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Abstract

AutoDock VINA is one of the most-used docking tools in the early stage of mod-

ern drug discovery. It uses a Monte-Carlo based iterated search method and multi-

threading parallelism scheme on multicore machines to improve docking accuracy and

speed. However, virtual screening from huge compound databases is common for mod-

ern drug discovery, which puts forward a great demand for higher docking speed of

AutoDock VINA. Therefore, we propose a fast method VINA-GPU, which expands

the Monte-Carlo based docking lanes into thousands of ones coupling with a largely

reduced number of search steps in each lane. Furthermore, we develop a heteroge-

neous OpenCL implementation of VINA-GPU that leverages thousands of computa-

tional cores of a GPU, and obtains a maximum of 403-fold acceleration on docking
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runtime when compared with a quad-threaded AutoDock VINA implementation. In

addition, a heuristic function was fitted to determine the proper size of search steps

in each lane for a convenient usage. The VINA-GPU code can be freely available at

https://github.com/DeltaGroupNJUPT/VINA-GPU for academic usage.

1 Introduction

Modern drug discovery is extremely time-consuming and expensive. It typically takes

decades and spends billions of dollars on developing a new drug.1 Computational molec-

ular docking (MD) provides an efficient and inexpensive way in the early stage of drug

design for the identification of leading compounds and their binding affinities.2–4

AutoDock suites consist of various docking tools including AutoDock4,5 AutoDock VINA,6

AutoDock FR,7 AutoDock Crank Pep8,9 and AutoDock-GPU10,11 etc., among which AutoDock

VINA is the most popular one and typically recommended as the first-line12 in the process

of molecular docking. It uses a Monte-Carlo based iterated local search method and a mul-

tithreading parallelism on CPUs to improve both docking speed and accuracy. Moreover,

it wins the best docking power in the comparative assessment of scoring functions (CASF)

benchmark CASF-201613 and the best scoring power under the comparison with ten docking

programs on a diverse protein–ligand complex sets.14

Previous virtual screening pipeline typically operates only on a scale of 106 − 107 com-

pound molecules. But, the whole chemical space of small molecular compounds that are

drug-like has been estimated to reach more than 1060 molecules.15 So far, the scale of com-

pounds for virtual screening is vital since the more candidate compounds to be screened, the

lower rate of false positives and the more favorable quality of leading compounds could be

found. Therefore, a great acceleration for virtual screening of huge databases has become a

core problem to be anxiously solved.16

Caused by the overall serial design of the AutoDock VINA algorithm, its parallelization

mainly relies on the stack of computing power as well as the resources and tasks optimal
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Figure 1: Overall workflow of VINA-GPU. VINA-GPU runs thousands of docking lanes
stimulatingly with much reduced search steps in each lane.

allocation in real scenarios of the ongoing situation for large virtual screens. For instance,

VirtualFlow17 provides a drug discovery platform for large virtual screening with up to

16,0000 CPUs. This huge resource investment and expenditure, as well as the high entry

threshold for users greatly weaken the popularity of AutoDock VINA and the flexibility of

customer’s usage (such as a self-defined target and small molecule dataset).

Nowadays, GPU cards with thousands of computing cores have shown a strong power

in parallel computation and already been exploited in molecular docking programs.10,11,18–27

For example, AutoDock-GPU provides an Open Computing Language (OpenCL)28 imple-

mentation of AutoDock4 to exploit both GPU and CPU parallel architectures. By exploring

three levels of parallelism (runs, individual, fine-grained tasks) on the Lamarckian Genetic

Algorithm (LGA) algorithm, it reduces the total runtime up to 350-fold with respect to a

single-threaded AutoDock4.11 However, as a promising docking tool, only little attentions

have been put into the GPU acceleration of AutoDock VINA. The Viking method tried

to rewrite the pose search of AutoDock VINA using GPU.25 Unfortunately, no positive

acceleration results were observed. According to our analysis, the main obstacles to the par-
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allelization of AutoDock VINA involve the following two aspects. Firstly, the Monte-Carlo

based optimization process is serialized by iterations, in which the next iteration relies on the

previous outputs. Secondly, each ligand file was formatted as a heterogeneous tree structure

whose nodes are traversed recursively. Besides, the Compute Unified Device Architecture

(CUDA)29 used by Viking can only be implemented on NVIDIA GPU cards, which limits

its cross-platform portability.

In this work, we propose an efficient parallel method, namely VINA-GPU, to accelerate

AutoDock VINA with GPUs. It achieves a large-scale parallelism on a reduced-step Monte-

Carlo based iterated method. Moreover, by converting the heterogeneous tree structure

into a list format whose nodes are stored in the traversed order, a heterogeneous OpenCL

implementation of VINA-GPU can be efficiently deployed. It leverages thousands of GPU

computational cores to achieve a higher level of parallelization and acceleration with the

cross-platform portability on both CPUs and GPUs. Experimental results show that VINA-

GPU can reach a maximum of 403 times speed-up and the comparable docking performance

when compared with a quad-threaded AutoDock VINA instance. The code of VINA-GPU is

freely available for academic users at https://github.com/DeltaGroupNJUPT/VINA-GPU.

Our contributions in this paper are:

(1) We analyze the AutoDock VINA algorithm and explored the inherent dependency of

Monte-Carlo based iterated local search method in details. Then, we propose an efficient

method, namely VINA-GPU, to achieve large-scale parallelism via much reduced search steps

in the Monte-Carlo iterations.

(2) To the best of our knowledge, it is the first to develop a heterogenous OpenCL implemen-

tation of AutoDock VINA on GPUs which obtains significant accelerations when compared

with CPU-based pipelines.

(3) For a given ligand, a heuristic function is fitted to set the proper size of search steps for

a convenient usage of our VINA-GPU tool.
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2 Methodology

2.1 VINA-GPU

AutoDock VINA utilizes a Monte-Carlo based iterated local search method for optimization

with gradients. It consists of a succession of search steps which starts from a random

conformation and implements the optimization continuously. A ligand conformation can be

simply represented by its position, orientation and torsion (POT). Each step is to randomly

mutate the ligand conformation and then to calculate its energy followed by an optimization

with the Broyden-Fletcher-Goldfarb-Shanno (BFGS)30 method. The metropolis acceptance

on its calculated energy is adopted to determine whether the conformation can be accepted.

If accepted, the conformation will be finely optimized by BFGS for a second time and then

added into a container that involves all the best 20 candidate conformations. Then, the

conformation will be continuously mutated in the next step until reaching the pre-set search

steps. The more steps it takes, the better conformations are likely to be found.

The AutoDock VINA algorithm is inherently serialized, in which a conformation returned

by the previous step determines the input of next step. Such an inherent dependency heavily

prevents the algorithm from a fine-grained parallelism such as, to implement each of search

steps concurrently. Thus, it is a better choice to implement the parallelism scheme on a

coarse-grained level of the Monte-Carlo based search method. In this work, we treat each

Monte-Carlo based iterated docking as an independent computing lane, and the size of lanes

represents the parallelism scale. AutoDock VINA provides a multithreading parallelism on

multicore CPUs using the boost library31 to gain an acceleration of docking speed. Multiple

lanes can be executed concurrently on their corresponding threads each of which starts from

a randomized conformation of the given ligand. However, the boost library can only be

used on CPUs and the acceleration greatly depends on the number of CPU cores. For the

vast majority of prevailing multi-core computers, the effect of parallelism acceleration is

very limited, and far from meeting the current demands for virtual screening on ultra large
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compound databases.

Therefore, we intend to explore a larger scale of parallelism on the course-grained level of

AutoDock VINA. According to our analysis, the whole searching space is pre-determined by

a “docking box” with its center, length, width and height defined by arguments (center_x,

center_y, center_z, size_x, size_y, size_z). For a given conformation, it usually requires

search_stepsVINA search steps (normally tens of thousands) in the process of optimization,

which occupies most of the total docking runtime. The size of search steps depends on the

complexity of the ligand and can be calculated by

search_stepsVINA = 105× Natom + 1050× Nrot + 11550 (1)

where Natom and Nrot are the number of atoms and rotatable bonds in the ligand. It is worth

noting that eq 1 does not take any searching space information into consideration, probably

because AutoDock VINA treats every lane as an independent one, thus, each of lanes shares

the same size of searching space. It might be true for searching such a large number of steps if

only a few lanes (8 by default in AutoDock VINA) are calculated simultaneously using multi-

threading. When the number of lanes reaches to thousands, however, the search steps for

each lane might be greatly reduced. Because, to calculate thousands of lanes simultaneously

needs to initialize thousands of random conformations in the searching space. We can regard

it as dividing the whole searching space into thousands of sub-spaces where each initial

conformation is to be optimized. A high-dimensional space S can be used to denote the

overall solution space covering all the possible conformations, each of which is described as

Posei = {x, y, z, a, b, c, d, ψ1, ψ2, ..., ψNrot}, (i = 1, 2, . . . ) (2)

where x, y, z correspond to the position of the conformation in the box; a, b, c, d denote the

orientation in the quaternion form; ψ1, ψ2, ..., ψNrot are related to torsions of Nrot rotatable
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(a) VINA: 1 lanes with 22365 steps each lane

(b) VINA-GPU: 10 lanes with 2237 steps each lane

(c) VINA-GPU: 100 lanes with 224 steps each lane

(d) VINA-GPU: 1000 lanes with 22 steps each lane

Figure 2: Conformation spaces (of PDBid: 2bm2) searched by AutoDock VINA or VINA-
GPU method. VINA-GPU method is used under different number of lanes with different
search steps in each lane. Each of the conformations is represented by its position, orientation
and torsion and is plotted with dots, separately. The principal component analysis (PCA)
method is used to reduce the dimensionality into three. The best conformations found are
highlighted with red stars (pointed by arrows).
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bonds. Therefore, S can be represented as the sum of three spaces

S = {P +O + T } (3)

where P ,O and T are 3-dimensional position, 4-dimensional orientation andNrot-dimensional

torsion spaces respectively. By dividing S into n sub-spaces, we have

S = {Ssub1 ,Ssub2 , ...,Ssubn} (4)

where

Ssubi = {Psubi +Osubi + Tsubi} (5)

Each subspace Ssubi couples with a randomly initialized conformation Posei ∈ Ssubi . Hence,

for each lane, the search space in Ssubi is much smaller than that in S. As a result, we can re-

duce the number of corresponding search steps in each lane for finding the best conformation

within Ssubi . Latter experiments at the end of this section also verify our hypothesis.

Based on the discussions above, we proposed a novel method VINA-GPU, which calcu-

lates thousands of lanes concurrently with much reduced search steps in each lane to achieve

a massive parallelism and acceleration. Fig 1 shows the overall workflow of VINA-GPU. It

first generates a large number of E random conformations depending on how many lanes

can be deployed. Then, each of the E conformations is assigned to an independent lane,

in which a significantly reduced number of search steps (r) of Monte-Carlo based iterated

docking is performed similar with AutoDock VINA. Finally, the best conformations among

all E lanes are clustered and sorted to output the top k ones.

To demonstrate the equivalence of AutoDock VINA and VINA-GPU, the total confor-

mations explored by both of them are plotted in Fig 2. A representative complex (PDBid:

2bm2, Natom = 33, Nrot = 7) is selected for its relatively medium complexity. Each confor-

mation of 2bm2 is represented by its POT and shown in the cartesian coordinates separately.
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The principal component analysis (PCA) method is used to reduce the dimensionality into

three. Conformations searched by AutoDock VINA and VINA-GPU (with different lanes

and various sizes of search steps in each lane) are highlighted with orange and blue dots,

respectively. The best conformations are shown in red star (pointed by an arrow) and the

sizes of total conformations among all lanes are kept almost the same (∼ 22365).

As shown in Fig 2a and Fig 2b, the total conformations explored by VINA-GPU and

AutoDock VINA occupy almost the same position, orientation and torsion. With the increase

of parallelism scale and the reduce of search steps in each lane, this situation keeps unchanged

(Fig 2c and Fig 2d). Moreover, the best conformations found by VINA-GPU are similar to

those of AutoDock VINA. It maybe indicates that VINA-GPU shares the same possibility

with AutoDock VINA of discovering these good conformations by expanding the scale of

parallelism and reducing the size of search steps.

2.2 OpenCL Implementation

Open Computing Language (OpenCL) is an open, royalty-free standard for parallel program-

ming of diverse accelerators such as CPUs, GPUs.28 Based on the discovery that expanding

the lanes while reducing search steps in each lane could explore the same conformations

compared with AutoDock VINA, the OpenCL implementation of VINA-GPU is to achieve

acceleration by mapping all lanes into computing cores of GPU. Our implementation focuses

on the most time-consuming Monte-Carlo based optimization process, which takes ∼ 90% of

the total runtime of AutoDock VINA. Thus, we propose a heterogeneous architecture (see

Fig 3) which is separated into host (CPU) and device (GPU) sides.

Firstly, on the host side, it begins with the ligand and receptor file reading and then setups

the OpenCL environment including identifying and choosing platforms and devices; creating

context, command queue, program and kernel; passing arguments to the kernel. Moreover,

it prepares the data needed for calculations on the device side, which involves the grid cache

(for calculating the energy of a conformation by trilinear interpolation), random maps (for

9



Figure 3: The OpenCL architecture for implementing VINA-GPU, which consists of a host
(CPU) and a device (GPU) side of execution.

generating probability random numbers) and random conformations (for each docking lane

to start from). The read-only grid cache, random maps and random conformations are

allocated in the constant device memory while the read-write best conformations returned

by docking lanes are allocated in the global device memory. Such a memory management

could efficiently boost the read and write speed. Secondly, on the device side, each work-item

performs a corresponding docking lane described in Fig 1. E output conformations from E

work-items (lanes) are clustered and copied back to the host. Finally, on the host side, E

conformations from the device are sorted in the container. The best 20 (default) ones are to

be finely refined before the final output files generated.

It is worth noting that AutoDock VINA calculates the energy in a recursive process. It

treats each conformation as a heterogeneous tree structure whose nodes are stored with its

frame information and a pointer to its children node. Each node is traversed by a depth-first

search method. However, OpenCL does not support any recursion in kernels because the
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allocation of stack space for thousands of threads is too expensive. Besides, various ligands

could generate totally different heterogenous trees which are not suitable for the OpenCL

implementation. Therefore, during the process of data preparation on the host side, we

re-construct the heterogenous tree into a list type (see Fig 4) where each node is stored in

its traversed order. By doing so, nodes can be traversed simply from the head to the tail

of the node list. In addition, a children map is created to denote the relationship between

nodes. For example, node 0 has two children-nodes (node 1 and node 4), because, in the

children map, row 0 has two “T”s (indicating “True”) in the 1st and 4th column and “F”s

(indicating “False”) in other columns. Thus, the recursive traverse of the heterogenous tree

can be converted into an iterative traverse of the node list and children map.

Figure 4: Transformation from the node tree structure into the node list format. The
heterogenous tree is re-constructed in its traversed order(depth-first). An additional children
map is built to reflect the relationship between nodes.

3 Experiment Results and Discussion

3.1 Datasets

Our datasets are extracted from the test set of 140 complexes for AutoDock-GPU.32 It

comprises of 85 complexes from Astex Diversity Set,33 35 complexes from CASF-2013,34
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and 20 complexes from Protein Data Bank.35 It covers a wide range of ligand complexities

and targets properties. For each complexes, an X-ray pose and an initial random pose of

the ligand as well as its corresponding receptor are included (in .pdbqt format). Besides, we

create a config.txt file for each complex (see the example in Appendix Table 4), which involves

the center (indicated by center_x, center_y, center_z) and the recommended volume of the

docking box (indicated by size_x, size_y, size_z). Properties of the 140 complexes are

described in Appendix Table 1.

3.2 Accuracy Evaluation Criteria

We intend to evaluate the docking accuracy of VINA-GPU with comparisons to AutoDock

VINA baseline. AutoDock VINA provides several configurable arguments for users to cus-

tomize, including the center and the volume of the searching box, the number of CPU

cores to be used (cpu) and docking lanes (exhaustiveness) etc. For the most time-and-

performance-effective arguments, cpu and exhaustiveness, are set as 4 and 8 respectively.

The corresponding docking results and docking runtimes of AutoDock VINA are set as the

baselines.

For VINA-GPU, we consider its docking result successful based on either of the following

two criteria. The first one is the final docking score, which represents the docking affinity

of ligand and receptor (the lower the better). If the difference between the lowest docking

scores output by VINA-GPU and AutoDock VINA on the same complex is no more than 1

kcal/mol, we consider that the accuracy of VINA-GPU is similar to that of AutoDock VINA,

hence being a successful docking. The other criterion is the distance between the results and

the known X-ray structures, simply referred to as the root-mean-square deviation (RMSD).

It represents the conformation difference between the output one and the ground truth (also

the lower the better). We consider it a successful docking if the least RMSD is no more than

2 Å.
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3.3 Experimental Setup

For AutoDock VINA, the program is executed on Intel (R) Xeon (R) Gold 6130 CPU @

2.1GHz using Windows 10 Operating System with 32 GB memory. cpu is set to 4 and

exhaustiveness is set to 8. Extras including box center (center_x, center_y, center_z) and

volume (size_x, size_y, size_z) are set in the config.txt file (also see Appendix Table 4).

For VINA-GPU, the program is developed with OpenCL v.3.0 and executed on three

different computational performance GPUs (Nvidia Geforce GTX 1060, Nvidia Geforce RTX

2080Ti, Nvidia Geforce RTX 3090) with corresponding three different CPUs (Intel (R) Core

(TM) i7-8700 @ 3.2GHz, Intel (R) Xeon (R) Gold 6130 @ 2.1GHz, AMD EPYC 7532 @

2.4GHz) because different server platforms are used in our experiments. Details of the three

GPU cards are shown in Table 1.

Besides the center and volume of the box, we provide a flexible configuration for users,

including the total number of work-items (threads) and the number of search steps in each

work item (search_steps). Specifically, according to the computational performance of each

GPU card (from lower-end to higher-end), we set threads as 2500, 5000, 7500 for Nvidia

Geforce GTX 1060, Nvidia Geforce RTX 2080Ti and Nvidia Geforce RTX 3090, respectively.

The search_steps is determined cautiously based on our experiments discussed in section

3.5.

Table 1: Details of GPU cards used in this work

Device
Peak Compute
Performance CUDA

cores
On-board
memory Architecture Carried CPU

FP32 FP64
NVIDIA

Geforce GTX
1060

4.375
TFLOPS

136.7
GFLOPS 1280 6GB Pascal

Intel (R) Core
(TM) i7-8700 @

3.2GHz
NVIDIA

Geforce RTX
2080Ti

13.45
TFLOPS

420.2
GFLOPS 4352 11GB Ampere

Intel (R) Xeon
(R) Gold 6130
@ 2.1GHz

NVIDIA
Geforce RTX

3090

35.58
TFLOPS

556.0
GFLOPS 10496 24GB Turing AMD EPYC

7532 @ 2.4GHz
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3.4 Docking Accuracy Evaluation

Based on the two criteria defined in Section 3.2, we are able to explore the docking per-

formance of VINA-GPU. For each complex among our datasets of 140 complexes, on three

different GPU cards, we set different search_steps (from 1 to 100) to explore their influences

on the docking performance of VINA-GPU. The results of selected six typical complexes with

various complexities (described in Table 2) are demonstrated in Fig 5 and Fig 6 in terms of

scores and RMSDs. The AutoDock VINA baselines are plotted with solid lines (red) and the

corresponding score and RMSD criteria determined in Section 3.2 are plotted with dotted

lines (red). The average results from three GPU cards are plotted in solid lines (blue).

Figure 5: Docking scores of VINA-GPU on six PDB structures with various levels of com-
plexity. The solid red lines mean the docking scores returned from AutoDock VINA with
cpu and exhaustiveness set as 4 and 8. The dotted lines denote the score upper bounds of
an acceptable docking pose. The blue solid lines denote the average scores of VINA-GPU
from three GPU cards. The horizontal axis indicates the number of search steps in each
Monte-Carlo based docking lane of VINA-GPU.

In Fig 5 we can see that for simple complexes (such as 5tim), it is enough to take only

one search step to obtain the same docking score as AutoDock VINA. For more complicated

complexes (such as 2bm2, 1hvy, and 1os0), a couple of more steps are needed until converging
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to the AutoDock VINA baselines. For some larger complexes (such as 3er5), increasing

search_steps could efficiently improve the results but can not converge in several tens of

steps. Notice that for some of the large complexes (such as 3er5), the score of AutoDock

VINA baseline is beyond that of VINA-GPU. This is because the Monte-Carlo based method

does not guarantee to find a global minimum, resulting in the instability of scores generated

by each docking run. Thus, in some cases, VINA-GPU shows better performance in terms

of the docking score. In total, all six complexes succeed to meet the score criterion.

Figure 6: RMSDs of VINA-GPU on six PDB structures with various levels of complexity.
The solid red lines mean the RMSDs calculated from the result of AutoDock VINA with
cpu and exhaustiveness set as 4 and 8. The dotted lines denote the RMSD upper bounds of
an acceptable docking pose. The blue solid lines denote the average RMSDs of VINA-GPU
from three GPU cards. The horizontal axis indicates the number of search steps in each
Monte-Carlo based docking lane of VINA-GPU.

In Fig 6, we can see that for some of the complexes, such as 2bm2, 1os0, and 1jyq,

as the number of search steps goes larger, their RMSDs converge to the AutoDock VINA

baselines. For the others, they either converge to a higher RMSD (such as 5tim and 1hvy)

or fluctuate around the baseline (such as 3er5). This is probably because the way in which

VINA-GPU works, which clusters all the best conformations, is based on scores, rather
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than RMSDs. Thus, VINA-GPU tends to keep those conformations with lower scores as

candidates. However, for some of the complexes such as 1hvy, a lower score does not come

with a lower RMSD. Appendix Table 5 shows nine models generated from AutoDock VINA

(PDBid: 1hvy) with their scores and corresponding RMSDs. It indicates that lower scores

could sometimes bring higher RMSDs (see Appendix Table 5 model 1 and model 2) and

same scores could also vary largely in RMSD (see Appendix Table 5 model 5 and model

6). Such inconsistency between scores and RMSDs causes that, in Fig 5 and Fig 6, similar

scores bring higher RMSDs in the cases of 5tim and 1hvy, while lower scores bring fluctuant

RMSDs in the case of 3er5.

Generally, all 140 complexes in our datasets succeed to meet the score criterion. As

for the RMSD criterion, we did not take into consideration those complexes for which even

AutoDock VINA could not give out a satisfying RMSD result (such as 3er5 in Fig 6). Because

in this case, the problem is due to the AutoDock VINA scoring function, which is also used by

VINA-GPU. At last, only 5 out of 101 complexes cannot be docked correctly by VINA-GPU,

while AutoDock VINA could.

3.5 Search Steps Determination

Intuitively, searching with more steps in each lane offers a larger possibility of discovering

a better conformation, but it suffers from longer runtime. Hence, under the precondition

of a successful docking, we intend to set the smallest number of search steps to be the best

search_steps on each complex to gain the maximum acceleration with an acceptable docking

result. Based on the discussions in section 3.4, it is straightforward to determine the best

search_steps according to the score criterion but it is hard based on the RMSD criterion due

to the inconsistency of those two. As a result, we simply determine the best search_steps

of aforementioned six complexes by the score criterion (described in Table 2). The complete

best numbers of search steps for 140 complexes are shown in Appendix Table 1.

For a more general use scenario of VINA-GPU, in which a proper search_steps has
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Table 2: Properties of six complexes and their best search steps

PDBid Natom Nrot Best search_steps
5tim 5 0 1
2bm2 33 7 10
1hvy 34 9 10
3s8o 44 12 10
1jyq 60 20 30
3er5 108 31 10

to be set for a given new complex, we intend to fit an empirical formula to determine the

search_steps with respect to Natom and Nrot. Specifically, we randomly split our data set into

a training set and a test set, including 75% and 25% of the 140 complexes respectively. Then,

we fit eq 6 with the lest squares method based on the known Natom and Nrot in addition to the

best search_steps of the complexes in the training set. Moreover, the proper search_steps

of complexes in the test set are predicted using eq 6. The corresponding docking results of

test set using VINA-GPU are described in Appendix Table 2 and Appendix Table 3. We

can see that all 35 docking results of the complexes in the test set meet the score criterion

(highlighted in bold). We also filter out the complexes in which AutoDock VINA could

not find a conformation that meet the RMSD criterion. At last, the remaining 27 out of 29

complexes meet the RMSD criterion and their docking results (in RMSD) are also highlighted

in bold.

search_steps = 0.24 ∗ Natom + 0.29 ∗ Nrot − 5.74 (6)

3.6 Runtime Performance Comparison

Based on the best search_steps selected in Section 3.5, we are able to explore the VINA-

GPU runtime acceleration compared with AutoDock VINA runtime. Considering that our

implementation of VINA-GPU possesses the heterogeneous nature which splits the whole

computation into host and device sides (see Fig 3), we intend to explore the runtime accel-

eration in 1) the device runtime (Accelerationd) and 2) the total (device + host) runtime
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(Accelerationtotal), which can be simply calculated by

Accelerationd =
RuntimeVINAmc

RuntimeVINA−GPUd

(7)

Accelerationtotal =
RuntimeVINAtotal

RuntimeVINA−GPUtotal

(8)

where RuntimeVINAmc and RuntimeVINAtotal
are the Monte-Carlo based method runtime

and total runtime of AutoDock VINA respectively. RuntimeVINA−GPUd
and RuntimeVINA−GPUtotal

are the device runtime and the total runtime of our implementation of VINA-GPU respec-

tively Besides, we divide the 140 complexes into three subsets (small, medium, large) accord-

ing to their Natom (5-23, 24-36, 37-108) to discover the accelerations on different complexities

of complexes. Accelerations are illustrated with violin plots (Fig 7), in which the average

accelerations on each GPU card are plotted with a white dot.
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Figure 7: Accelerationd (a maximum of 403X) and Accelerationtotal (a maximum of 153X)
of 140 complexes on three GPU cards. To explore the acceleration on different complex
complexities, we divide our datasets into three subsets (small, medium, large) according to
their N_atom (5-23, 24-36, 37-108). The accelerations are plotted in blue, orange and red
with GPU cards of 1060, 2080ti and 3090, respectively. Notice that the acceleration axes are
not in the same scale.

In Fig 7, VINA-GPU achieves a maximum of 403X and average 54X, 49X, 57X acceler-

ations (under 3 GPU cards) for Accelerationd and a maximum 152X and average 13X, 13X,

17X accelerations (under 3 GPU cards) for Accelerationtotal. Notice that, firstly, VINA-GPU

on NVIDIA Geforce GTX 1060 shows larger accelerations compared with other higher-end

GPU cards in some cases, especially in small complexes. This is probably because for those

small complexes, calculations on GPU only take a small part of the total runtime. Higher-

end GPUs with more advanced architectures need more time to set up, resulting in relatively

lower accelerations; Secondly, the accelerations are higher for medium complexes, lower for

small and large complexes. This is because medium complexes benefit more from VINA-GPU

method, which largely reduces their required search_steps (often to 1). But for small and

large complexes, they either spend little time from the first place or require more search_steps
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(usually several 10s); Lastly, the overall Accelerationtotal are much lower than Accelerationd.

This is because the CPU runtimes on three different devices are almost same, the Amdahl’s

law36 leads to a lower acceleration in terms of the total runtime.

Figure 8: Accelerationd of 140 complexes with different Natom and Nrot. The acceleration
axis ranges from 0 to 410. Each bar represents a complex with its acceleration. The color
from blue to red indicates the acceleration from low to high.

Figure 9: Accelerationtotal of 140 complexes with different Natom and Nrot. The acceleration
axis ranges from 0 to 160. Each bar represents a complex with its acceleration. The color
from blue to red indicates the acceleration from low to high.

From a more direct perspective to explore the acceleration for each of the 140 com-

plexes on different GPU cards, we plot each of the complexes with their Natom and Nrot

and corresponding accelerations in Fig 8 and Fig 9. Each bar represents a complex with its

acceleration. Notice that the two figures have different scales in acceleration axis and the

color from blue to red indicates acceleration from low to high.
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3.7 Conclusion and Future Work

This work describes an accelerated Monte-Carlo based iterated searching method, namely

VINA-GPU, and proposes a heterogeneous OpenCL implementation of VINA-GPU on GPUs.

By expanding the scale of parallelism on the relatively course-grained Monte-Carlo based

docking lanes and reducing the number of search steps needed in each lane, VINA-GPU

significantly accelerates docking runtime without losing docking accuracies. Moreover, for a

more general use of VINA-GPU, a heuristic way has been given out for determine a proper

number of search steps for a given complex.

In the future, our work will focus on 1) leveraging the portability of OpenCL to ac-

celerators such as CPUs and FPGAs 2) optimizing VINA-GPU by exploring fine-grained

parallelism.
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Appendices

Table 1: Complete 140 complexes and their corresponding best search_steps determined

PDBid N_atom N_rot
best search

steps
PDBid N_atom N_rot

best search

steps

5tim 5 0 1 1jla 28 7 1

1aet 6 0 1 1r58 28 10 10

1ac8 8 0 1 1t40 29 6 1

2j5s 11 2 1 1yvf 29 6 10

1w1p 12 0 1 1unl 29 7 1

1n2j 12 5 1 1xoz 30 1 1

1p2y 13 1 1 1l7f 30 8 1

2rdr 13 5 1 1vcj 30 10 10

1lrh 14 2 1 1opk 31 4 1

1tni 14 5 1 1m2z 31 5 1

1jd0 15 2 1 2br1 31 7 1

1n1m 15 3 1 2bsm 31 7 1

1uwc 15 4 1 1z95 31 8 1

1hww 16 3 1 1qi0 31 12 10

1q4g 17 3 1 1a30 31 13 10

1tt1 17 4 1 3l4u 31 17 10

1of6 17 5 1 1s3v 32 6 1

1x8x 17 5 1 1hwi 32 10 10

1hnn 18 2 1 2bm2 33 7 10

1r9o 18 3 1 1s19 33 8 1

1n2v 18 3 1 1v0p 33 8 1

1sq5 18 8 1 1r1h 33 10 1
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4elm2 18 14 1 1oyt 34 4 1

2ifb 18 14 10 1hvy 34 9 10

1uou 19 2 1 1pmn 35 6 1

1hq2 19 2 1 1sj0 36 8 1

1tow 19 4 1 3oe5 36 11 10

1l2s 20 4 1 1lpz 37 6 10

1w2g 20 4 1 1y6b 37 8 10

1sg0 20 5 1 1uml 37 11 1

1xm6 20 5 1 3bpc 37 15 10

3uex 20 16 10 1ywr 38 5 1

1of1 21 4 1 1mzc 38 8 10

1ig3 21 6 10 10gs 38 14 10

1gpk 22 1 1 3coy 39 11 10

1j3j 22 3 1 2x97 39 13 1

1p62 22 4 1 1os0 39 13 30

1tz8 22 6 1 4tmn 39 14 30

1u1c 22 7 1 1t46 40 6 10

1mmv 22 8 10 3bkk 40 14 1

1u4d 23 0 1 3ov1 41 12 20

1sqn 23 2 1 2xhm 42 14 10

1yv3 23 2 1 1h23 42 15 10

4fev 23 3 1 4djr 43 15 10

2brt 23 4 10 7cpa 43 15 10

1k3u 23 6 10 3l3n 43 16 1

1q41 24 1 1 1w3l 43 16 10

1t9b 24 3 1 2r23 43 19 20
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1ia1 24 3 1 3s8o 44 12 10

1hp0 24 5 1 5kao 44 15 1

1nav 24 6 1 1sln 44 17 10

1meh 24 7 1 2d1o 44 23 10

1gkc 24 8 10 1kzk 45 11 10

3kwa 24 13 1 3zso 45 13 10

1gm8 25 4 1 5wlo 46 10 10

1yqy 25 5 10 1ygc 47 13 20

1v48 25 6 10 1u33 47 18 1

1jje 25 7 10 4gid 53 17 10

1v4s 26 4 1 3utu 54 16 30

1ke5 26 4 1 1hfs 54 18 10

1q1g 26 5 1 2xy9 54 18 10

1g9v 26 6 1 3pww 55 14 10

1lbk 26 11 10 1u1b 55 16 50

2wbg 26 11 10 3cyx 56 14 20

1owe 27 3 1 1jyq 60 20 30

1oq5 27 5 1 3drf 63 26 1

3tmn 27 7 1 2vaa 87 32 30

1xoq 27 7 1 2er7 89 32 100

1r55 27 9 10 4er4 93 30 80

1n46 28 5 1 3er5 108 31 10

Table 2: VINA-GPU docking results (in score) using the predicted search_steps

PDBid N_atom N_rot
predicted

search steps
VINA score score criterion

VINA-GPU

score
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1aet 6 0 1 -4 -3 -4

2j5s 11 2 1 -5.9 -4.9 -5.9

1p2y 13 1 1 -7.3 -6.3 -7.3

1jd0 15 2 1 -6 -5 -5.9

1of6 17 5 1 -8.4 -7.4 -8.3

1n2v 18 3 1 -7.2 -6.2 -7.1

2ifb 18 14 4 -7.4 -6.4 -6.3

1w2g 20 4 1 -9 -8 -9

1of1 21 4 1 -9.1 -8.1 -9

1mmv 22 8 3 -7.4 -6.4 -6.9

1u4d 23 0 1 -9.1 -8.1 -9.1

1yv3 23 2 1 -12.8 -11.8 -12.8

1k3u 23 6 2 -9.9 -8.9 -10.2

1meh 24 7 3 -7.5 -6.5 -7.2

1yqy 25 5 2 -9.4 -8.4 -10

2wbg 26 11 5 -8.6 -7.6 -8.3

1xoq 27 7 4 -9.8 -8.8 -9.8

3tmn 27 7 4 -7.1 -6.1 -6.8

1unl 29 7 4 -9.2 -8.2 -9.2

1opk 31 4 3 -12.7 -11.7 -12.6

1z95 31 8 5 -10.4 -9.4 -10.5

1a30 31 13 6 -7.1 -6.1 -7.1

2bm2 33 7 5 -9 -8 -8.8

3oe5 36 11 7 -10.1 -9.1 -9.8

1y6b 37 8 6 -9.9 -8.9 -9.5

1uml 37 11 7 -9.7 -8.7 -9.4
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1mzc 38 8 6 -9.9 -8.9 -9.8

1os0 39 13 8 -9.4 -8.4 -8.8

1h23 42 15 9 -10.3 -9.3 -9.6

1w3l 43 16 10 -8.2 -7.2 -8.2

3s8o 44 12 9 -7.8 -6.8 -6.8

1u33 47 18 11 -7.9 -6.9 -7.8

4gid 53 17 13 -9.1 -8.1 -11.8

3pww 55 14 13 -11.3 -10.3 -10.9

2er7 89 32 25 -9.2 -8.2 -8.2

Table 3: VINA-GPU docking results (in RMSD) using the predicted search_steps

PDBid N_atom N_rot
predicted

search steps
VINA RMSD VINA-GPU RMSD

1aet 6 0 1 1.492192068 1.491190799

2j5s 11 2 1 0.495458649 0.491982077

1p2y 13 1 1 1.440848388 1.458771717

1jd0 15 2 1 1.726833885 1.755009478

1of6 17 5 1 0.863880643 0.90604746

1n2v 18 3 1 1.175179608 1.695992024

2ifb 18 14 4 1.769895854 1.737840854

1w2g 20 4 1 0.694794322 0.727399684

1of1 21 4 1 0.595048097 0.647161752

1mmv 22 8 3 0.672653092 1.255357446

1u4d 23 0 1 0.563029075 0.520049454

1yv3 23 2 1 0.449715369 0.346917231

1k3u 23 6 2 0.561363712 1.023878198

30



1meh 24 7 3 0.869477333 1.472515054

1xoq 27 7 4 0.746914369 1.660166669

1unl 29 7 4 1.016373659 0.487551518

1opk 31 4 3 0.684433696 1.864573712

1z95 31 8 5 1.117130959 0.965139719

1a30 31 13 6 1.745264921 6.497142511

2bm2 33 7 5 0.466084626 1.098855879

3oe5 36 11 7 0.629995635 0.606515686

1y6b 37 8 6 1.205263782 0.664081178

1uml 37 11 7 1.618065044 1.704511605

1mzc 38 8 6 1.243470017 1.064932491

1os0 39 13 8 1.445256024 1.264158441

1w3l 43 16 10 1.136399127 0.852252296

3s8o 44 12 9 0.937338859 4.65885539

1u33 47 18 11 1.682015502 1.699537603

3pww 55 14 13 0.857316553 1.888033922

Table 4: Example of 2bm2_config.txt file

receptor = ./2bm2_protein.pdbqt
ligand = ./2bm2_ligand.pdbqt
center_x = 40.415
center_y = 110.986
center_z = 82.673
size_x = 24.0
size_y = 26.25
size_z = 22.5
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Table 5: Models (PDBid: 1hvy) generated from AutoDock VINA with scores and RMSDs

MODEL score RMSD
model 1 -10.1 8.523
model 2 -9.6 0.770
model 3 -9.4 2.160
model 4 -9.2 1.773
model 5 -9.1 8.616
model 6 -9.1 1.599
model 7 -9.0 8.426
model 8 -9.0 8.680
model 9 -8.7 1.888
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