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Abstract: 

Defects in ionic solid are very much common, which is increased with the rise in temperature. It 

causes the change in the value of many physical properties and varieties of physical parameters 

and the Lattice Energy is one such parameter to control the physical properties of the crystals. 

Considering the loss of ions from lattice points as random, the examination of each of the defects 

individually is going to be unpredictable, thus leading to almost nonattainment of the correct 

crystal structure with the theoretical calculations applying for available models. Here, in this 

present work, we have used some statistical methods and probabilistic approximation to introduce 

a novel idea of calculating the Madelung constant, and then Lattice Energy analytically. 

To make the understanding more lucid, we have taken one of the very common crystals, very 

popular in the crystallographic community, NaCl crystal having 6:6 co-ordination number, for 

which a significant number of Schottky defects are observed. 

During this study, we are bound to assume the random distribution of defects as Poisson 

distribution due to the fact that the number of defects is very less with respect to the total numbers 

of lattice points present in the crystal to calculate the Madelung Constant. 
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Introduction: 

For undergraduate students in chemistry, solid-state chemistry solid-state, and structural 

chemistry is very important. It is because of many scientific inventions and due to the very 

many uses of solid-state devices from semiconductors to superconductors. But before that, we 

have to study the most important and basic, the ionic solid. To study properly the ionic-solids 

we must know about the lattice energy, Madelung constant, and many other parameters. 



To analyze the various physical properties of an ionic rystal, Lattice energy is the most 

important parameter. It is very much useful in understanding the potential functions and 

binding forces which are responsible for binding in an ionic crystal. The lattice energy is 

experimentally determined using the Born Haber cycle. But sometimes all the experiments 

cannot be performed and so theoretical determination of lattice energy is very much 

important. [1-11] 

The lattice energy of a crystal is based on a model where ions are considered as the point 

charges placed in a fixed position in a regular array and the coulombic electrostatic force acting 

among the ions. The lattice energy is calculated theoretically using the Born-Lande equation in 

which another parameter Madelung constant is also related.  

The Born-Lande equation may appear in textbooks in the form      

                                              

                                             𝑈𝑜 = −
𝑁𝐴𝑧+𝑧−𝑒2

𝑅𝑜
(1 −

1

𝑛
) ………………………………….(1) 

Where, Uo is the Lattice energy N is the Avogrado Number, A is the Madelung Constant, z+ is the   

charge of cation, z- is the charge of anion, e is the charge of an electron, Ro is the equilibrium 

distance between the oppositely charged ions, n is the Born exponent.[12-15] 

 

In the above equation, 1 is the expression of Lattice Energy where no defects or missing ions 

are taken into account. So, one can calculate the lattice energy of a perfect crystal where no 

ions are missing from their lattice points. But in reality, as temperature increases, the ions are 

displaced from their lattice position, and deects are formed in the ionic lattice. 

As defects are formed disorder is developed in the crystal which implies entropy of the system 

increases. But on the other hand formation of defects is an endothermic process. 

So, for this process,   

∆𝐻 > 0 , ∆𝑆 > 0 

The process of formation defects in a crystal lattice is entropically driven and so the defect 

concentration increases with an increase in temperature. Even at room temperature (25oC) in 

1cc of 6:6 NaCl crystal, there are about 106 Schottky defects that cause a considerable change 

in Lattice energy. 

The total potential energy of a crystal will be the sum of both Coulombic attraction potential 

and short-range repulsive potential, which is referred to as Born repulsive potential. The 

repulsion potential is mainly due to the interpenetration of the electron clouds which is 

inversely proportional to Rn where R is the internuclear distance and n is the Born exponent.   

                                                         𝑉𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 ∝
1

𝑅𝑛 



                                                   or, 𝑉𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 =
𝐵

𝑅𝑛
    [B is the proportionality constant] 

 

    If an ion is surrounded by c numbers of oppositely charged ions then B can be written in 

terms of c and repulsive coefficient (b) according to the following relation: 

                                                         𝐵 = 𝑐𝑏 [16] 

c is the first order coordination number concerning our reference ion. For example, if we 

consider NaCl (6:6) ionic crystal then c=6, and if CsCl (8:8) ionic crystal then c=8. 

If a particular crystal contains a considerable numbers of defects then the following parameters 

related to the crystal used in calculate lattice energy according to the Born-Lande equation will 

change: 

1) Madelung Constant (A changes to A*) 

2) Equilibrium distance (Ro changes to 𝑅𝑜
∗) 

3) B will change (B to B*). 

 

Now we aim to find the expression of Lattice Energy in terms of new Madelung constant (A*), 

and new equilibrium distance () using the new value of proportionality constant B* and also the 

new value or the expression of A* and 𝑅𝑜
∗ . So, we define a new parameter 𝛌 which is the 

average number of missing ions from a particular distance at a particular temperature for a 

particular crystal. 

The Madelung Constant represents all the electrostatic interaction among all the ions in a solid 

crystal lattice. It is a dimensionless quantity related to the crystal which is invariant for a 

specific crystal. Madelung constant depends on the number of ions but also the location of the 

ions. The Madelung constant is widely used because it does not depend on the crystal unit cell 

and it has the same value for the crystal having identical invariant symmetry. [17] 

                       

The dimensionless Madelung constant at 𝑖𝑡ℎ site is defined by, 

              

                                                      A=∑
𝑧𝑗

𝑙𝑖𝑗
𝑙0  

⁄
𝑖        

here 𝑧𝑗is the charge at the 𝑗𝑡ℎ site, 

𝑙𝑖𝑗=|𝑙𝑖 − 𝑙𝑗| which is the distance between the 𝑖𝑡ℎ and 𝑗𝑡ℎ site and 𝑙0 is a chosen reference 

distance.  

From the definition of the Madelung constant, it can be concluded that the Madelung Constant 

not only depends on the number of missing ions but also the location of the voids caused by the 



removal of the ions. And, in an ionic solid it is not straightforward rather difficult to study the 

position as well as the number of defects. Moreover, the impossibility of examining the defects 

separately led us to open a new methodology for this study.  

From the structural point of view, in a crystalline substance, the number of ions missing from a 

particular position (w.r.t the reference ion) is random and so, a probability distribution of the 

random variable can help us to calculate the Madelung Constant easily. 

As the numbers of defects with respect to the total numbers of lattice points are very small and 

so the probability of finding defects is very small in a specific position so maybe it follows the 

Poisson distribution. 

A discrete random variable X is said to have a Poisson distribution with parameter λ>0 if for k= 

0, 1, 2, 3, …., the probability mass function (p.m.f.) of X is given by, 

                                           𝑃(𝑋 = 𝑥) =  
𝑒−𝜆𝜆𝑥

𝑥!
          [18,19] 

Where, 

•    e is Euler's number (e = 2.71828...) 

•    𝛌 is the mean or average of the variable x. (to be edited by DJ) 

 

 

The Poisson distribution can be applied to systems with a large number of possible events, each 

of which is rare. The number of such events that occur during a fixed time interval is, under the 

right circumstances, a random number with a Poisson distribution. 

Hence the probability of missing an ion from a specific distance is very less it may follow the 

Poisson distribution. Using the distribution the change of the Madelung constant can be 

determined. Then it can be used to estimate other parameters. 

 

Expression of Lattice Energy in terms of A*, B* and 𝑹𝒐
∗ :  

For one mole of any crystal the modified potential energy can be written as, 

𝑈 = −
𝐴∗𝑁𝑍+𝑍−𝑒2

(4𝜋𝜀𝑜)𝑅
+

𝐵∗𝑁

𝑅𝑛
 

                                                             (
𝜕𝑈

𝜕𝑅
)

𝑅=𝑅𝑜
∗

= +
𝐴∗𝑁𝑍+𝑍−𝑒2

(4𝜋𝜀𝑜)𝑅𝑜
∗ 2 −

𝑛𝐵∗𝑁

𝑅𝑜
∗ 𝑛+1   

At equilibrium distance the potential energy is minimum. So, if 𝑅𝑜
∗be the equilibrium distance 

then we can say that, 

(
𝜕𝑈

𝜕𝑅
)

𝑅=𝑅𝑜
∗

= 0 

So, 

https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://en.wikipedia.org/wiki/Large_number_of_rare_events
https://en.wikipedia.org/wiki/Large_number_of_rare_events


0 = +
𝐴∗𝑁𝑍+𝑍−𝑒2

(4𝜋𝜀𝑜)𝑅𝑜
∗ 2

−
𝑛𝐵∗𝑁

𝑅𝑜
∗ 𝑛+1 

Or,  
𝑛𝐵∗𝑁

𝑅𝑜
∗ 𝑛+1 = +

𝐴∗𝑁𝑍+𝑍−𝑒2

(4𝜋𝜀𝑜)𝑅𝑜
∗ 2  

 

Or,  𝐵∗ = +
𝐴∗𝑍+𝑍−𝑒2

(4𝜋𝜀𝑜)𝑛𝑅𝑜
∗ 2 × 𝑅𝑜

∗ 𝑛+1 

Or,  𝐵∗ = +
𝐴∗𝑍+𝑍−𝑒2

(4𝜋𝜀𝑜)𝑛
𝑅𝑜

∗ 𝑛−1 

If we replace the expression of B* in the expression of modified potential Energy (U) then we 

will get the expression of Lattice Energy when the interionic distance is 𝑅𝑜
∗ . The Modified Lattice 

energy is denoted as 𝑈𝑜
∗ and its expression will be, 

 

𝑈𝑜
∗ = −

𝐴∗𝑁𝑍+𝑍−𝑒2

(4𝜋𝜀𝑜)𝑅𝑜
∗

+
𝐴∗𝑍+𝑍−𝑒2𝑁

(4𝜋𝜀𝑜)𝑛𝑅𝑜
∗𝑛 × 𝑅𝑜

∗𝑛−1 

𝑂𝑟, 𝑈𝑜
∗ = −

𝐴∗𝑁𝑍+𝑍−𝑒2

(4𝜋𝜀𝑜)𝑅𝑜
∗

+
𝐴∗𝑍+𝑍−𝑒2𝑁

(4𝜋𝜀𝑜)𝑛𝑅𝑜
∗

 

𝑂𝑟, 𝑈𝑜
∗ = −

𝐴∗𝑁𝑍+𝑍−𝑒2

(4𝜋𝜀𝑜)𝑅𝑜
∗

(1 −
1

𝑛
) 

 

The modified equation to calculate Lattice Energy contains the term A* and R*. These are the 

value of the Madelung constant and equilibrium distance when the defects in the ionic solid is 

taken into account. So, we aim to find the new Madelung constant(A*) and equilibrium distance 

(𝑅𝑜
∗). 

Calculation of A*: 

The general expression of Madelung constant of an ionic crystal is defined by the following 

expression: 

𝐴 = ∑
𝑍𝑗

(
𝑙𝑖𝑗

𝑙𝑜
⁄ )

∞

𝑖=1

 

here 𝑧𝑗is the charge at the 𝑗𝑡ℎ site, 

𝑙𝑖𝑗=|𝑙𝑖 − 𝑙𝑗| which is the distance between the 𝑖𝑡ℎ and 𝑗𝑡ℎ site and 𝑙0 is a chosen reference 

distance. 

 



 Now let’s assume that from the 𝑗𝑡ℎ site 𝑛𝑗  numbers of ions are misplaced which is the 

consequence of defects in an ionic crystal. So, the new Madelung constant (A*) will be: 

 

𝐴∗ = ∑
(𝑍𝑗 − 𝑛𝑗)

(
𝑙𝑖𝑗

𝑙𝑜
⁄ )

∞

𝑖=1

 

 

𝑂𝑟, 𝐴∗ = ∑
𝑍𝑗

(
𝑙𝑖𝑗

𝑙𝑜
⁄ )

∞

𝑖=1

− ∑
𝑛𝑗

(
𝑙𝑖𝑗

𝑙𝑜
⁄ )

∞

𝑖=1

 

𝑂𝑟, 𝐴∗ = 𝐴 − ∑
𝑛𝑗

(
𝑙𝑖𝑗

𝑙𝑜
⁄ )

∞

𝑖=1

 

Now let n be the total numbers of defects in that particular crystal at a particular temperature. 

So,  𝑛 =  𝑛1 + 𝑛2 + 𝑛3+. . . . . . . . .. = ∑ 𝑛𝑗𝑗  

Now we can write the new Madelung constant as, 

𝐴∗ = 𝐴 −  𝑛 ∑

𝑛𝑗
𝑛⁄

(
𝑙𝑖𝑗

𝑙𝑜
⁄ )

∞

𝑖=1

 

We can replace the term 
𝑛𝑗

𝑛
 with 𝑝𝑗. And the term 𝑝𝑗  is the probability of finding defects from 

𝑙𝑖𝑗

𝑙𝑜
 

distance. So, the expression of A* will be, 

𝐴∗ = 𝐴 −  𝑛 ∑
𝑝𝑗

(
𝑙𝑖𝑗

𝑙𝑜
⁄ )

∞

𝑖=1

 

We assumed that the random distribution of the defects at a particular distance (
𝑙𝑖𝑗

𝑙𝑜
⁄ )   from  

a reference ion follows the Poisson distribution with mean 𝛌. By this assumption estimation of 

𝑝𝑗 or the probability of finding error at (
𝑙𝑖𝑗

𝑙𝑜
⁄ ) distance from the reference ion. 

If 𝛌 be the mean of the defects observed in a particular distance from the reference ion then 

we can relate the probability(p) and the total numbers of defects(n) by,  

𝜆 = 𝑛𝑝 

𝑜𝑟, 𝑝 =
𝜆

𝑛
 



  

Using the estimated value of p from the Poisson distribution may be leads to good 

approximation of Madelung constant at a particular temperature for a particular crystal. So, 

putting the estimated value of p in the modified expression of Madelung constant (A*) we get, 

𝐴∗ = 𝐴 −  𝑛 ∑
𝜆

𝑛⁄

(
𝑙𝑖𝑗

𝑙𝑜
⁄ )

∞

𝑖=1

 

𝑂𝑟, 𝐴∗ = 𝐴 −  ∑
𝜆

(
𝑙𝑖𝑗

𝑙𝑜
⁄ )

∞

𝑖=1

 

𝑂𝑟, 𝐴∗ = 𝐴 −  𝜆 ∑
1

(
𝑙𝑖𝑗

𝑙𝑜
⁄ )

∞

𝑖=1

 

 

The 𝛌 is the average of numbers of the ions which are missing from their lattice points for a 

particular crystal at a particular temperature we defined earlier.  

Now the series  ∑
1

(
𝑙𝑖𝑗

𝑙𝑜
⁄ )

∞
𝑖=1  will converge to some value which can be calculated using 

computer programming. For a particular crystal the series will converge to a particular value. 

Let’s assume the value of the series be 𝑒𝑟𝑟𝐴. 

So,  ∑
1

(
𝑙𝑖𝑗

𝑙𝑜
⁄ )

∞
𝑖=1 = 𝑒𝑟𝑟𝐴 . So, the modified Madelung constant will be, 

𝐴∗ = 𝐴 −  𝝀 × 𝒆𝒓𝒓𝑨 

Calculation of B*: 

The expression of B in already defined earlier as, 

𝐵 = 𝑐𝑏  

Where, b is the repulsive coefficient, and c is the first order coordination number or the 

numbers of oppositely charged ions nearest to the reference ion. As we defined the 𝛌 as the 

average of missing of ions from a particular distance from the reference ion we can say that 

from the nearest distance 𝛌 numbers of ions are missing. So, the expression of B will change 

from the initial which is denoted as B*. So, the B* will be, 

𝐵∗ = (𝑐 − 𝝀)𝒃 

𝑜𝑟, 𝐵∗ = 𝑐𝑏 − 𝝀𝒃 



𝑜𝑟, 𝐵∗ = 𝐵 − 𝝀
𝑩

𝒄
 

𝑜𝑟, 𝐵∗ = 𝐵 (1 −
𝜆

𝑐
) 

Calculation of 𝐑𝐨
∗  : 

While calculating the modified Lattice energy we find the expression of B* which is given below: 

𝐵∗ = +
𝐴∗𝑍+𝑍−𝑒2

(4𝜋𝜀𝑜)𝑛
𝑅𝑜

∗ 𝑛−1 

 

𝐵 (1 −
𝜆

𝑐
) = +

𝐴∗𝑍+𝑍−𝑒2

(4𝜋𝜀𝑜)𝑛
𝑅𝑜

∗ 𝑛−1 

(4𝜋𝜀𝑜)𝑛𝐵

𝐴∗𝑍+𝑍−𝑒2
(1 −

𝜆

𝑐
) = 𝑅𝑜

∗ 𝑛−1 

If we consider there is no any defect in the crystal then according to the Born–Lande equation 

the expression of equilibrium distance (𝑅𝑜) will be, 

𝐵 = +
𝐴𝑍+𝑍−𝑒2

(4𝜋𝜀𝑜)𝑛
𝑅𝑜

 𝑛−1 

(4𝜋𝜀𝑜)𝑛𝐵

𝐴𝑍+𝑍−𝑒2
= 𝑅𝑜

 𝑛−1 

 

Now if we take the ratio of 𝑅𝑜
∗ 𝑛−1 and 𝑅𝑜

 𝑛−1 we get, 

(
𝑅𝑜

∗

𝑅𝑜
)

𝑛−1

=
𝐴

𝐴∗
× (1 −

𝜆

𝑐
) 

𝑅𝑜
∗

𝑅𝑜
= [

𝐴

𝐴∗
× (1 −

𝜆

𝑐
)]

1
𝑛−1

 

𝑅𝑜
∗ = 𝑅𝑜 [

𝐴

𝐴∗
× (1 −

𝜆

𝑐
)]

1
𝑛−1

 

 

Expression of modified Lattice energy: 

If we put the values of A*, 𝑅𝑜
∗  in the expression of modified Lattice energy we get the Lattice 

energy, 



𝑈𝑜
∗ = −

(𝐴 − 𝜆𝑒𝑟𝑟𝐴)𝑁𝑍+𝑍−𝑒2

(4𝜋𝜀𝑜)𝑅𝑜 [
𝐴
𝐴∗ × (1 −

𝜆
𝑐)]

1
𝑛−1

(1 −
1

𝑛
) 

 

By the above equation we can find out the lattice energy for various types of crystal at a 

particular temperature by determination of 𝛌 and 𝑒𝑟𝑟𝐴. 

Calculation of 𝒆𝒓𝒓𝑨for NaCl (6:6) crystal: 

NaCl is one of the well-known crystals where considerable numbers of Schottky defects are 

observed. The unit cell of NaCl crystal is given below: 

                          

 

 The expression of Madelung constant for this type of 6:6 NaCl type crystal will be  

A = (
6

√1
−

12

√2
+

8

√3
−

6

√4
+

24

√5
−

24

√6
… ) 

Here the numerator of the above series is not our concern, the focus should be to the 

denominator to calculate the 𝑒𝑟𝑟𝐴. 

The expression of 𝑒𝑟𝑟𝐴 will be, 

 

 𝑒𝑟𝑟𝐴 = (
1

√1
−

1

√2
+

1

√3
−

1

√4
+

1

√5
−

1

√6
… ) 

The series can be written the form of, 

𝑒𝑟𝑟𝐴 = ∑(−1)𝑥+1
1

√𝑥

∞

𝑥=1

 

The above series is convergent and it converges to 0.60488. Hence for NaCl (6:6) crystal  

𝑒𝑟𝑟𝐴 = 0.60488 



 

So, the value of new Madelung constant (A*) for NaCl type (6:6) crystal, 

𝐴∗ = A − 0.60488𝛌 

 

Expression of modified lattice energy in terms of 𝛌: 

The coordination number of 6:6 NaCl type crystal is 6. So, the value of c is 6. We can easily find 

the expression of modified lattice energy in terms of 𝛌 by putting the value of c and 𝑒𝑟𝑟𝐴. 

The expression will be, 

𝑈𝑜
∗ = −

(𝐴 − 0.60488𝜆)𝑁𝑍+𝑍−𝑒2

(4𝜋𝜀𝑜)𝑅𝑜 [
𝐴

(𝐴 − 0.60488𝜆)
× (1 −

𝜆
6)]

1
𝑛−1

(1 −
1

𝑛
) 

 

   

The above expression is for NaCl (6:6) types of crystal and by calculating 𝑒𝑟𝑟𝐴for various crystal 

we can easily find the Lattice energy in term of 𝛌 which is the average number of missing ions 

or defects at a particular distance from the chosen reference ion at a particular temperature for 

that crystal. 

Calculation of 𝛌 for NaCl type crystal: 

To calculate the average of numbers of defects in a particular distance we cannot examine 

the whole crystal which is almost impossible so we take a small part of the crystal (Sample 

in terms of Statistics) and calculate the mean (𝑥̅) of the sample and the sample mean will 

be equal to the population mean that is the mean of the overall crystal. So, 

                                                                            𝛌= 𝑥̅ 

From each position the average number of ions that are missing (𝑛̅) is given by, 

                                                      𝑛̅  =  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜𝑠 𝑜𝑓 𝑑𝑒𝑓𝑒𝑐𝑡𝑠

  𝑇𝑜𝑡𝑎𝑙 𝑛𝑜𝑠 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠
 

To calculate the value of 𝑥̅ we have to choose a sample and then have to find the total numbers 

defects and also the total numbers of position from the reference ion present in the chosen 

sample. 



1 cm3 of the lattice is considered as a cube of volume 1 cm3 whose edges are 1 cm each which is 

the sample from NaCl (6:6) crystal for analyze. The sample cube is given below:  

               

 

If the density of NaCl is 𝛒 gcc-1 so the mass of 1 cc of NaCl will be 𝛒 g. If the formula mass of 

NaCl is M then the numbers of moles present is x then, 

𝑥 =
𝜌

𝑀
 

Now the numbers of ions present are the total numbers of ions presence in the x moles of NaCl 

is N, then, 

N = 2 × 𝑁𝐴 

𝑁 =
2𝜌𝑁𝐴

𝑀
 

 

Where 𝑁𝐴 is the Avogadro number. 



We know that in NaCl lattice a sufficient number of Schottky defects(ns) are present and we 

know that the numbers of Schottky defects are which is related with temperature and total 

number of ions are, 

n = N𝑒− 
𝐸𝑠

2𝑘𝑇     

So, in 1 cm3 the numbers of Schottky defects are, 

𝑛 =
2𝜌𝑁𝐴

𝑀
𝑒− 

𝐸𝑠
2𝑘𝑇 

Here Es is the energy required to form a Schottky defect and k is the Boltzmann constant and T 

is the temperature. 

 

Now we have to find the total numbers of sites are present in the chosen sample. The 

maximum distance of any ion from our reference ion in the sample cube of volume 1 cc is 

 
√3

2
 cm. 

 

 Now the distance of 1st ion from the reference ion is √1(𝑟+ + 𝑟−) , the distance of 2nd ion from 

the reference ion is √2(𝑟+ + 𝑟−), the distance of 3rd ion from the reference ion is √3(𝑟+ + 𝑟−). 

So, from the above we can conclude that the distance of xth ion from the chosen reference ion 

is √𝑥(𝑟+ + 𝑟−).   

Now if the maximum value of x that is present in the chosen cube of volume 1 cc the distance 

√𝑥(𝑟+ + 𝑟−) will be equal to 
√3

2
. So,  

√𝑥(𝑟+ + 𝑟−) =
√3

2
 

𝑜𝑟, √𝑥 =
√3

2(𝑟+ + 𝑟−)
 

𝑜𝑟, 𝑥 =  
3

4(𝑟+ + 𝑟−)2
 

 

So, total numbers of site present in the sample cube are  
3

4(𝑟++𝑟−)2 

The average of defects from a site is, 

𝑛̅  =  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜𝑠 𝑜𝑓 𝑑𝑒𝑓𝑒𝑐𝑡𝑠

  𝑇𝑜𝑡𝑎𝑙 𝑛𝑜𝑠 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠
 



𝑛̅ =
𝑛

𝑥
 

𝑛̅ =

2𝜌𝑁𝐴

𝑀 𝑒− 
𝐸𝑠

2𝑘𝑇

3
4(𝑟+ + 𝑟−)2

 

𝑛̅ =
8𝜌𝑁𝐴(𝑟+ + 𝑟−)2𝑒− 

𝐸𝑠
2𝑘𝑇

3𝑀
 

 

The value of the population mean (𝛌) is equals to 𝑛̅. So, 

𝜆 = 𝑛̅ =
8𝜌𝑁𝐴(𝑟+ + 𝑟−)2𝑒− 

𝐸𝑠
2𝑘𝑇

3𝑀
 

The density, formula mass of NaCl and ionic radius of 𝑁𝑎+𝑎𝑛𝑑 𝐶𝑙−are readily available in any 

chemistry book.   

The density of NaCl is 2.16 𝑔𝑐𝑚−3, the formula mass of NaCl is 58.5 𝑔𝑚𝑜𝑙−1, it takes 2 eV to 

form a Schottky defect 

The ionic radius of 𝑁𝑎+is 117 pm or 117 × 10−10cm, 

The ionic radius of 𝐶𝑙−is 164 pm or 164 × 10−10𝑐𝑚. 

Using the above information we can easily calculate 𝛌 at any temperature T. Then use the value 

of 𝛌 to calculate the Madelung constant and then lattice energy using the modified Born-Lande 

equation.  

 

Application: 

To determine the properties of an ionic crystal the lattice energy is one of the most important 

parameters which depends on the electrostatic interaction among the ions present in the                        

3-dimensional structure which also affects the melting and boiling point, thermal stability, and 

other physical properties of the ionic compounds. Due to defects in the crystal lattice or 

vacancy in the place of lattice points, these kinds of structure-sensitive properties are greatly 

affected. According to the vacancy model of melting of alkali halides by Ksiazek and Goreki, 

i) Melting starts when vacancy concentration (Schottky defects) in the solid 

phase reaches a critical value. 



ii) Melting is a process of creation of additional vacancies at the cost of the 

heating and melting.[20-22] 

As defects increases in a crystal, there is a structural change in the lattice which causes a 

valuable change in lattice energy. So, we can say during melting the lattice energy reaches a 

critical value. 

Now assuming the distribution of defects in the ionic crystal is Poisson distribution and defining 

the average value of defects at a particular distance from the reference ion estimation of 

Madelung constant, equilibrium distance and also according to the modified Born-Lande 

equation the lattice energy to predict other physical parameters and properties will be very 

easy. 

At high temperature when numbers of defects are large the modified Born-Lande equation is 

very much useful to calculate Lattice energy of any ionic crystal. When the temperature is not 

so high then the number of defects are less the Born-Lande equation is derived from the 

modified Born-Lande equation. 

Born-Lande equation from the modified Born Lande equation: 

When the temperature is low the crystal consists of less numbers of defects or missing of ions 

from their Lattice position. So, we can say the average value of defects from a site or the value 

of 𝛌 is very small.  

 So, 

𝐴∗ = 𝐴 − 𝜆𝑒𝑟𝑟𝐴 ≈ 𝑨 

(1 −
𝜆

𝑐
) ≈ 1 

The modified Born-Lande equation is, 

𝑈𝑜
∗ = −

(𝐴 − 𝜆𝑒𝑟𝑟𝐴)𝑁𝑍+𝑍−𝑒2

(4𝜋𝜀𝑜)𝑅𝑜 [
𝐴
𝐴∗ × (1 −

𝜆
𝑐)]

1
𝑛−1

(1 −
1

𝑛
) 

 

When 𝛌 is very small the we have, 

𝑈𝑜
∗ = −

𝐴𝑁𝑍+𝑍−𝑒2

(4𝜋𝜀𝑜)𝑅𝑜 [
𝐴
𝐴 × (1)]

1
𝑛−1

(1 −
1

𝑛
) 

𝑈𝑜
∗ = −

𝐴𝑁𝑍+𝑍−𝑒2

(4𝜋𝜀𝑜)𝑅𝑜
(1 −

1

𝑛
) 



The above equation is the Born-Lande equation which is obtained from the modified Born-

Lande equation. 

Lattice energy of NaCl at room temperature (298 K): 

The average numbers of defects from a site, 𝛌 is given by the following expression, 

𝜆 = 𝑛̅ =
8𝜌𝑁𝐴(𝑟+ + 𝑟−)2𝑒− 

𝐸𝑠
2𝑘𝑇

3𝑀
 

At 298 K the value of 𝛌 will be, 

𝜆 =
8 × 2.16 × 6.022 × 1023 × {(117 + 164) × 10−10}2𝑒

−
2

2×8.61×10−5×298

3 × 58.5
 

𝜆 = 5.5 × 10−10 

Now at room temperature the average of 𝛌 is very small so we can use the Born-Lande 

equation instead of the modified equation. The value of 𝛌 in the order of 10−10 so the value of 

lattice energy, Madelung constant and equilibrium distance is not influenced much due to the 

defects. But as the temperature increases the numbers of defects also increases and the value 

of 𝛌 becomes considerably higher to influence the Madelung constant, equilibrium distance 

and Lattice energy. When the numbers of defects become of the order 10−2 𝑜𝑟 10−3 then a 

considerable change in Lattice energy is visible. 

As the temperature increases and it reaches to the melting point then the crystal structure will 

not exist. So, at high temperature lattice energy can be calculated using the modified Born-

Lande equation to the limit of temperature (melting point) upto which the compound exists in 

crystal form.      

Conclusion: 

 At temperature 0 K there are no defects in solid crystal but at high temperature, there are defects 

in a crystal lattice. So many Physical parameter changes due to the defects. Hence the approach 

of estimating the Madelung constant using probability distribution function helps to predict the 

most important physical parameter Lattice Energy which helps us to predict other additional 

physical properties such as solubility, thermal decomposition, etc. Here we introduced an easy 

statistical and probabilistic method to predict the Madelung constant due to the Schottky defect 

and also modified the Born-Lande equation where the defects in the ionic crystal are also taken 

into account. 
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