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Abstract Buffer solutions are pervasive in chemistry, biochemistry, analytical chemistry, etc. A better
understanding of buffer properties and what controls them is susceptible to be of interest in many scientific
and technological fields. For instance, linear pH gradients are commonly used in electrophoresis and their
optimization rests on numerical optimization of the concentrations of various weak species. It is probably
generally assumed that no basic progress could be made on optimization approaches. We introduce here
a new strategy to buffer optimization, based on a parametric study of the roots of the first derivative of
the buffer index. In this way, it is possible to find mathematically optimal sets of parameters (pKa and
concentrations). The method is applied to mixtures of 2, 3 and 4 monovalent species, which represent
simple cases that do not call for overly elaborate numerical optimization techniques, but are nevertheless
of practical interest in various branches of analytical chemistry.
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1 Introduction
Buffers are of primary importance in many fields, from biology [1] to geochemistry [2] as a scientific
notion, but they also are used in technological applications–among many, one can cite water treatment [3],
catalytic reduction [4, 5], drug solubility [6], control of enzyme activity [7], polarography [8, 9, 10] and, in
analytical chemistry, atomic absorption spectrophotometry [11], chromatography [12, 13], electrophoresis
[14, 15] – in particular the use of immobilized pH gradients in electrophoresis [16, 17], binary buffers
for cell electrophoresis [18] or as an important parameter influencing peak spreading [14]. In all these
practical uses, it is important to obtain as good a control as possible over the buffer index, sometimes
across several pH units.
In particular, the search for an even buffer capacity across large pH ranges is primordial for the

production of linear pH gradients. Mathematical optimization of such mixtures rests mostly on objective
functions minimization, typically through least square methods, by adjusting the concentrations of known
buffer substances [19, 20, 21]. On the other hand, theoretical studies of pH mixtures that lead to real values
prediction has mostly been conducted analytically, greatly limiting the situations that could be dealt with
as the complexity of the system grows extremely rapidly with the composition [22, 23, 24, 25, 26, 27].
Such studies are not primarily interested with actual buffers but rather with the mathematical conditions
that drive a buffer system. In this way, it is possible, for instance, to find the conditions in terms of
dissociation constants (or pKa) and concentrations that guarantee the largest possible pH range of even
buffer index for a two weak acid mixture, provided that one can neglect the contribution of H3O+ and
OH−. One can, analytically, hardly go much further given the degree of the master polynomials that
drive the more complicated systems–this is the case also for complexation equilibria where overlapping
involving two steps already leads to intricate calculations [28], even though they do not involve formally
an equilibrium with the solvent. Hence, it is hopeless to expect analytical solutions that could predict the
best chemical properties to produce constant buffer index over large pH ranges–i.e. more than 1 pH unit,
roughly, as going further necessarily involves using more than two chemical components. For that matter,
it is even hard to guarantee finding the best mathematical conditions to reach the flattest possible index
buffer curve for extreme pH, as then the contribution of H3O+ or OH− cannot be neglected anymore,
which renders the system impossible to solve analytically for two weak acid mixtures.
General formulation of buffer capacity β have been proposed (see, for instance, [22, 29, 30]) and

Urbansky and Schock have suggested the use of the derivative of the buffer index β′ to locate critical
points [31]. However, to the best of our knowledge, this suggestion has not been the object of extended
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study, even though it turns out to bring interesting results for buffer optimization in the framework of a
parametric study.
The object of the present paper is to introduce a new approach, resting on a numerical analysis of the

roots of the β′ function, which allows finding the optimal mathematical conditions to produce flat buffer
index curves. It has been applied to solutions of 2, 3 and 4 weak acids, which are simple enough to be
analyzed without numerical optimization techniques.

2 Preliminary considerations and notations
The buffer index, β, was first proposed by Van Slyke [32, 33] as:

β = dB

dpH

where B, in Van Slyke’s original paper, was the concentration of strong base in gram equivalent per L,
whereas here we will instead use molarity to define β, as is generally done.

In what follows, pKa’s will be numbered pKa1 , pKa2 , pKa3 and pKa4 and we will always consider
pKa1 < pKa2 < pKa3 < pKa4 . The associated concentrations may also be numbered C1, C2, C3 and C4.
We will note ∆pKa the difference between the highest pKa values and pKa1 (as it is the smallest one by
definition here). We will neglect ionic strength effects, hence activities reduce to concentrations in the
equilibrium constants, and we will use the shorthand notation [H3O

+] = h.

3 Buffers of two weak acids
This section deals with solutions of two weak acids with their acidity constant noted pKa1 and pKa2

and concentrations C1 and C2. We will note the average pKa, pKa = (pKa1 + pKa2)/2. Such mixtures
have already been studied at great length. To quote two particularly relevant contributions, one should
note that Ricci has studied the presence of a minimum of β in the pH interval between pKa1 and pKa2 ,
and provided conditions for its existence when neglecting the contribution of H3O+ and OH− (see pp.
185-191 in [22]). Rilbe ([26]) has shown that this minimum disappears when pKa2 − pKa1 ≤ 1.14 for
equimolar mixtures, also when neglecting the contributions of H3O+ and OH−.
In the present section, we will first study the equimolar case without taking H3O+ and OH− into

consideration in the relationship for β, and find the same result as Rilbe. Then, we study the mixtures
of two weak acids of different concentrations and establish for which value of ∆pKa = pKa2 − pKa1 the
minimum exists or not and, finally, we study the effect of the contribution of H3O+ and OH− and show
how to determine the optimal values of concentrations and pKa’s in order to obtain a flat buffer index
curve. All this will be done using numerical methods, as they can be extended to more complicated
mixtures and to the inclusion of H3O+ and OH−, which is already difficult analytically for a mixture of
two weak monovalent species.

3.1 Neglecting the contribution of H3O+ and OH−

3.1.1 Two weak acids with the same concentration

In the case of two weak acids with the same concentration C, the buffer index is given by:

β = ln(10)C
(

Ka1h

(Ka1 + h)2 + Ka2h

(Ka2 + h)2

)
and its derivative β′:

β′ = dβ

dpH
= ln2(10)Ch

(
Ka1(h−Ka1)

P 3
1

+ Ka2(h−Ka2)
P 3

2

)
with P1 = (Ka1 + h) and P2 = (Ka2 + h). This derivative is zero when

P (h) = Ka1(h−Ka1)(Ka2 + h)3 +Ka2(h−Ka2)(Ka1 + h)3 = 0

which does not depend on the concentration of the conjugated species as it could be factored out. By
finding the roots of this polynomial in, say, the interval pH ∈ [0 : 14], one can determine the number of
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maxima and minima of the buffer index and the values of the corresponding roots. Figure 1.a represents
the pH values for which β′ = 0 in the case where pKa = 4 as a function of ∆pKa = pKa2 − pKa1

i. The
first obvious point is that a single root is always present, that for pH = pKa. A point at ∆pKc

a = 1.1439ii

corresponds to the transition from the one to the three roots regime of the buffer index curve and
matches the flattest buffer index that can be obtained at pH = 4 using two weak acids [26, 25], in this
case with pKa1 = 3.428 and pKa2 = 4.5720 (see figure 1.b). For ∆pKa < 1.1439 the single root in the
derivative of β corresponds to a maximum, whereas it becomes a minimum surrounded by two maxima
for ∆pKa > 1.1439.

(a) (b)

Figure 1: a) Values of pH for which the derivative of the buffer index cancels. The number of roots goes
from 1 to 3 at ∆pKa = 1.1439. b) Buffer index for three sets of pKa with average pKa = 4.

3.1.2 Two weak acids with different concentrations

In the case of two weak acids with two different concentrations, the buffer index is given by:

β = ln(10)C1

(
Ka1h

(Ka1 + h)2 + rKa2h

(Ka2 + h)2

)
with r = C2/C1. Its derivative writes:

β′ = dβ

dpH
= ln2(10)C1h

(
Ka1(h−Ka1)

P 3
1

+ rKa2(h−Ka2)
P 3

2

)
with P1 = (Ka1 + h) and P2 = (Ka2 + h).

We observe a significant change in the behaviour of the roots of β′ when C1 6= C2. Indeed, as shown in
figure 2.a, the triple point disappears and is split in two, even if there still exists a 1- and a 3- roots regime,
with a transition point for a given value of ∆pKc

a that appears dependent upon the ratio r = C2/C1
(see figure 2.b) but not on the magnitude of the concentrations. Here, as r < 1, C2 varies below C1. In
that case, the single root regime corresponds to a maximum that is closer to pKa1 than to pKa2 and not
anymore equal to pKa. However, it logically goes to 4 when ∆pKa → 0. In the three roots regime, the
"middle root" is above pKa and goes to pKa as ∆pKa increases beyond ∆pKc

a. The situation is perfectly
symmetrical when C1 is below C2.
As shown in figure 2.b, the value of the split triple point, ∆pKc

a, increases as the difference in con-
centrations increases. When this split occurs (i.e. for ∆pKa = ∆pKc

a), the buffer index of the solution
presents a rather flat regime around pH = pKa2 , as can be seen in figure 2.c, but pH = pKa1 appears as a
clear maximum of the buffer index. Below the critical value, the buffer index presents a single maximum
and above that value, two maxima and a minimum are present, roughly and respectively for pH = pKa1 ,

iWe chose that value of pKa for no particular reason as, in the considered situation, this curve is independent from this
parameter. At this stage, we could have used reduced variables as proposed by Rilbe [23], however when we will consider
the contribution of H3O+ and OH−, it will not be possible to use such variables anymore so we prefer this homogeneous
presentation of all equations studied here.

iiA similar case can be made considering a solution of a weak diacid, in which case ∆pKc
a = 1.204, see [23, 27].
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(a) (b) (c)

Figure 2: a) Values of pH for which the derivative of the buffer index cancels for different values of
C1 and C2, the curves with the same r-value are perfectly superimposed. b) Dependency of
the triple point upon the ratio r = C2/C1. c) Buffer index of solutions of weak species with
(pKa1 + pKa2)/2 = 4, C1 = 0.1 mol.L−1 and C2 = 0.09 mol.L−1 – in that case, ∆pKc

a = 1.28.

pKa2 and pKa (the exact values of these extrema must be computed as a function of r and present a
dependency similar to the ones presented in figure 2.a).

3.2 Including the contribution of H3O+ and OH−

Now, we include the contribution of H3O+ and OH−. In that case, the buffer index writes:

β = ln(10)
(
Kw

h
+ h+ C1Ka1h

(Ka1 + h)2 + C2Ka2h

(Ka2 + h)2

)
and its derivative is:

β′ = dβ

dpH
= ln2(10)

(
KwP

3
2P

3
1 − h2P 3

2P
3
1 + h2(C1Ka1(h−Ka1)P 3

2 + C2Ka2(h−Ka2)P 3
1 )

hP 3
1P

3
2

)
which cancels out if the numerator cancels, obviously, as above.

3.2.1 Two weak acids with the same concentration

We first consider the case where C1 = C2. As is shown by figure 3, the triple point is broken when
the contributions of H3O+ and OH− are taken into account even if C1 = C2, as long as pKa 6= 7. This
behaviour is symmetrical whether this parameter is above or below 7, and these curves appear very similar
to the ones obtained for C1 6= C2 when neglecting H3O+ and OH− (see figure 2). The further pKa is
from 7, the stronger the divergence from the ∆pKa curve established in the absence of H3O+ and OH−
contributions. Moreover, these curves become dependent upon the concentration of the buffer solutions,
as it cannot be factored out: the higher the dilution, the higher ∆pKc

a, as in the case of solutions with
higher differences in concentrations.
Figure 3.c illustrates how the buffer index evolves for values of ∆pKa above, equal or below ∆pKc

a in
the case where C = 0.1 mol.L−1 and pKa = 3 (here, ∆pKc

a = 1.249).

3.2.2 Two weak acids with different concentrations

Now, it becomes possible to compensate for the asymmetry due to the H+ or OH− contributions by
changing the concentration of either species in order to improve the buffer index in the target pH-area,
which is obtained by converging towards a set of concentrations C1 and C2 such that the single triple
root is restored. In practice, here, we reached that goal by setting the value of C1 and then optimizing
C2.

As an example, we treat the case of the solution seen above, with C1 = 0.1 mol.L−1 and as target
pH = 3. In fig. 4.a are represented the roots in function of ∆pKa for C1 = C2 = 0.1 mol.L−1–the
starting point–and C1 = 0.1 mol.L−1, C2 = 0.1104 mol.L−1, when the convergence was satisfying. In
that situation, ∆pKc

a = 1.099 ≈ 1.1, value that differs significantly from 1.144 found in the absence of
the H3O+ contribution (which is the important one at pH = 3, where OH− can safely be neglected) or
the one found for C1 = C2 = 0.1 mol.L−1 (∆pKc

a = 1.249).
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(a) (b) (c)

Figure 3: Value of the roots as a function of ∆pKa for a) low and b) high values of pKa. c) Buffer index
for 3 solutions with the same concentrations (C = 0.1 mol.L−1) and varying ∆pKa; for these
concentrations and pKa, ∆pKc

a = 1.249.

Figure 4.b shows the dependency of the buffer index with pH for various sets of C1, C2 and ∆pKa.
The benefit of selecting the right value of C2 and ∆pKa = ∆pKc

a with C1 set is obvious, as in that case
β turns out to be perfectly flat over a range of almost 1 pH unit, centered around 3.

(a) (b)

Figure 4: a) Value of the roots as a function of ∆pKa for optimized and non optimized values of C2 =
0.11 mol.L−1, C1 is set at 0.1 mol.L−1. b) Buffer index for various solutions with different
concentrations and ∆pKa (C1 = 0.1 mol.L−1).

4 Three weak acids

We do not know of any detailed study dealing with mixtures of three weak acids in detail. The closer
situation we found was that of trivalent species. In his study of the buffer capacity of trivalent protolytes,
Rilbe found no value of ∆pKa that allowed a flat dependency of the buffer index [24]. As a matter of
fact, this is only possible if the three pKa correspond to monovalent species of different concentrations,
as we are about to see, and this is obviously impossible for trivalent species.
We consider here the situation without taking into account the contribution of H3O+ and OH−, as we

want to keep to situations that allow simple optimization. Otherwise, more advanced and fully automated
numerical developments would be needed, which could be the object of future studies. Hence, the results
established here will be of interest in pH and concentration ranges where these contributions can be
neglected.
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4.1 Isoconcentration of extreme pKa and centered pKa intervals
Here, we take C1 = C3 = C 6= C2 = Cm and r = C/Cm. We also note ∆pKa = pKa3 − pKa1 and
pKa = pKa2 = (pKa1 + pKa3)/2. In that case, it comes:

β = ln(10)Cm

(
rKa1h

(Ka1 + h)2 + Ka2h

(Ka2 + h)2 + rKa3h

(Ka3 + h)2

)
and its derivative β′:

β′ = dβ

dpH
= ln2(10)Cmh

(
rKa1(h−Ka1)

P 3
1

+ Ka2(h−Ka2)
P 3

2
+ rKa3(h−Ka3)

P 3
3

)
where P1, P2 and P3 are defined as in the previous section.

(a) (b) (c)

Figure 5: a) Roots for pKa = 7 and various values of r. b) Dependency of ∆pKc
a with r – colours

correspond to the number of roots for ∆pKa = ∆pKc
a + ε. c) Buffer index of various solutions

at ∆pKa = ∆pKc
a as determined in figure a).

Figure 5.a shows the dependency of the roots as a function of ∆pKa for various r. First of all, for low
values of ∆pKa, there always exists a single maximum and for ∆pKa > ∆pKc

a, multiple roots appear.
The value of ∆pKc

a depends on r (see figure 5.b). Additionally, one can note that the multiplicity of the
root evolves also with r. For large r values, as ∆pKa increases, there actually exists a domain with a
single root, then with 3 roots and finally with 5 roots. In contrast, for low values of r, the transition
goes straight from a single to a 5 roots situation. The value of r found to be the transition between
these two types of behaviour is r ≈ 1.56. Another value of interest turns out to be the one for which the
intermediate branches come to touch the pH = 7 solution, observed at r = 1.5. Indeed, figure 5.c shows
the evolution of the buffer index for solutions of various values of r and ∆pKa = ∆pKc

a. The value of
r = 1.5 appears as the transition to a very flat behaviour, when mixtures parametrized with lower values
of r present a non flat behaviour even if with a single maximumiii.

4.2 Varying concentration and non centered pKa intervals
We now take pKa1 < pKa2 < pKa3 and Cl 6= Ch 6= Cm and rl = Cl/Cm, rh = Ch/Cm. We also note
∆pKa = pKa3 − pKa1 . In that case, it comes:

β = ln(10)Cm

(
rlKa1h

(Ka1 + h)2 + Ka2h

(Ka2 + h)2 + rhKa3h

(Ka3 + h)2

)
and its derivative β′:

β′ = dβ

dpH
= ln2(10)Cmh

(
rlKa1(h−Ka1)

P 3
1

+ Ka2(h−Ka2)
P 3

2
+ rhKa3(h−Ka3)

P 3
3

)
where P1, P2 and P3 are defined as in the previous sections.
iiiHere, it is illustrated for the value r = 1 and ∆pKc

a = 2.527, more or less corresponding to trivalent species – Rilbe found
∆pKc

a = 2.58 for trivalent species, which is rather close [24]. Obviously, these two situations are different and it is no
more surprising to find different values of ∆pKc

a than it was when comparing mixtures of two monovalent acids with
divalent species in section 3.2.1.
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We do not present here a general study of this situation as too many parameters are involved for a
simple visualisation, however it is still possible to optimize solutions "by hand" as we exemplify below.
In these asymmetrical situations, it becomes handy to work also with r∆pKa

= ∆pKah

∆pKal
, where ∆pKah =

pKa3 − pKa2 and ∆pKal = pKa2 − pKa1 .

Optimizing the parameter of a buffer solution Now, it is possible to optimize a solution of three weak
acids with asymmetrical ∆pKa by varying the concentrations of one of the weak acid with the extreme
pKa, and, in this case, without the contribution of H3O+ and OH−. This is interesting to obtain as flat
a dependency of β with pH as possible, when using weak acids with irregular pKa intervals.
The same procedure that was used in the case of two weak acids (taking into account the contribution

of H3O+ and OH−, see section 3.2.2) allows performing just such a task. To exemplify that point, figure
6.a displays the roots landscape in the case where pKa2 = 7 and for r∆pKa

= 1 and 1.1, with or without
optimization of rl and rh. A first situation is simply the one obtained for pKa = 7 and r = 1.5 (and,
here, r∆pKa

= 1 and rl = rh) in section 4.1. Then the roots evolve in an asymmetrical manner when
r∆pKa

= 1.1 is imposed with rl = rh, leading to a skewed plateau of the buffer index. Finally, by
optimizing rh, it is possible to recover a single multiple roots and the corresponding β curve appears as
flat as the first one. The difference in height is due to the fact that the optimization was obtained by
increasing Ch, leaving the other two unchanged, hence the overall buffer index increases.

(a) (b)

Figure 6: a) Root spaces for non optimized and optimized solutions of three weak acids. b) Buffer index
for optimized and non optimized buffer solutions at ∆pKa = ∆pKc

a.

5 Four weak acids
We could not find any detailed study of mixtures of four weak species in the literature and it turns
out that the tools proposed here allow studying this case, provided that we restrict ourselves to "nice"
combinations of parameters. Indeed, the four acids mixture represents an interesting and still somewhat
simple situation under the following conditions: first, the contribution of H3O+ and OH− is neglected and,
second, we consider a highly symmetrical set of concentrations and pKa’s in the sense defined hereafter.
In accordance with what was said before, we take pKa1 < pKa2 < pKa3 < pKa4 . Additionally, we take

C1 = C4, C2 = C3 = C and rC = C1/C2, hence C1 = rCC. We also note ∆pKa = (pKa4 − pKa1)/2
and we consider that pKa = pKa1 +pKa4

2 = pKa2 +pKa3
2 . It then comes pKa1 = pKa −∆pKa and pKa4 =

pKa + ∆pKa. Moreover, we have r∆pKa
= pKa3−pKa2

pKa4−pKa1
, which gives pKa2 = pKa − r∆pKa

∆pKa and
pKa3 = pKa + r∆pKa

∆pKa. In that case, it comes:

β = ln(10)C
(

rCKa1h

(Ka1 + h)2 + Ka2h

(Ka2 + h)2 + Ka3h

(Ka3 + h)2 + rCKa4h

(Ka4 + h)2

)
its derivative β′:

β′ = dβ

dpH
= ln2(10)Ch

(
rCKa1(h−Ka1)

P 3
1

+ Ka2(h−Ka2)
P 3

2
+ Ka3(h−Ka3)

P 3
3

+ rCKa4(h−Ka4)
P 3

4

)
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where P1, P2, P3 and P4 are defined as in the previous section. It will also be interesting to study the
second derivative, which writes:

β” = d2β

dpH2 = 2 ln3(10)Ch2
(
rCKa1

2Ka1 − h
P 4

1
+Ka2

2Ka2 − h
P 4

2
+Ka3

2Ka3 − h
P 4

3
+ rCKa4

2Ka4 − h
P 4

4

)
Then, by varying rC and r∆pKa

, it becomes possible to map the properties of all mixtures of four weak
acids with the same average pKa. Figure 7 presents the study of the first critical point for these systems
by plotting (a) the value of ∆pKc

a as a function of rC and r∆pKa
, (b) the dependency of the number of

roots of β′ for ∆pKa > ∆pKc
a and (c) the corresponding number of roots of β”.

The domain plotted was restricted to an "interesting" area, as for larger values of rC and/or r∆pKa
, the

behaviour becomes monotonous. Indeed, we observe the existence of a domain on the border of which
∆pKc

a values undergo an inflexion, and this border corresponds to a zone of transition of the number
of roots from 5 to 3 for ∆pKa immediately above ∆pKc

a. The maximum of that area is observed at
rc = 1.37 and r∆pKa

= 0.293 and it disappears for rC > 3.12.
Figures 7.c and d display the behaviour of the buffer index for two values of rC . It is clear that exiting

the 5 roots domain leads to buffer index curves with a single maximum while at the same time the values
of ∆pKc

a decreases as r∆pKa
increases in the 3 roots domain, leading to narrower flat region in the buffer

index curve. Hence, the optimal solution must be found on the 5-3 boundary. Figure 7.e and f display
respectively the buffer index and its derivative along the critical line for ∆pKa = ∆pKc

a. At low values
of rC , beta actually displays several shoulder that tend to disappear for rC > 1.5. In order to optimize
more precisely, it becomes necessary to proceed as above, by examining the root space in detail.
Hence, by iteratively searching over the boundary between the 5 and 3 roots domains, we can find an

optimal combination, which is obtained for rC = 1.6217, r∆pKa
= 0.2862, ∆pKc

a = 2.572. It corresponds
to a situation where branches start to touch in the root space, as in the 3 weak acids case of section
4.1. Hence, for 4 weak acids mixture the optimal combination found here for an interval centered around
pH = 7 is pKa1 = 5.714, pKa2 = 6.632, pKa3 = 7.368, pKa4 = 8.286 and rC = 1.6217, as depicted in
figure 8.a (root space) and 8.b (corresponding buffer index curves at ∆pKa = ∆pKc

a).

6 Discussion and conclusion

In this paper, we have presented the interest that lies in studying buffer solutions in the root space of the
derivative of the buffer index. It has allowed us to easily find optimal values of concentrations and pKa

in the case of 2 and 3 weak acids mixtures, and, with greater difficulty, an optimal point in a symmetrical
4 weak acids case.
As we restricted ourselves to simple optimization techniques, only the case with 2 weak acids could be

dealt with while including the contribution of H3O+ and OH−. Going beyond – for instance finding the
optimal combination of parameters for mixtures of 3 weak acids at low or high pH target values – would
involve numerical multiparameter optimization techniques, as is done in other approaches by combining
stochastic and steepest descent methods [19], which goes beyond the scope of the present study. The
question that will face such an enterprise will be that of the proper optimization technique as well as the
proper target function(s). This will be the object of upcoming work. But it should be underlined that the
flatness of buffer index curves obtained here appears encouraging for optimization methods based on the
approach proposed here, as it finds mathematically well defined optima. Another route of investigation
would be to optimize the dynamics buffer capacity [33], however in that case an additional parameter
would have to be taken into account as the dilution effects depend on the concentration of the added
solution.
In a more practical light, the results and techniques presented in this study allow defining optimal buffer

solutions which might or might not be feasible when considering the actual pKa values of monovalent
species. However, finding combinations of real weak acids that come as close as possible to such optima
will lead to solutions with improved buffer-index stability over a wider range of pH and can serve as a
guide for buffer preparation that do not aim at pH ranges wider than 3 pH units.
Moreover, this method could obviously be extended to situations including the contribution of polypro-

tic species, for instance in order to find specific optimal points in the presence of a given polyacid whose
pKa’s are known and set, while trying to flatten the dependency of β with pH by including one or more
monovalent species.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: a) Values of ∆pKc
a as a function of rC and r∆pKa

. b) Number of roots of the derivative β′ for
∆pKa values just above ∆pKc

a. c) Buffer indexes at ∆pKa = ∆pKc
a with varying r∆pKa

for c)
rC = 0.5 d) rC = 1.37. e) Buffer index and f) its derivative along the 5-3 boundary.
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(a) (b)

Figure 8: a) Roots of β′ for parameters laying on the 5-3 border. b) Buffer indexes obtained for ∆pKa =
∆pKc

a as calculated in figure c.
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