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Abstract 
Structure-based, virtual High Throughput Screening (vHTS) methods for predicting ligand activity 
in drug discovery are important when there are no or relatively few known compounds that interact 
with a therapeutic target of interest. State-of-the-art computational vHTS necessarily relies on 
effective methods for pose sampling and docking to generate an accurate affinity score from the 
docked poses. However, proteins are dynamic; in vivo, ligands bind to a conformational 
ensemble. In silico docking to the single conformation represented by a crystal structure can 
adversely affect the pose quality. Here we introduce AtomNet PoseRanker, a graph convolutional 
network trained to identify, and re-rank crystal-like ligand poses from a sampled ensemble of 
protein conformations and ligand poses. In contrast to conventional vHTS methods that 
incorporate receptor flexibility, a deep learning approach can internalize valid cognate and non-
cognate binding modes corresponding to distinct receptor conformations. AtomNet PoseRanker 
significantly enriched pose quality in docking to cognate and non-cognate receptors of the 
PDBbind v2019 dataset. Improved pose rankings that better represent experimentally observed 
ligand binding modes improve hit rates in vHTS campaigns, and thereby advance computational 
drug discovery, especially for novel therapeutic targets or novel binding sites. 

Introduction 
Successful drug discovery campaigns rely on identifying biologically active lead molecules that 
are chemically distinct from known compounds for the disease target. This is especially 
challenging when there is little or no nearby ligand data available, as is the case with novel targets, 
or when novel scaffolds are distant in chemical space. Structure-based, virtual High-Throughput 
Screening methods are designed to overcome this challenge, by identifying novel compounds 
with predicted activity from vast chemical libraries, for example, MCULE1 or ENAMINE.2 vHTS is 
routinely applied as a first step in the drug discovery process, with hit rates surpassing those of 
experimental screens.3–5 

Conventional, structure-based vHTS approaches use an empirical or force-field based scoring 
function to dock distinct ligand poses to a mostly rigid receptor and predict affinity. Underlying 
structure-based vHTS approaches is the assumption that receptor-ligand binding poses correlate 
with experimentally observed affinities. While conventional approaches have led to several 



exciting results, including a potent inhibitor for AmpV β-lactamase6, they have several important 
drawbacks. First, identifying a scoring function that simultaneously gives high docking power 
(distinguishing correct docking poses from decoy poses) and high scoring power (generating an 
affinity score) has historically been challenging7. For example, the widely-used molecular docking 
scoring function AutoDock-Vina8 excels at pose reproduction but is less competent at correlating 
poses to affinity, as assessed in the CASF benchmark9. Second, conventional methods bear 
substantial computational cost. Consequently, their ability to predict affinity is limited to small or 
medium-sized chemical libraries of tens to several hundred million compounds. Third, the 
dynamic nature of proteins is exploited in ligand binding10. Different receptor conformations can 
bind different ligand chemotypes, perhaps best exemplified by the ‘DFG-in’ and ‘DFG-out’ states 
occupied in different ratios by many protein kinases11. Docking a ligand to a rigid receptor 
conformational substate that deviates from its native bound state (e.g., an apo state) can result in 
inaccurate predictions of the bound complex that are not useful for further drug design 
applications. Unfortunately, incorporating receptor flexibility and representing binding-competent 
receptor conformations remains challenging in conventional methods12,13 and substantially 
increases computational cost.  

Machine learning (ML) and deep learning (DL) approaches can mitigate these limitations. ML can 
help determine features of the receptor-ligand complex that correlate with affinity to augment 
scoring functions and improve docking and screening power. For example, the 𝚫vinaRF20 scoring 
function combines twenty ligand, protein and pharmacophore features selected among a larger 
set of candidate features with random forest regression14. Post-scoring with 𝚫vinaRF20 improved 
docking and screening (ranking) power compared to the baseline AutoDock Vina scoring 
function8. A major advantage of learning approaches compared to conventional methods is that 
they can capitalize on the rapidly increasing availability of data to improve accuracy15.  

In contrast to ML-based methods, DL-based methods avoid the requirement to specify features, 
and instead learn relevant features directly from structural representations of the protein-ligand 
complex. In recent years structure-based DL architectures16–21 have enabled high-throughput 
vHTS and contributed to the discovery of numerous new leads for drugs, often for challenging 
protein targets and diseases22–24. However, early structure-based DL approaches appeared to 
learn molecular features from a pose-free structure-based descriptor only, neglecting ligand 
binding modes and protein ligand interactions25. This is especially detrimental to predicting affinity 
for ligands docked to non-cognate receptors, which is a typical use-case in structure-based drug 
discovery (SBDD). To enforce sensitivity to protein-ligand interactions, more recent DL vHTS 
approaches include ligand binding mode information, either as a feature26 or as a training label in 
a multi-task architecture27,28. Simultaneous learning on ligand binding modes substantially 
improved activity screening and led to better generalization beyond the training set. Importantly, 
predicting correct ligand binding modes has merit in its own right.29 Precise protein-ligand 
interactions are vital for developing structure activity relationships in hit-to-lead and lead-
optimization applications downstream from vHTS.30 

The efficacy of structure-based virtual screening campaigns relies on an adequate representation 
of the protein conformational ensemble. Proteins and their ligands undergo conformational 
exchange under physiological conditions31–33, and in many cases ligands bind through induced fit 



(Fig 1A)34,35 or bind short-lived intermediate states through conformational selection (Fig 1B)36. In 
those situations, the binding site of a crystal structure may be partially or even fully occluded in 
the absence of a ligand, hindering the discovery of potent binders. In cases where the protein’s 
cognate ligand has small molecular weight, a holo crystal structure would limit opportunities for 
docking larger compounds even though those could be accommodated by the protein’s full 
conformational ensemble (Fig 1C). Similarly, structurally uncharacterized disease mutations distal 
to the ligand binding site can shift the protein conformational ensemble, dramatically reducing or 
even depleting populations favorable for ligand binding in wild-type protein in vivo (Fig 1D,E)37. 
Such a situation would manifest itself by unfavorable binding kinetics in experimental assays 
despite highly ranked compounds in the virtual screen. Screening against multiple receptor 
conformations can fail to enrich experimentally validated active compounds if the conformations 
are higher-energy and unlikely to be accessible in solution. Careful selection of receptor states38,39 
can mitigate these effects of protein dynamics and increase virtual screening performance40.  

How to optimally represent protein conformational states computationally, and how to generalize 
docking scores to (unseen) conformational substates remain important open problems. Some, 
but not all, proteins with ligands in the Protein Data Bank (PDB) are structurally resolved in 
multiple conformations. For individual systems, sophisticated and resource intensive protocols 
including molecular dynamics simulations and Markov State Models can access biologically 
relevant conformations41,42, but these methods scale poorly to large databases of thousands of 
receptors. Time-independent sampling is a less resource-intensive alternative to access 
conformational substates. A common limitation of screening with multiple conformations, of any 
origin, is the challenge in comparing docking scores for molecules docked to different 
conformations. This has limited the adoption of earlier ensemble approaches, but machine 
learning techniques can mitigate this problem43. Importantly, conventional docking and scoring 
protocols cannot internalize receptor conformational variability encoded in the thousands of 
structurally resolved receptor-ligand complexes in, for example, the PDBbind dataset.44,45 While 
DL-approaches are relatively underexplored in ensemble docking, they can, in principle, learn 
and generalize how receptor flexibility accommodates distinct binding modes, both of cognate 
and non-cognate ligands. 

Here, we introduce a DL-based method for binding mode prediction that exploits protein 
conformational ensembles instead of single structures in vHTS applications. Starting from a 
protein crystal structure or homology model, we use Rosetta’s comparative modeling protocol 
(RosettaCM)46 to sample low-energy conformations near the crystal structure to generate a six-
member conformational ensemble, which includes the starting structure. We applied this protocol 
to each receptor-compound pair in PDBbind v2019 to generate FlexPDBbind v2019, a curated 
data set of conformational ensembles of drug targets. To enrich the quality of compound poses 
docked to these ensembles we adapted AtomNet GRAPHite, a new directional message passing 
graph convolutional network, for Pose Ranking applications, which we describe as AtomNet 
PoseRanker. To maximize learning on distinct receptor conformations, we additionally trained 
AtomNet PoseRanker on non-cognate poses, obtained from cross-docking ligands to distinct 
crystal structures of the same protein (uniprot identifier) in the PDBBbind v2019 dataset. 



We first demonstrate that AtomNet PoseRanker enriches pose quality for compounds docked to 
single conformations of their cognate receptors as well as non-cognate receptors in the cross-
docked PDBbind v2019 data set compared to conventional approaches. Our results indicate that 
training on a cross-docked data set teaches AtomNet PoseRanker to recognize distinct poses as 
valid in different receptor conformations. AtomNet PoseRanker trained on FlexPDBbind v2019 
achieved nearly the same enrichment, suggesting that computationally sampled conformational 
ensembles can augment experimental ensembles when the latter are not available. Finally, we 
examined how conformationally diverse ensembles affect enrichment of active compounds in a 
virtual screen of Abl kinase. Ensemble-based procedures generally outperformed those using a 
single conformation. Strikingly, however, we found that using a single conformation with a cross-
docked trained AtomNet PoseRanker achieved nearly identical enrichment as that using an 
ensemble, suggesting that DL approaches can infer flexibility from the training set.  
 

 
Figure 1: Binding site plasticity challenges vHTS in structure-based drug design. A) Induced fit. B) 
Conformational selection. C) The GluN2A NMDA receptor ligand-binding domain in complex with its 
cognate activating ligand L-glutamate (L-GLU, pdb ID 4nf8 (slate)) and antagonist 1-(phenanthrene-2-
carbonyl)piperazine-2,3-dicarboxylic acid (PPDA, pdb ID 4nf6 (grey)). The L-Glu occupied site requires 
dramatic structural changes to accommodate the larger antagonist.  D) Mutations distal to the binding site 
(yellow) can shift the conformational equilibrium, thereby stabilizing non-binding substates or abrogating 
substates that are required for conformational selection. E) The compound imatinib in complex with Abl 
kinase (pdb ID 2hyy, slate). Imatinib binds Abl kinase in the inactive I2 state, which occupies a population 
of ~6% in WT Abl (pdb ID 6xrg, grey). A distal H415P mutation in Abl kinase, at a distance of 18Å from the 



active site, reduces affinity for the inhibitor imatinib five-fold. H415P destabilizes the I2 state, reducing its 
population to below detectable levels (pdb ID 2f4j, salmon). Note the A-loop in the open conformation. 

Methods 
Preparing train and test data sets. We downloaded the PDBbind data set v2019 
(http://www.pdbbind.org.cn), and removed entries that contained cofactors, incomplete ligands, 
more than one ligand, incorrect valences, entries annotated as ‘NMR’, or entries for which the 
ligand was annotated as a peptide. This resulted in a data set containing 4,593 crystal structures 
from the ‘refined’ set, and 10,011 from the ‘general’ set. We split the data set into train (10,919) 
and test (5,206) sets by requiring that receptors share less than 70% or 50% sequence similarity 
between the sets (‘seqsim70’ and ‘seqsim50’ splits). For comparison, we also generated train and 
test sets identical in size to the seqsim70 and seqsim50 sets but split by enforcing that these sets 
do not share identical uniprot identifiers (‘uniprot split’).  
 
Preparing ligand structures. We generated ligand structures for docking based on the ligands 
provided by PDBbind. To avoid biasing poses toward the crystal structures, and in contrast to 
previously reported studies, we discarded the native compound conformation and generated a 
UFF energy-minimized starting conformation from the ligand SMILES supplied by the PDB using 
RDKit47. This approach better reflects commercial vHTS campaigns, where a crystal pose or 
experimental structure of the ligand is typically lacking. 
 
Preparing receptor structures. We prepared the receptors for docking by a three-step process. 
For consistency with our generated ensembles, we first read the crystal structure into Rosetta 
and removed any crystallographic buffer or water molecules, but retained metal ions of the 
following types: Na, Fe, Mg, K, Mn, Zn, and Ca. Using Rosetta, we filled in missing atoms for 
incomplete protein residues. We then define a bounding box surrounding each initial ligand used 
as the search space for subsequent docking. For this study, we accepted the protonation states 
of titratable residues found in PDBbind.  
 

 
Fig 2. Flowchart illustrating data processing pipeline. Beginning from the PDBbind v2019 protein-
ligand dataset, we clustered ligands for all structures of the same Uniprot into distinct binding sites 
to define cross-docking groups. We used Rosetta (version) to prepare the structures for docking, 



including filling in missing sidechain atoms and adding protons. We prepared 3D conformations 
for each ligand using RDKit and used these conformations to dock to the crystal structures within 
each binding site cluster. We additionally prepared conformational ensembles using the Rosetta 
hybridization protocol and docked ligands within each binding site cluster.  
 
Cross-docking. We superimposed receptors of the same uniprot ID using the chain identifiers 
present in the ‘pocket’ pdb file from PDBbind, keeping receptors that superimposed to within 5Å. 
We identified different binding sites within the same uniprot ID by clustering the center of mass of 
the superimposed ligands with DBSCAN48 (parameters eps=5., min_samples=1). A small number 
of uniprot IDs (‘targets’) are represented by hundreds of receptor-compound pairs in PDBbind. To 
avoid those from dominating the cross-docked data set, we randomly selected five 
representatives from among the receptor-compound pairs to be included in the cross-docking 
procedure. Cross docking was performed on all members of each binding site cluster. The final 
training set consisted of targets that sampled at least one low-RMSD pose. This procedure gave 
a total of 27,166 target-compound pairs.  
 
Ensemble docking. We generated five diverse receptor conformations using the rosetta 
hybridize protocol (Supplemental Material) with the score3 and score4_smooth_cart scoring 
functions in stage 1 and 2 of the centroid stage, and the ref2015_cart scoring function with 
metalbinding_constraint in the full atom stage. Ligand parameterization relied on rosetta’s 
templates whenever available or was generated with rosetta’s molfile_to_params.py script 
using default settings. We used default weights for intra-ligand hetatm_cst_weight=1.0 and 
receptor-ligand hetatm_to_protein_cst_weight=1.0 constraints. Fragment insertions 
were disabled in stage 2: fragprob_stage2=0.0. We adjusted the stage 2 Monte Carlo 
temperature to 0.5: stage2_temperature=0.5. Next, we subjected each hybridized receptor 
conformation and the crystal structure to six rounds of energy relaxation with Rosetta’s 
FastRelax protocol, retaining metal coordination with the SetupMetalsMover protocol 
combined with a metalbinding_constraint = 1.0. We observed that protein side-chain 
metal coordination was not preserved consistently throughout the hybridize protocol. In some 
cases that led to final models with unsatisfied coordinate-covalent bonds. We created a final 
ensemble of six receptor conformations by selecting the conformation with the lowest Rosetta 
energy from each of the six relaxed conformations starting from the hybridized models or crystal 
structure. 
 
Docking. We used a slightly modified version of the smina docking software49 with the vina 
scoring function to generate binding poses for the receptor-compound pairs with command line 
parameters --exhaustiveness 384 --energy_range 99999 --num_modes 64 --
mc_steps 3 --minimize_iters 40 --accurate_line --approximation linear -
-autobox_add 2.0 --seed 42. Our modification introduces the additional parameter 
mc_steps which is used to tune the number of steps in the Monte Carlo search. For each 
receptor-compound pair we generated up to 64 poses with the default 1Å minimum difference 
between poses. We labeled poses within 2.5Å of the native pose a ‘hit’, and those greater than 
4Å a ‘miss’. Poses in between were discarded from the training set but retained in the testing sets. 



We calculated the RMSD between corresponding heavy atoms of docked poses and native crystal 
structures of the corresponding compounds by first matching substructures using RDKit and 
accounting for symmetric substructures by using the minimum RMSD in the case of multiple 
matches.  For the final dataset we required that each compound adopted at least one pose within 
2.5Å of the native pose, evaluated after superposition of protein structures in the case of cross-
docking. 
 
Descriptor generation. From each docked complex, we generated descriptors for use in training 
and testing our models. We describe each heavy atom with its corresponding SYBYL atom type 
indicating its chemical environment, generated by converting to Mol2 format using OpenBabel50. 
We do not represent protons explicitly in our final descriptor sets, and we treat all metals as a 
single type. We treat the protein and ligand as distinct entities and encode their atom types 
separately. 
 
Markov State Models of Abl. We obtained structures for 16 Abl kinase macrostates from the 
manuscript by Roux and coworkers (PDB ID 2HYY)51. We prepared a matching 16-member 
conformational ensemble using our rosetta-based ensemble-docking protocol. For each of those 
ensembles, we prepared the receptors for docking following our standard protocol described 
above. We prepared the single receptor conformation for this analysis based on the crystal 
structure 2HYY. We selected 8,946 compounds from our internal databases to dock to Abl kinase, 
including molecules with known activity (3,205), known non-binders (4,459) and random 
molecules (1,282). We ranked compounds using the AtomNet PoseRanker model trained on a 
dataset that excluded Abl kinase or receptors with more than 70% sequence similarity to Abl 
kinase. We calculated enrichment factors as , where  is the total 
fraction of actives in the data set,  is the number of actives in the top -percentile, and  is 
the total number of compounds in the  top -percentile.  
 
AtomNet PoseRanker. Underlying AtomNet PoseRanker is our GRAPHite network architecture, 
a directional Message Passing Neural Network52,53 in which nodes encode receptor or ligand 
atoms (Fig 2A). We do not impose a covalent structure on the graph. Instead, pairs of atoms 
within a distance threshold  of each other can pass messages along a directed edge. To focus 
on the interface between ligand and receptor atoms, we use a flexible framework that allows us 
to configure distinct sets of ‘source’ and ‘target’ atoms for messages in each layer (Fig 2B). At the 
input layer , we construct separate embeddings for ligand  and receptor  atoms 
from their coordinates and SYBYL atom types. 



 
Figure 3. Architecture of AtomNet GRAPHite, a directional Message Passing Neural Network. A) 
Ligand and receptor atoms are represented as nodes in AtomNet GRAPHite, omitting their 
covalent structure. B) Overview of AtomNet GRAPHite’s graph convolutional network 
architecture. After an initial embedding, any number of message passing layers (MPLs) can be 
stacked, optionally with skip connections, before final readout.  
 

Each message passing layer  in the network features both a source  and a 

target  set of atoms , where  and . The input to the message 
passing layers are updated features based upon dense skip connections and a linear bottleneck 
layer [63] (Fig 2C). We concatenate and mix the unique features for source atoms  using a linear 
layer 

 . 
 
The bottlenecked features are then used as the input to a message function, and updated using 
 

, 

where  denotes an edge between source ( )  atom  and target ( ) atom . Accordingly, the 

message function  for target atom  is the sum of the messages from each source atom 
. The updated features for each layer are then constructed by concatenating with the source 

features of the atom species, and applying a  multi-layer perceptron: 
 

. 
 



Edge features 
  

 
 
are encoded by linear combination of radial basis functions; we chose , 
where  is a zeroth order spherical Bessel function,  is a normalization constant, 
and  is the maximum radius for passing messages between source atoms  and target atoms 
. Note that our implementation does not require a vanishing gradient for radial functions at the 
boundary.  
 
Our readout layer is a global pooling operation to a final set of bottleneck features 
 

 .  
These pooled features are then combined, and a  MLP generates the final 
predictions:  

. 
 
Data and software availability. We provide input scripts and parameters for our Rosetta protocol 
in the Supplementary Information section. Our FlexPDBBind v2019 dataset consisting of sampled 
ensembles for PDBBind structures is freely accessible and available for download from 
http://atomwise.com/flexpdbbind2019.  

Results 
2.1 Ligand:receptor interfaces contribute to pose prediction accuracy. Several studies 
suggest that structure-based vHTS CNN-based methods minimally rely on features of the 
receptor54,55 but instead distinguish active from inactive compounds primarily by ligand-based 
features. Carefully designed data-augmentation can draw in receptor-based features in these 
models, thereby promoting generalizability.56 By contrast, receptor features in graph-based 
models can affect binding mode prediction57. We designed AtomNet’s configurable convolutional 
layers to deconvolve the role of the receptor and the ligand in determining pose quality, and to 
probe and optimize the role of ligand:receptor interactions. A hyperparameter controls the number 
and configurations of AtomNet’s message passing layers. If ‘l’ denotes the set of ligand atoms, ‘r’ 
denotes the set of receptor atoms, and ‘lr’ denotes the combined set of atoms, each layer can 
pass messages from ‘l’ to ‘r’, ‘r’ to ‘l’, ‘l’ to ‘l’, ‘r’ to ‘r’, and each of ‘l’ or ‘r’ in these can be replaced 
by ‘lr’.  
 
Table 1. Distinct configurations of convolutional layers respond differentially to 
mechanisms of molecular recognition.  Test AUC for distinct convolutional layer configurations 
in AtomNet PoseRanker. Test AUCs were computed from classifying poses obtained from self-
docking on the PDBbind data set uniprot split. 



 

layer configuration test ROC AUC 

l->l->l->l->l->l 0.67 

lr->lr->lr->lr->lr->lr 0.91 

l->l->r->l->r->l 0.91 

l->l->r->l->r->l->r->l 0.92 

 
To test the role of the ligand:receptor interface in classifying poses, we evaluated the effect of 
distinct layer configurations on distinguishing correctly docked poses from incorrectly docked 
poses for the uniprot split PDBbind data set. We tested layer configurations featuring transitions 
between ligand and receptor layers to focus on interface features. Table 1 reveals that, while the 
network demonstrates some capacity to identify correct poses based on ligand features alone, 
the test AUC (PDBbind self-docking, uniprot split) increased dramatically when we included the 
ligand:receptor interface in the layer configurations (test AUC > 0.9), compared to a layer 
configuration between ligand atoms only (test AUC = 0.67). When we probed the interface with 
additional convolutional layers, we observed a peak in test AUC at 0.92. Adding more layers did 
not result in further improvements. These findings suggest that our graph convolutional 
architecture is sensitive to mechanisms of molecular recognition in structure-based drug design. 
To minimize the potential of ligand- or receptor-based pattern memorization, for the remainder of 
the study we adopted the ‘llrlrlrl’ layer architecture that includes edges only between ligand-
receptor atom pairs. 
 
2.2 AtomNet PoseRanker improves (sm)vina and ML-based rankings. Next, we compared 
AtomNet PoseRanker’s ability to classify docked poses on the PDBbind dataset to similar 
classifiers. On the uniprot split, AtomNet PoseRanker’s test AUC was 0.93. Other methods 
similarly reported AUCs in the 0.86-0.94 range27 (Table 2). By training simultaneously on poses 
and activity, Lim et al28 achieved an AUC = 0.94 on their data set. Direct comparison of AUCs 
with these methods is difficult owing to differences in the way the data is split which can lead to 
memorization effects27, and slight random initializations of the methods. 
 
Table 2: Pose classification compared to other methods across different train/test splits. *In 
contrast to other methods in this table, the model of Lim et al. was trained simultaneously on 
poses and activity. †Three-fold cross-validation on 90% sequence identity. 

 ROC AUC 

method uniprot seqsim70 seqsim50 

AtomNet PoseRanker 0.93 0.90 0.89 

smina docking 0.82 0.82 0.81 



Cornell et al.57  0.86   

Ragoza et al.58 0.815†   

Lim et al.*,28 0.94   

 
We then tested AtomNet PoseRanker’s ability to generalize out of the training data by evaluating 
its performance on the seqsim70 and seqsim50 data splits, which challenge memorization effects 
of the training data. We observed a small decrease in performance from AUC = 0.93 to 0.89. 
 
In practical applications, pose ranking within a particular target class is more important than the 
pose quality across all targets as reported by AUC. AtomNet PoseRanker significantly enriched 
the fraction of poses within 2.5Å of the native pose among the top-n ranked poses compared to 
smina docking (Fig 3). When “gap” poses between 2.5Å and 4Å were excluded in training, 45% 
of the top poses in AtomNet PoseRanker were within 2.5Å of a crystal pose by target class (Fig 
3A black line), compared to 39% of the top smina poses on the (most challenging) seqsim50 test 
set including “gap” poses. (Fig 3A, blue line). 
 
2.3 AtomNet PoseRanker enriches intra-target compound rankings in cross-docking. While 
the re-docking performance of a deep learning model is often reported to evaluate its 
performance, correctly predicting the binding mode of a new ligand, possibly to a new target, is 
more important in SBDD. The new target may even lack a crystal structure, so vHTS will need to 
rely on a closely related structural model or a homology model. We therefore trained and 
evaluated AtomNet PoseRanker on a cross-docked data set (Methods). Table 3 reports the AUC 
for AtomNet PoseRanker compared to smina docking. 
 
Table 3: cross docking pose ranking/classification compared to smina docking. 

 ROC AUC 

method uniprot  seqsim70 seqsim50 

AtomNet PoseRanker 0.91 0.90 0.86 

smina docking 0.78 0.79 0.78 
 
Unsurprisingly, distinguishing favorable docking poses from unfavorable poses is more 
challenging in cross-docking compared to self-docking, reflected by reduced AUCs for AtomNet 
PoseRanker and smina docking. There are numerous challenges in cross-docking: 1) the binding 
site often has a different size and/or shape owing to different (equilibrium) backbone and 
sidechain positions; 2) amino acid insertions, deletions, or substitutions can alter the steric and 
electrostatics characteristics of the site; 3) changes in solvation characteristics; and 4) 
experimental conditions like crystal packing, etc. Accordingly, test AUC were reduced slightly 
compared to self-docking across all data splits (Table 3). 



 
We observed marked intra-target early enrichment among the top-ranked poses of the model 
trained on cross-docked crystal structures compared to the model trained on cognate receptors 
(Fig 3A, top-1 54% (pink) vs 45% (black). While the jump in performance could be attributable to 
a larger training set size, the reduced AUC suggests that the cross-docked model less easily 
distinguishes good poses from bad poses despite the larger data set. However, the model is more 
confident about good poses, likely because similar good poses occurred across multiple receptor 
conformations whereas invalid poses were reproduced less across receptors. 

 
 
 
Fig 3 Cumulative fraction of targets with docked poses within 2.5Å RMSD of the crystal pose 
across all receptors within a target class by pose rank for the seqsim50 split according to vina 
(blue), AtomNet PoseRanker trained on cross-docked crystal structures (black), and AtomNet 
PoseRanker trained on sampled conformational ensembles (green). Each figure shows the top 
sixteen ranked poses for each docking attempt in (A) the full dataset, (B) targets that include at 
least six PDB structures, for a direct comparison of experimental and sampled ensembles and 
(C) targets that include only one PDB structure, to illustrate the effects of sampling where 
additional experimental data is not available. 
  
3. Ensemble-based docking 
 
Next, to further examine how learning receptor conformational diversity can help AtomNet 
PoseRanker recognize valid binding modes, we developed a protocol that creates an ensemble 
of computationally sampled receptor conformations for docking based on Rosetta’s comparative 
modeling protocol46 (Methods). Aside from providing conformational variability when multiple 
experimental structures are lacking, computationally sampled ensembles offer advantages over 



those constructed from experimental structures for a pose training task, including removing 
variations due to mutations or differences in construct; normalizing the numbers and sources of 
different conformations available for each protein in the dataset; and permitting the trained model 
to be used in practical applications to docked poses to homology models produced through 
Rosetta-based pipelines. 
 
3.1 FlexPDBbind: ensemble models for 13,000 biomolecular complexes. For each 
biomolecular complex in the PDBbind ‘refined’ and ‘general’ sets we generated a six-member 
conformational ensemble. We applied Rosetta’s FastRelax protocol to the crystal structures to 
generate the first member, and then repeatedly applied the Hybridize and FastRelax 
protocols to generate up to five additional conformations (Methods). This resulted in 13,063 
biomolecular ensembles, for a total of 71,825 conformations. The mean Root Mean Square 
Deviation (RMSD) of the ensembles calculated over the CA atoms is 1.57 Å, and the Root Mean 
Square Fluctuations is 2.10 Å (Fig 4 A,B). This compares to a mean RMSD of 1.24 Å for the 
structurally aligned crystal structures. To evaluate the structural quality of the generated models, 
we calculated clash scores and overall Molprobity scores with Molprobity59 (Fig 4 D,E). We 
discarded ensembles with outlying clash scores (scores over 10). We then docked ligands to each 
conformation of their cognate receptor using the protocol detailed in Methods. The RMSDs of 
docked ligand poses calculated to their starting pose in the source receptor conformation reveals 
a distribution sharply peaked around 3.5 Å with a long tail, illustrating enrichment of low-RMSD 
poses in sampled ensembles (Fig 4C). The distribution broadens when the RMSD is calculated 
with respect to the pose from the crystal structure, owing to random offsets in rigid body 
transformations of the generated structures (Fig 4C, red). Fig 4F shows two examples of 
conformations in FlexPDBbind. 

 



Fig 4: Characteristics of the FlexPDBbind ensembles. (A) RMSD and (B) RMSF distributions 
for 6-member sampled ensembles. (C) Distribution of RMSDs of ligand poses docked to sampled 
ensembles (blue) and crystal structures (red).  (D) Molprobity clash scores and (E) overall scores 
for sampled ensembles. (F) Examples of a sampled conformational ensemble for ABL1 in 
complex with an inhibitor (top, PDB ID 5HU9) and dethiobiotin synthetase in complex with CDP 
(bottom, PDB ID 6CVF) with the crystal structure in purple, and ensemble members in green. The 
ligand corresponding to the crystal structure is shown in yellow. 
 
3.2 Ensemble-docking mitigates limitations of induced-fit docking 
 
AtomNet PoseRanker trained on the FlexPDBbind ensemble of cognate receptors slightly 
improved top-1 enrichment compared to the model trained on single conformations (Fig 3A; top 
poses: 48% (green) vs 45% (black) for single conformations). However, we did not observe 
improved enrichment beyond the top poses. Unsurprisingly, the model trained on cross-docked 
crystal structures outperformed the FlexPDBbind-trained model (Fig 3A pink; top poses: 54%), 
likely owing to receptor conformations that are closer to physiological sub-states and to a more 
diverse representation of binding modes for targets with a large number of receptor-compound 
pairs in PDBbind. Approximately 80% of targets in PDBbind have fewer than six structural 
representations. For a more direct comparison between the cross-docked set and FlexPDBbind, 
we repeated the analysis limited to targets that have at least six structural representations in the 
cross-docked set. (Fig 3B). While the top-1 enrichment on the FlexPDBbind subset was similar to 
that of the full FlexPDBbind set (Fig 3A), somewhat surprisingly the enrichment gain between the 
cross-docked and FlexPDBbind was substantially reduced on these subsets. 
 
Strikingly, when we applied an AtomNet PoseRanker model trained on sampled ensembles to 
predict binding modes using a dataset of single receptor structures, we found that top poses were 
enriched over the model trained on single structures (Fig 3C, green vs. black line). While, again, 
the improved performance could in part perhaps be attributable to the larger training set for the 
sampled ensembles, the result does suggest that the model retains information about flexible 
binding sites, illustrating the value of performing additional conformational sampling where 
experimental data is limited. 
 
3.3 Ensemble-trained AtomNet PoseRanker enriched Abl kinase actives on a 
conformational ensemble and a single conformation.  

 
3.1.1 Abl kinase 
As a practical application, we examined the effects of receptor conformational ensembles and 
compound pose reranking in identifying active compounds of Abl kinase (Abelson tyrosine 
kinase). Abl is of clinical significance due to its causal role in chronic myelogenous leukemia 
(CML); in about 90% of cases of CML, a chromosomal translocation forms a “Philadelphia 
chromosome”, which creates a fusion between the Abl and break-point cluster (Bcr) genes to 
produce a protein with constitutive kinase activity60,61. Inhibitors of Abl kinase activity are in clinical 
use as treatments for CML and other cancers since the US approval of the targeted inhibitor 
imatinib in 2001 and have significantly improved clinical outcomes61. 



 
Kinase inhibitors are often divided into multiple classes or types depending on their binding 
mode62. Type I inhibitors are considered to bind to the “DFG-in” protein conformation while type 
II inhibitors bind the “DFG-out” conformation. The DFG-in conformation is sterically incompatible 
with the most common binding mode of type II inhibitors. Among known mutations conferring 
resistance to imatinib and related compounds, many exert their effect by changing the protein’s 
conformational distribution and reducing occupancy of the favored binding state (Fig 1E). As a 
result, identifying both type I and type II inhibitors in a structure-based virtual screen of the ATP 
binding site is important for identification of new molecules of potential clinical utility, and requires 
the use of multiple protein conformations to adequately sample native-like ligand binding modes. 
 
We evaluated the power of our ensemble-docking protocol to enrich known Abl inhibitors over an 
in-house curated library of negative examples including known non-binders and randomly 
selected molecules. We compared a conformational ensemble (n=16, RMSF=2.7Å) generated 
using our protocol to a conformational ensemble (n=16, RMSF=2.4Å) derived from a Markov-state 
model (MSM) based on extensive molecular dynamics simulations42,51. We also calculated the 
enrichment factor from the smina rank of docked poses to the (relaxed) crystal structure. 
 
Docking compounds to an ensemble of MSM receptor conformations dramatically improved early 
enrichment of active compounds compared to docking to a single receptor conformation when we 
ranked compounds by smina score (Fig 6A, blue vs. yellow). We observed similar enrichment 
factors when we ranked compounds docked to an ensemble of rosetta-generated receptor 
conformations using AtomNet PoseRanker (Fig 6A, red). While these enrichment factors are near-
indistinguishable, our Rosetta ensembles were generated at a fraction of the computational cost 
compared to MSM ensembles. Strikingly, early enrichment remained similarly elevated when we 
ranked compounds docked to a single receptor conformation using AtomNet PoseRanker (Fig 
6A, magenta). Note that AtomNet PoseRanker model was trained on a cross-docked data set, 
which led the model to recognize distinct but valid poses of compounds corresponding to diverse 
receptor conformations. AtomNet PoseRanker in combination with the MSM ensemble did not 
achieve the same enrichment factors (Fig 6A, yellow), likely because the MSM receptor 
conformations are too distinct from the rosetta-generated conformations in the training set. Thus, 
docking against an ensemble of conformations can lead to early enrichment of active compounds, 
which can be retained using even a single receptor conformation with the AtomNet PoseRanker 
model.  
 
We then compared the chemical diversity of active top compounds docked to single receptor 
conformations to those using the rosetta-ensemble. We selected the 1% top-ranked compounds 
for each method. These 90 compounds would approximately fill a 96-well plate used for 
experimental validation in a vHTS screen. We then selected all active compounds among the top 
1% for the single receptor conformation/smina ranking (31 compounds) and the rosetta-
ensemble/AtomNet PoseRanker (59 compounds) method. We excluded two compounds that 
ranked within the top 90 in both methods, since we are primarily interested in examining their 
differences. A t-SNE63 projection of a principal components analysis computed from their ECFP4 
fingerprints suggests that the rosetta ensemble is slightly more diverse compared to the single 



conformation compounds (Fig 6B). Towards the lower left corner of the t-SNE projection, smina 
uncovers exceedingly fewer compounds. In the lower right corner, the first t-SNE coordinate 
separates a cluster of compounds at ‘t-SNE 1’ > 2 that were enriched nearly exclusively in the 
ensemble. These compounds are all analogs of Ponatinib (Fig 6C), notably sharing the ethynyl 
linker to a imidazol-1,2-pyridazine-like hinge region of the compound. AtomNet PoseRanker 
identified the most hits in this cluster against receptor conformations 13 and 16. Altogether, two 
out of 25 hits in this cluster were identified from docking to a single receptor (blue circle, using 
smina, and another from AtomNet PoseRanker (Fig 6D)). Among all top 1% of compounds in both 
docking methods, only two Ponatinib analogs were identified using smina ranking. 
 

 
Fig 6 Ensemble docking enriched known Abl inhibitors compared to single receptor 
conformations. A) Predicted probability of activity (top panel) and Enrichment Factors (bottom 
panel) for established Abl kinase inhibitors and confirmed non-binders and random compounds. 
Colors represent different combinations of ensembles and scoring algorithms. The dashed gray 
line represents the prevalence (35%) of active compounds in the set. Compounds are ranked 
from best to worst according to the score for each method, i.e., the value 0.5 on the x-axis 
represents the top-scoring 50% of compounds for each of the methods. D) Conformation 1 
corresponds to the crystal structure. 

Conclusion 
In this study we describe AtomNet PoseRanker, a graph-based convolutional neural network 
trained to identify high-quality crystal-like poses from docking. Importantly, and in contrast to 
previous work, we use ligand conformations prepared without knowledge of the ligand 
conformation in the PDB structure, which is representative of use cases encountered in virtual 
screening applications. Using the curated dataset PDBbind 2019, we demonstrate that our 
method can improve upon enrichment and ranking metrics for pose tasks compared to the 
baseline established by the physics-based scoring function vina, as implemented in the open-
source docking software Smina. An important aspect of pose prediction in practical use cases for 
drug discovery campaigns is identifying a biologically relevant and binding-competent receptor 
conformation. Where there is limited crystallographic information available, such as only a single 
crystal structure or only a homology model for a target of interest, this can be particularly 
challenging. We introduce a simple Rosetta-based protocol for focused conformational sampling 



and demonstrate that docking to small receptor ensembles can improve pose ranking metrics. 
The protocol is competitive in identification of active compounds for a given target compared to 
ensembles generated with much more computationally intensive sampling techniques, such as 
Markov-state models derived from molecular dynamics simulations. 
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Rosetta Protocols 
 
<ROSETTASCRIPTS> 
        <SCOREFXNS> 
            <ScoreFunction name="s3" weights="score3"/> 
            <ScoreFunction name="s4" weights="score4_smooth_cart"/> 
            <ScoreFunction name="fa" weights="ref2015_cart" > 
                <Reweight scoretype="metalbinding_constraint" weight="1.0" /> 
            </ScoreFunction> 
            <ScoreFunction name="r15" weights="ref2015" > 
                <Reweight scoretype="pro_close" weight="0.0" /> 
            </ScoreFunction> 
            <ScoreFunction name="cen" weights="cen_std"/> 
        </SCOREFXNS> 
 
        <MOVERS> 
            <SetupMetalsMover name="metals" /> 
            <Hybridize name="hybridize" batch="1" stage1_increase_cycles="1.0" 
stage2_increase_cycles="1.0" stage1_scorefxn="s3" stage2_scorefxn="s4" 
fa_scorefxn="fa" fragprob_stage2="0.0" add_hetatm="1" 
hetatm_to_protein_cst_weight="1.0" hetatm_cst_weight="1.0" stage2_temperature="0.5"> 
                <Template pdb="test_with_lig.pdb" cst_file="AUTO" weight="1.000" /> 
 
            </Hybridize> 
            <FastRelax name="relax" scorefxn="fa" /> 
        </MOVERS> 
        <PROTOCOLS> 
            <Add mover="metals" /> 
            <Add mover="hybridize"/> 
        </PROTOCOLS> 
        <OUTPUT scorefxn="r15" /> 
    </ROSETTASCRIPTS> 


