that appropriate tools could overcome the challenges in using ELN data for a variety of 

applications including yield predictions.8     



15 
 

The results presented here, together with the studies in the literature that did not focus on 

specific reactions,15,16 suggest that is not the case and the legacy datasets from commercial 

databases or ELNs, by themselves, might be of limited use for the prediction of yields. The findings 

that successful models of yield predictions could be built with datasets smaller but more focused 

than the  ELN dataset used here,11 together with the excellent performance of the YieldGNN for 

the HTE datasets, suggests that the failure to provide a predictive model owes to the diversity of 

the chemical space of the training set, visualized in Fig 3C. The suitable balance between dataset 

diversity and size for yield predictions is not known yet. It should also be mentioned that collection 

of ELN over an extended period of time by different experimentalists introduces another level of 

noise that will be hard to control. This has significant consequences for the proposed use of legacy 

datasets from the literature or ELNs 8,34-36 that will require a more detailed analysis before 

successful yield prediction models can be build. Developing workflows to curate the ELN-derived 

datasets and making them available to the scientific community are important steps in this 

direction.      

 

Methods 

Generation and Curation of ELN dataset. The raw dataset was collected from the electronic 

laboratory notebooks at AstraZeneca using the NextMove software. To curate the raw data, a series 

of Jupyter notebooks were created, which can be found in the github repository. First, the original 

data format (.xml) was converted to the internally used library files. The scripts include several 

steps of data processing for automated curation of the dataset. Examples demonstrating the data 

format workflows for the generation of the features from the structures are described below. Next, 

the yield-related information was generated including reactants information, reaction variables 
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(e.g. temperature, volume, and reaction scale). In many cases, the information was contained in 

the comment section of the .xml file rather than the appropriate data field. In these cases, the 

information was transferred (either through scripting or manual curation) to the correct field based 

on the preparation section which is shown as text form in the original dataset. Cases where no yield 

was reported were classified to four types of non-yield reactions: (A) no reaction occurred (104 of 

173), (B) trace amount of product (41 of 173) and (C) complex mixture of reaction products (28 

of 173). Finally, MDL molfiles were generated for each molecule from the compounds database 

included in the ELN, which were then used to generate SMILES strings. The SMILES files were 

converted into Cartesian coordinates for the Gaussian calculations using RDKit37 and 

OpenBabel.38 

 

Feature generation and selection. For each molecule, two sets of chemical features were 

obtained. The first source is the full set of descriptors available in the RDKit library. The second 

source are the features from DFT calculations of each of the reactants using Gaussian1639 with the 

B3LYP functional and 6-31G* basis set for geometry optimization and 6-311G* basis sets for 

single point calculations. The remaining features include the surface area generate from pymol, 

pKa of the base, solvent dielectric constant from the compound database. The following set shows 

the chemical features used for model training: 

Molecular features: molecular volume, surface area, ovality, molecular weight, HOMO/LUMO 

Energy, electronegativity, hardness, and dipole moment. 

Atomic features: Electrostatic charge and NMR shift 

Reaction features: Temperature, Reaction scale and volume for some of reactions 
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To pre-select features, the features from above sources were combined, and a random forest 

model was trained on ten 70:30 random splits. Then, all features with feature importance of 10-4 

or greater in any of the 10 random forest models were retained and included in the AGNN. Note 

that no feature engineering on the structural features is performed, the structural features are 

automatically generated by the GNN model. The random forest-based pre-selection helps reduce 

the number of the parameters used in the deep learning YieldGNN model. 

 

Model architecture. The model integrates both the chemical features and the structural features 

for reaction molecules using two main components. An overview of the model is shown in Figure 

2. The top component represents the AGNN which learns the structural features and the bottom 

module captures the chemical features. In this section the process of structural feature generation 

is detailed. 

For each reaction, attributed graphs containing atom and bond features for each molecule 

are build first. Each atom feature contains atomic number, formal charge, degree of connectivity, 

explicit and implicit valence, and aromaticity. The bond features include the bond type, bond order 

and ring status. Atom features around the atom neighborhood are aggregated in an iterative manner 

using the Weisfeiler-Lehman Network (WLN)27  to obtain the local atom and bond features. WLN 

is a graph kernel based on the Weisfeiler-Lehman test for graph isomorphism. Two graphs are 

isomorphic if they are topologically equivalent, and the WL test is a necessary condition for graph 

isomorphism. Thus, the WLN is one of the most expressive GNN methods and is used here. In 

each iteration, the atom feature representation is updated according to: 

ℎ"# = 𝑅𝑒𝑙𝑢	(𝑈$ℎ"#%$ + 𝑈! + 𝑅𝑒𝑙𝑢	(𝑉$ℎ"#%$ + 𝑉!ℎ&")
&	∈)(")

) 
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where ℎ"#  is the atom feature representation at iteration 𝑙	(1 ≤ 𝑙 ≤ 𝐿). 𝑈$, 𝑈!, 𝑉$, 𝑉! are 

paramters to be learned, which are shared across 𝐿 iterations. The final atom feature representation 

for atom 𝑣 is obtained at the end of the final iteration using: 

ℎ" = + (𝜃$ℎ&, 	⨀		𝜃!ℎ&", 	⨀	𝜃$ℎ",)
&	∈)(")

 

where ⨀ is the convolution operation and 𝜃 are the model weights. For the HTE datasets, 

two iterations are used to capture the 2-hop neighborhoods. Therefore, for these datasets the above 

operation translates to two iterations to obtain the local representation of atoms.  

Next, the local structural features are fed to an attention layer to capture the global 

structural features. The intuition behind including attention40  is that different components of the 

reaction may influence the reaction yield differently. The attention layer is meant to capture the 

degree to which different atoms influence each other. The global representation of atom 𝑣 is 

equivalent to the weighted sum of all other atoms in the reaction: 

ℎ5" =+𝛼"-ℎ"
-

 

 The attention score for a given atom pair (𝑣, 𝑧) is calculated using: 

𝛼"- = 𝜎(𝑢. × 𝑅𝑒𝑙𝑢	(𝑊$ℎ" +𝑊!ℎ- +𝑊/𝑏"-)) 

where 𝜎(. ) is the sigmoid function, 𝑏"- is the binary features for atom pair (𝑣, 𝑧) and 𝑊 is 

the attention weights to be learned by the model. Both global and local structural features are 

concatenated to generate the final structural features. The YieldGNN model provides two yield 

scores, one from the structural features (Yield(graph)) and the other from the chemical features 

(Yield(chem)). The two scores are fed to a linear layer to generate the final reaction yield 

predictions in analogy to earlier work by Coley et al.,41 but for prediction of the reaction yield 

through combining both structural graph-based features as well as chemical properties. 
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Parameter Selection. A grid-search for each hyper parameter is performed and tuned for each 

dataset separately. For all datasets, batch size, dropout ratio, and initial learning rate are set to 40, 

0.04 and 0.01, respectively. A learning rate decay ratio of 0.5 is used on all datasets if the loss 

plateaus. A 2-hop neighborhood is used for the HTE datasets and a 3-hop neighborhood for the 

ELN data. The size of all hidden layers is set to 100 for the ELN data and 200 for the HTE data. 

The gradient is clipped with a 0.8 ratio on all datasets to avoid the exploding gradient problem. 

The model is trained for 200 epochs for HTE data and 100 epoch for the ELN data using Adam 

optimizers42 with 𝛽$=0.9 and 𝛽!=0.99. 

For pre-training, the models developed by Hu et al.32 we use Graph Isomorphism Network (GIN), 

which based on the author’s finding resulted in the best performance. Following the best 

parameters suggested by the authors in their original work, we set the batch size, number of layers, 

and dropout ratio to 256, 5, and 0.15, respectively. We use an embedding dimension of 300 and a 

learning rate of 0.001, and pre-train the models for 100 epochs. For the fine-tuning module, we set 

batch size, number of layers, embedding dimensions, and dropout ratio to 32, 5, 0.5, and 300, 

respectively based on the author’s recommended parameters. We set the learning rate to 0.001 and 

decay it with a 0.9 rate upon loss plateau. We use mean pooling for GNN during both pre-training 

and fine-tuning. We fine-tune the pre-trained model for 100 epochs as well. 

Model Evaluation 

Baselines: The model is compared to three main baselines. The first two baselines are random 

forest (RF) models with 1000 trees each having a maximum depth of 10. Two RFs are trained with 

different feature subsets. The first model, RF-1, is similar to the previous random forest model10 

and contains the same feature set in that study. The second model, RF-2 includes all features 

available in RF-1 as well as all descriptors available in rdkit.ML.Descriptors.  The top 
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features selected in RF-2 are used in the feature selection step later on. The third baseline is the 

BERT language model5,16 that treats reaction smiles as text and fine-tunes the pre-trained BERT 

language model to predict the reaction yield. For our experimental results, we directly quote the 

performance of this model16 on the HTE data.  

Evaluation metrics. The performance of each model using coefficient of determination, denoted 

as 𝑅!, and the mean absolute error, denoted as MAE. 10 models with different random splits of 

each dataset are run and the mean and standard deviation of the 10 experiments is reported. 

 

 
Code availability. All models, scripts, Jupyter notebooks and data curation workflows are 

available free of charge in the Supporting Information and at https://github.com/nsf-c-cas   

Data availability The raw ELN dataset derived from the ELNs at AstraZeneca as well as the 

curated version with associated features used are available free of charge at https://github.com/nsf-

c-cas and have been uploaded to the Open Reaction Database https://docs.open-reaction-

database.org. 
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