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Abstract 

The importance of epigenetic drug and probe discovery is on the rise. This is not only paramount to 

identify and develop therapeutic treatments associated with epigenetic processes but also to understand 

the underlying epigenetic mechanisms involved in biological processes. To this end, chemical vendors 

have been developing synthetic compound libraries focused on epigenetic targets to increase the 

probabilities of identifying promising starting points for drug or probe candidates. However, the chemical 

contents of these data sets, the distribution of their physicochemical properties, and diversity remain 

unknown. To fill this gap and make this information available to the scientific community, we report a 

comprehensive analysis of eleven libraries focused on epigenetic targets containing more than 50,000 

compounds. We used well-validated chemoinformatics approaches to characterize these sets, including 

novel methods such as automated detection of analog series and visual representations of the chemical 

space based on Constellation Plots and Extended Chemical Space Networks. This work will guide the 

efforts of experimental groups working on high-throughput and medium-throughput screening of 

epigenetic-focused libraries. The outcome of this work can also be used as a reference to design and 

describe novel focused epigenetic libraries. 

 

Keywords: analog series; cheminformatics; Constellation Plots; drug discovery; Extended Chemical 

Space Networks. 
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Introduction 

Epigenetic drug and probe discovery continue to be relevant for a plethora of potential therapeutic 

applications, including cancer therapy.[1,2] Probes for epigenetic targets would be key components to 

understand epigenome data that can be the basis to develop personalized medicine.[3] Similarly, 

chemical probes targeting epigenetic processes are fundamental in basic chemical biology associated 

with epigenetic processes. Computational and experimental screening efforts of chemical libraries have 

been ongoing to identify potential hits for various epigenetic targets. In addition to the traditional general 

screening libraries available for high-throughput screening, chemical companies have been assembling 

libraries focused on epigenetic targets[4] and the chemical structures are available in the public domain. 

Indeed, in epigenetic drug discovery, there are recent and increased efforts to design and analyze 

focused libraries.[5,6] By design, epigenetic-focused libraries have the potential to increase the epigenetic 

relevant chemical space, which has recently been revised.[7] 

 Depending on the library developer, the compounds in the compound data sets are selected 

following a multi-step procedure, typically through computational approaches (although the specific 

methodological details remain undisclosed to the public). Many providers emphasize the diversity of the 

libraries, yet it remains hidden to the user what their contents and coverage of the chemical space are. 

We propose that a content analysis of a focused library would be informative before screening it for hits. 

To this end, validated chemoinformatic approaches provide a systematic and rigorous manner to 

characterize the contents, chemical diversity, and, in general, coverage of the compound libraries in 

chemical space.[8]  

The goal of this study is to rigorously characterize the chemical content, diversity, and drug-like 

properties of eleven epigenetic-focused libraries containing more than 50,000 compounds in total. All 

data sets are available in the public domain. To the best of our knowledge, this is the first systematic 

chemoinformatic analysis of epigenetic-focused compound libraries. As part of the analysis, we 

implemented a recently introduced and validated methodology to compute and identify core structures 

and analog series based on retrosynthetic rules. The analog series were the basis to generate 

Constellation Plots as a rich representation of the chemical space that combines substructure and 

fingerprint representations. For each epigenetic-focused data set, we identified the most frequent core 

https://sciwheel.com/work/citation?ids=7927554,11709062&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11709066&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10569597&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11117309,11691205&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11691209&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11691413&pre=&suf=&sa=0
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structures. We also generate novel representations of the chemical space using the concept of Extended 

Chemical Space Networks (eCSNs)[9] and rapidly identify the most representative individual molecules 

(i.e., medoids) in a large data set: these chemical structures can be used as a “chemical structural 

marker” or “chemical diagnostic molecules.”[10] Herein, we discuss the most representative chemical 

structures of the epigenetic libraries that can be used as a criterion for comparing the chemical libraries 

and prioritization for follow-up studies, including computational and experimental screening. 

 

Methods 

To conduct the chemoinformatic characterization of the 11 epigenetic-focused data sets, we calculated 

properties of pharmaceutical interest; molecular scaffolds using the classic and most common method by 

Bemis-Murcko,[11] and a novel approach to identify core structures and analog series automatically.[12,13] 

We also quantify the chemical diversity and synthetic accessibility using whole-molecule structural 

fingerprints. To explore the distribution of the chemical libraries in chemical space, we generated two 

complementary and recently introduced visual representations of the chemical space, namely, 

Constellation Plots[14] and eCSNs.[9] The details of the data sets, their preparation, calculation of the 

properties, scaffolds, and fingerprints are described in the following sections. 

 

Data sets preparation 

The structure files of the focused libraries were obtained from different chemical vendors. The 11 

chemical libraries are summarized in Table 1 that briefly describes each set and the number of 

compounds before and after data curation. The number of compounds after data curation was 53,443, in 

total. The chemical structures were curated using the open-source cheminformatics toolkit RDKit, version 

2021.03.2 (www.rdkit.org). Data curation was performed using an established protocol.[15] Briefly, 

compounds with valence errors or any chemical element other than H, B, C, N, O, F, Si, P, S, Cl, Se, Br, 

and I were deleted. Stereochemistry information was removed because not all compounds in datasets 

have it defined. Compounds with multiple components were split, and the largest component was 

retained. The remaining compounds were neutralized and reionized to generate a canonical tautomer 

subsequently. Duplicated compounds were deleted. 

https://sciwheel.com/work/citation?ids=11726189&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11691781&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1261045&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7801537,6419644&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=7221419&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11726189&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10727497&pre=&suf=&sa=0
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<Table 1 here > 

Properties of pharmaceutical interest 

For each chemical structure of the 11 curated libraries, six properties of pharmaceutical interest were 

computed with RDKit, version 2021.03.2: molecular weight (MW), number of acceptor and donor 

hydrogen bonds (HBA, HBD, respectively), number of rotatable bonds (RB), topological surface area 

(TPSA), and partition coefficient octanol/water (SlogP). These properties are associated with compound 

size (MW), polarity (HBA, HBD, TSPA, SlogP), and flexibility (RB). The six properties are the basis of the 

well-known empirical rules of Lipinski[16] and Veber[17] (i.e., MW≤500, HBD≤5, HBA≤10, SlogP≤5, 

TPSA≤140, RB≤10) that help to guide the suitability of a compound to be orally absorbed (the preferred 

use of drug administration in most cases). The properties are not associated directly with biological 

activity but are commonly used to profile compound screening libraries in drug discovery projects. 

 

Scaffolds: core structures and analog series 

We used two approaches to systematically generate and analyze molecular scaffolds, exemplified in 

Figure 1: Bemis-Murcko scaffolds automatically generated with RDKit, version 2021.03.2; and core 

structures and analog series using open-source code we previously reported available at 

https://github.com/navejaromero/analog-series.[12,13] 

< Figure 1 here > 

To compute the Bemis-Murcko scaffolds[11] the side chains are removed, as illustrated in Figure 1. 

More specifically, based on the graph representation of the chemical structures of all vertices of degree 

one. The concept of core scaffolds and analog series is also illustrated in Figure 1 and discussed in 

detail elsewhere.[12,13] Briefly, core scaffolds and analog series apply a series of fragmentation rules 

based on retrosynthetic feasibility. Two molecules are considered analogs if the fragmentation rules can 

map them to the same core fragment, and that fragment is a significant part of the molecule (usually, it 

contains at least two-thirds of the total number of heavy atoms of each molecule).  

 

 

https://sciwheel.com/work/citation?ids=171753&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=283108&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7801537,6419644&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=1261045&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7801537,6419644&pre=&pre=&suf=&suf=&sa=0,0
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Molecular fingerprints 

All compound data sets were analyzed with RDKit and MACCS keys (166-bits) fingerprints,[18] both 

computed with the RDKit toolkit (www.rdkit.org). 

 

Structural diversity 

The structural diversity of each compound library was computed using two distinct representations: 

scaffolds and fingerprints. Each type of representation is complementary and, as discussed 

elsewhere,[19] provides complementary information towards a more comprehensive assessment of the 

structural diversity of compound data sets. 

 

Scaffold-based with analog series analysis 

The scaffold diversity was also quantified based on the number of cores and analog series, and their 

ratio compared with the total number of molecules in the dataset. We have previously used the number 

of identifiable cores and analog series as a measure of chemical diversity in a dataset.[12] However, the 

11 data sets presented here are too variable in their size. Therefore, we propose two new indicators: the 

fraction of molecules in the constellation plot (only analog series with at least three compounds are 

included there) and the average size of the analog series, measured as the number of unique 

compounds in the dataset divided by the number of analog series represented in it.  

 

Fingerprint-based 

The diversity of the compound libraries was computed with the extended similarity indices as recently 

reported.[20,21] Briefly, instead of only measuring the similarity between pairs of molecules, the extended 

(e.g., n-ary) indices allow us to calculate the similarity of any number of molecules simultaneously.[20] 

This has two key advantages when it comes to the analysis of molecular libraries. First, the n-ary indices 

provide a truly global description of the correlation between the molecules in the set (as exemplified by 

their superior performance in estimating the compactness of a set.[21] Second, the extended indices are 

dramatically more efficient, requiring only O(N) operations to calculate the similarity of N molecules 

(opposed to the quadratic scaling of the standard binary similarity indices). Extended similarity has been 

https://sciwheel.com/work/citation?ids=2699592&pre=&suf=&sa=0
http://www.rdkit.org/
https://sciwheel.com/work/citation?ids=3348112&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7801537&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11691741,11138157&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11691741&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11138157&pre=&suf=&sa=0
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successfully used in numerous applications, including compound diversity analysis,[21] comparison of 

nucleotide and protein sequences,[22] and, more recently, analysis of molecular dynamics simulations.[10] 

Herein, we used this approach as a novel and efficient manner to quantify and compare the fingerprint-

based diversity of the 11 compound libraries. The extended similarity indices were computed with a 

fractional weight function, with various coincidence thresholds. The Python code to conduct the extended 

similarity indices calculations is freely available at https://github.com/ramirandaq/MultipleComparisons. 

 

Chemical space: visual representation 

Chemical space has been defined as the set of molecular descriptors in which molecules will be 

represented. Visual representation of the chemical space helps to better understand the mutual 

relationships between compounds in that multi-dimensional descriptor coordinates.[8] Among the several 

methods available (examples of the most common include principal component analysis and t-distributed 

stochastic neighbor embedding), herein we used two novel representations detailed in this section.  

 

Constellation Plots 

Constellation plots are useful to depict the chemical space of chemical libraries containing several analog 

series.[14] They are helpful at concisely depicting the structure-activity (property) relationships - SA(P)R - 

in a summarized representation of the data set, as analog series can be represented in fewer data points 

than individual compounds.[23,24] Of note, only a fraction of the total data is presented in the constellation 

plot: the compounds forming analog series; in this case, we included only analog series consisting of at 

least three compounds. Recently, constellation plots have been used to describe a library of antidiabetic 

natural products[25] and a collection of tubulin inhibitors.[26] 

 

Extended Chemical Space Networks 

The chemical space networks (CSNs), proposed and developed by Maggiora and Bajorath, start by 

measuring the pairwise similarity between the molecules in a data set (using a given similarity coefficient 

and a compound representation).[27,28] Then, the molecules are represented by nodes which are 

connected if the similarity is larger than an established threshold. A limitation of this approach is that it is 

https://sciwheel.com/work/citation?ids=11138157&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11697982&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11691781&pre=&suf=&sa=0
https://github.com/ramirandaq/MultipleComparisons
https://sciwheel.com/work/citation?ids=11691413&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7221419&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7662640,11691770&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10861791&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11691841&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2341243,7226486&pre=&pre=&suf=&suf=&sa=0,0
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difficult to visualize networks for large compound data sets. Moreover, this approach also requires O(N2) 

operations, so it is not well-suited to represent large sections of the chemical space. To overcome this 

issue, the eCSNs have been recently proposed (vide supra). This is a natural generalization of the 

CSNs, in which any given molecular set can be taken as a node in the network (in this study, the nodes 

will be the 11 libraries). Then, the relations between these nodes are established via the extended 

similarity calculated for the union of the corresponding libraries. This coarse-grained representation is 

markedly more efficient since it exploits the more favorable computational scaling of the n-ary indices. 

 

Synthetic accessibility 

The complexity of the compounds generated was estimated using the synthetic accessibility (SA) score 

previously published.[29] Briefly, the SA score implemented in this study is the difference between a 

fragment score and a complexity penalty. The fragment score captures common structural features in a 

large number of already synthesized molecules (934,046 representative molecules from the PubChem). 

Molecules are fragmented using extended connectivity fragments, and the fragment score is calculated 

as a sum of contributions of all fragments in the molecule divided by the number of fragments in the 

molecule. The fragment frequency is related to their synthetic accessibility and hence easy-to-prepare 

substructures are present in molecules quite often. The complexity score is calculated as the sum of ring 

complexity (i.e., ring bridge atoms and spiro atoms), the number of stereocenters, large rings (i.e., ring 

size greater than eight, molecular complexity increases), and molecule size. The SA score was 

calculated for all epigenetic-focused libraries. 

 

Results and Discussion 

Properties of pharmaceutical relevance 

Figure S1 in the Supporting Information shows box plots and summary statistics of the distribution of the 

six calculated properties of pharmaceutical relevance. The profiling of the six properties indicated that, in 

general, all 11 compound libraries are within the Lipinski and Veber parameters. Based on this criterion, 

the libraries are acceptable candidate compounds for drug discovery and development programs (in 

particular, to be administered orally). All 11 compound data sets have a comparable distribution of the six 

https://sciwheel.com/work/citation?ids=6275488&pre=&suf=&sa=0


 

8 

properties, as shown in Figure S1. The outcome of the profiling might be anticipated since it is likely that 

the chemical vendors (developers) filter or consider the so-called “drug-like” properties during the 

assembly of the focused libraries. However, the profiling disclosed in this work is relevant and 

encourages the experimental screening of the 11 compound libraries for drug discovery projects. 

 

Scaffold content: core structures and analog series 

The relevance of analyzing the main core scaffold of a chemical compounds, in the the context of drug 

discovery, is particularly relevant because the central element drives the main molecule shape, arrange 

the substituents in their specific positions and take part of the biological activity itself.[30] For this reason, 

systematic profiling of scaffold content of synthetic organic compounds for drug discovery is of utmost 

relevance. 

Generating automatically and consistently the main scaffold or core structure of large data sets can 

be done in several ways as recently reviewed.[24] In general, it is desirable to generate the scaffolds 

rapidly, consistently, and interpretable, in particular for an organic or medicinal chemist working on 

chemical synthesis. As detailed in the Methods section, in this work we implemented two methodologies 

generating the Bemis-Murcko scaffolds and analog series based on core scaffolds (Figure 1). 

Figure S2 in the Supporting Information shows the most frequent Bemis-Murcko scaffolds in the 11 

epigenetic-focused libraries. In addition to the ubiquitous benzene ring (present in 1.04% in all 

databases), which is the most common Bemis-Murcko scaffold in several screening compound libraries, 

N-phenyl-benzenesulfonamide, 1H-indol, and N-phenylbenzamide, and 1H-benzimidazol  were the most 

frequent scaffolds in the 11 epigenetic focused libraries (percentages of 0.45 %, 0.22 %, 0.20 %, and 

0.15 %, respectively).  

Concerning the core scaffolds and analog series, the most frequent are shown in Figure 2. The 

obtained cores overlap very little with the 201 substructures that have been annotated as epigenetic 

bioactive rings in a recent publication: of the 4016 cores matching at least three molecules from any 

epigenetic data set, only 19 contained at least one of the epigenetic rings. This highlights the structural 

novelty of the studied libraries[30] and it’s potential to expand the epigenetic relevant chemical space. 

< Figure 2 here > 

https://sciwheel.com/work/citation?ids=11628052&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11691770&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11628052&pre=&suf=&sa=0
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After the compound screening, the most frequent scaffolds, core structures, and analog series are 

potentially privileged or enriched towards epigenetic targets. 

 

Structural diversity 

Based on scaffolds 

Figure 3A shows the percentage of unique Bemis-Murcko scaffolds in each of the 11 libraries. The 

analysis revealed that TocrisScreen is the set with the largest percentage of unique scaffolds (85.6 %), 

indicating a large scaffold diversity considering the definition of the scaffold of Bemis-Murcko. The library 

with the second largest percentage of unique scaffolds was Targetmol (82.3 %). Figure 3B shows the 

percentage of scaffolds with a frequency of at least two per library. Clearly, ChemDiv was the data set 

with the largest proportion of non-unique scaffolds suggesting the lowest scaffold diversity. 

< Figure 3 here > 

To further quantify scaffold diversity based on the Bemis-Murcko scaffolds, we used cyclic system 

recovery curves. As documented elsewhere,[31] based on the scaffolds count, the fraction of cyclic 

systems is plotted against the cumulative fraction of the database. A diagonal represents maximum 

scaffold diversity, i.e., each compound will have its chemical scaffold. A vertical line represents the 

minimum scaffold diversity (all compounds have the same scaffold). Figure 3C shows the cyclic system 

recovery curves for all data sets. The curves can be further characterized by the area under the curve, 

AUC (maximum diversity: AUC = 0.5; minimum diversity: AUC = 1.0). Table S1 in the Supporting 

Information summarizes the AUC values for the 11 data sets. The results show that ChemDiv is the least 

diverse, followed (AUC = 0.87) by OTAVA DNMT3b. In contrast, TocrisScreen and Targetmol are the 

most diverse (AUC <= 0.56).  

The analog series analysis suggested that ChemDiv, Asinex, Life Chemicals, and OTAVA DNMT3b 

are the least diverse data sets, as they have a larger average of compounds per series. All the other 

libraries seem to be more diverse, and it is hard to point out at the least diverse from this perspective. 

<Table 2 here > 

 

 

https://sciwheel.com/work/citation?ids=4554927&pre=&suf=&sa=0
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Based on fingerprints 

Results of the fingerprint analysis are shown in Figure 4. The figure shows the similarity of the databases 

computed with RDKit fingerprints and the extended Tanimoto similarity coefficient, at different 

coincidence thresholds. The analysis revealed that the least diverse set is ChemDiv followed by Asinex. 

Notably, ChemDiv is the compound data set with the largest number of compounds (27,543) meaning 

that the larger data set is not necessarily the one with the largest structural diversity, as clearly shown 

here. Similar results have been obtained for other data sets.[31] These results further emphasize the need 

to quantify the structural diversity. Similar conclusions regarding the relative diversity of the compound 

libraries were obtained with other extended similarity indices (in addition to Tanimoto) and MACCS keys, 

as shown in  Figure S3 in the Supporting Information.  

< Figure 4 here > 

 

Chemical space: visual representation 

Constellation plots 

We mapped all compounds into the same chemical space, regardless of the database they came from. 

We were only interested in analog series having no less than three compounds, even if all of them 

belonged to different data sets. Afterwards, we highlighted the cores (points) represented in each 

database. Plots of representative epigenetic libraries are shown in Figure 5, while other libraries are 

depicted in Figure S4 of the Supporting Information.  

< Figure 5 here > 

 

Extended Chemical Space Networks 

The eCSNs have been used to visualize the chemical space of 19 large data sets of organic compounds, 

including natural products, drugs approved for clinical use and other compound libraries, with more than 

18 million molecules.[9] As discussed in that paper, this novel representation of the chemical space based 

on molecular fingerprints is an efficient method to compare the structural relationship among compound 

libraries. Figure 6 shows a visual representation of the chemical space of the 11 compound libraries 

using RDKit fingerprints. The network shows that ChemDiv and Asinex (which happen to be the least 

https://sciwheel.com/work/citation?ids=4554927&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11726189&pre=&suf=&sa=0
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diverse libraries based on RDKit fingerprints) are at the center of the representation with several 

connections (similarities) with other databases. In particular, ChemDiv (identified with the number 2 in 

this network: ID, 2) has the most number of connections, and these connections are closer (visualized by 

darker linkers between the nodes) with other libraries, such as ApeXBio (ID, 0), SelleckChem (ID, 8), and 

Targetmol (ID, 9). 

< Figure 6 here > 

 

Most representative compound based on fingerprints 

Figure 7 shows the three most representative chemical structures per library as calculated with RDKit 

fingerprints. The twenty more representatives (medoids) per library (including the three in Figure 7) are 

listed in Table S2 in the Supporting Information. The medoids are calculated using the algorithm 

described recently.[10] In short, we calculate the complementary similarity of every molecule in a library, 

that is, the similarity of all but the selected molecule (which we can do in O(N) for the whole set). Then, 

we can rank all the molecules from more (e.g., medoid-like) to less (e.g., outlier-like) representative by 

simply ordering them according to the increasing value of their complementary similarity. The reasoning 

behind this is very simple: by removing a molecule that is closely related to all of the rest we leave 

behind a more ‘disorganized’ set, which will have a lower complementary similarity. In this context, the 

medoids could be interpreted as chemical structural markers or “signatures” of the compounds libraries 

and contribute to profile the chemical contents of each data set.  

<Figure 7 here > 

Synthetic accessibility 

We also profiled the chemical libraries using a validated in silico approach to estimate the synthetic 

accessibility, as described in the Methods section.[29] Results presented in Figure S5 in the Supporting 

Information (box plots and summary statistics) indicated that all compound libraries have a comparable 

profile and, in general, it is expected that the vast majority of the libraries are synthetically accessible. Of 

note, all focused epigenetic libraries analyzed in this work are commercially available from the chemical 

providers listed in Table 1. 

 

https://sciwheel.com/work/citation?ids=11691781&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6275488&pre=&suf=&sa=0
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Conclusions 

Herein we report the first comprehensive chemoinformatic analysis of 11 compound libraries focused on 

epigenetic targets commercially available for screening. Different vendors have previously selected the 

molecular libraries, but their profile of properties, scaffold contents, and structural diversity was unknown. 

Profiling of the six properties of pharmaceutical relevance: MW. LogP, HBD, HBA, TSPA, and RB, 

revealed that all 11 compound libraries are suitable to be screened in drug discovery campaigns to 

identify molecules that eventually could be orally administered. It was found that, other than benzene,  N-

phenyl-benzenesulfonamide, 1H-indol, and N-phenylbenzamide, and 1H-benzimidazol were the most 

prevalent. The results of the fingerprint-based diversity indicated that SelleckChem is among the most 

diverse libraries. In contrast, ChemDiv and Asinex are the least diverse, relative to all other data sets. 

Regarding the Bemis-Murcko scaffolds and analog series, ChemDiv was also the least diverse, while 

TocrisScreen, Targetmol, and SelleckChem were the most diverse. Taken together, based on the results 

of structural diversity, the most diverse library overall (TocrisScreen) should be prioritized for 

experimental medium-throughput screening. Interestingly, out of the 11 databases analyzed, 

TocrisScreen was the smallest data set (100 compounds), yet it is the most diverse. In sharp contrast, 

ChemDiv was the largest data set (27,543 compounds) but is the least structurally diverse. The scaffold 

content and analog series,  analyzed in the context of rings present in currently known compounds with 

activity against epigenetic targets revealed that the focused libraries have a large potential to expand the 

epigenetic relevant chemical space. Results of the calculated synthetic accessibility showed that all 

compound data sets are, in general, feasible to make. For practical applications, the libraries could be 

acquired first by the chemical vendors but, if needed, could be synthesized in-house. We anticipate that 

the results of the chemoinformatic characterization discussed in this work will assist research teams in 

the decision-making process and prioritize what libraries move forward to experimental screening in, for 

example, a high-throughput screening setting. 
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TABLES 

Table 1. Epigenetic-focused screening libraries and reference data sets.  

ID Library Size Size  
(curated)

a 
General contents Web site 

accessed June 2021 

0 ApeXBio 
Discovery Probe 
Epigenetics 
Compound Library 

328 310 Small molecules with activity against 
different epigenetic targets.

b
 

https://www.apexbt.com/discov
eryprobetm-epigenetics-
compound-library.html  

1 Asinex 
Epigenetic Library 

5,391 5,313 Library focused on bromodomains and 
histone methyltransferase inhibitors. 
Compounds designed by a combination of 
structure and ligand-based methods. 

http://www.asinex.com/Epigen
etics/  

2 ChemDiv 
Epigenetic Set 

30,431 27,543 Library designed for modulation for all three 
classes of epi-targets. Molecules were 
designed based on a combination of 
structure-based (based on X-ray and 
nuclear magnetic resonance) and ligand-
based approaches. 

https://www.chemdiv.com/epig
enetics-library/ 

3 Enamine 
Epigenetics Library 

9,352 9,352 Library designed with a combination of 
ligand and structure-based methods. 
Compound optimization was made via 
pharmacophore profiling. 

https://enamine.net/hit-
finding/focused-libraries/view-
all/epigenetics-libraries 

4 Life Chemicals 
Epigenetics 
Screening Library 

7,019 7,011 The library is focused on methylation-related 
epi-enzymes. Designed with similarity 
methods. 

https://lifechemicals.com/scree
ning-libraries/targeted-and-
focused-screening-
libraries/epigenetic-screening-
libraries 

5 MedChemExpress 
Epigenetics Library 

700 650 Library designed for several epi-targets. The 
targets are not disclosed.

b
 

https://www.medchemexpress.
com/virtual-
screening/epigenetics-
library.html 

6 OTAVA DNMT1 
DNMTs Targeted 
Libraries 

466 399 Drug-like compounds selected from virtual 
screening using docking and 
pharmacophore modeling. 

https://www.otavachemicals.co
m/targets/dnmt1-and-dnmt3b-
targeted-libraries  

7 OTAVA DNMT3b 
DNMTs Targeted 
Libraries 

1,261 1,230 Drug-like compounds selected from virtual 
screening using docking and 
pharmacophore modeling. 

https://www.otavachemicals.co
m/targets/dnmt1-and-dnmt3b-
targeted-libraries  

8 SelleckChem 
Epigenetics 
Compound Library 

699 677 The library contains inhibitors for several 
epi-targets. Focused on experimental tests 
and for HTS validation.

b
 

https://www.selleckchem.com/
screening/epigenetics-
compound-library.html  

9 Targetmol 
Epigenetics 
Compound Library 

932 859 A set of epi-regulators whose primary focus 
is lead optimization and HTS.

b
 

https://www.targetmol.com/co
mpound-library/Epigenetics-
Inhibitor-Library  

10 TocrisScreen 
Epigenetics 

101 99 Collection of small molecules covering more 
than 40 epigenetic targets (including 
readers, writers, erasers, and transcriptional 
modulators).

b 

https://www.tocris.com/product
s/tocriscreen-epigenetics-
library_6801  

a
 Data curation was done with a standard protocol described in 

16
 to conduct a comparative chemoinformatic profile of the compound libraries. 

b
 

Design approach not disclosed.  

https://www.apexbt.com/discoveryprobetm-epigenetics-compound-library.html
https://www.apexbt.com/discoveryprobetm-epigenetics-compound-library.html
https://www.apexbt.com/discoveryprobetm-epigenetics-compound-library.html
http://www.asinex.com/Epigenetics/
http://www.asinex.com/Epigenetics/
https://www.chemdiv.com/epigenetics-library/
https://www.chemdiv.com/epigenetics-library/
https://enamine.net/hit-finding/focused-libraries/view-all/epigenetics-libraries
https://enamine.net/hit-finding/focused-libraries/view-all/epigenetics-libraries
https://enamine.net/hit-finding/focused-libraries/view-all/epigenetics-libraries
https://lifechemicals.com/screening-libraries/targeted-and-focused-screening-libraries/epigenetic-screening-libraries
https://lifechemicals.com/screening-libraries/targeted-and-focused-screening-libraries/epigenetic-screening-libraries
https://lifechemicals.com/screening-libraries/targeted-and-focused-screening-libraries/epigenetic-screening-libraries
https://lifechemicals.com/screening-libraries/targeted-and-focused-screening-libraries/epigenetic-screening-libraries
https://lifechemicals.com/screening-libraries/targeted-and-focused-screening-libraries/epigenetic-screening-libraries
https://www.medchemexpress.com/virtual-screening/epigenetics-library.html
https://www.medchemexpress.com/virtual-screening/epigenetics-library.html
https://www.medchemexpress.com/virtual-screening/epigenetics-library.html
https://www.medchemexpress.com/virtual-screening/epigenetics-library.html
https://www.otavachemicals.com/targets/dnmt1-and-dnmt3b-targeted-libraries
https://www.otavachemicals.com/targets/dnmt1-and-dnmt3b-targeted-libraries
https://www.otavachemicals.com/targets/dnmt1-and-dnmt3b-targeted-libraries
https://www.otavachemicals.com/targets/dnmt1-and-dnmt3b-targeted-libraries
https://www.otavachemicals.com/targets/dnmt1-and-dnmt3b-targeted-libraries
https://www.otavachemicals.com/targets/dnmt1-and-dnmt3b-targeted-libraries
https://www.selleckchem.com/screening/epigenetics-compound-library.html
https://www.selleckchem.com/screening/epigenetics-compound-library.html
https://www.selleckchem.com/screening/epigenetics-compound-library.html
https://www.targetmol.com/compound-library/Epigenetics-Inhibitor-Library
https://www.targetmol.com/compound-library/Epigenetics-Inhibitor-Library
https://www.targetmol.com/compound-library/Epigenetics-Inhibitor-Library
https://www.tocris.com/products/tocriscreen-epigenetics-library_6801
https://www.tocris.com/products/tocriscreen-epigenetics-library_6801
https://www.tocris.com/products/tocriscreen-epigenetics-library_6801
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Table 2. Measures of scaffold diversity based on analysis of cores and analog series. 

Library Number of analogue 

series (AS) 

Number of 

cores 

Fraction of molecules in 

constellations plot 

Average size of AS  

ApeXBio 298 785 2.9% (9/310) 1.04 

Asinex 3423 8795 33.4% (1775/5313) 1.55 

ChemDiv 10,681 43,292 61.7% (17,017/27,543) 2.58 

Enamine 8737 20,572 4.4% (409/9352) 1.07 

Life Chemicals 5159 13,500 24.6% (1726/7011) 1.36 

MedChemExpress 618 1636 2.8% (18/650) 1.05 

OTAVA DNMT1 372 548 9.8% (39/399) 1.07 

OTAVA DNMT3b 961 2855 24.5% (301/1230) 1.28 

SelleckChem 649 1635 4.4% (30/677) 1.04 

Targetmol 829 2045 3.6% (31/859) 1.04 

TocrisScreen 95 242 7% (7/99) 1.04 
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FIGURES 

 

Figure 1. General approaches to compute molecular scaffolds. Note that the Bemis-Murcko approach 

maps every molecule to only one scaffold. Small changes in the scaffold results in a failure to identify 

analogs. On the other hand, the core approach is in many instances (but not always) able to identify such 

analogs. The molecules shown are only a small subset of an analog series consisting of over 400 

compounds (AS7684). 
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Figure 2. Chemical structures of the five most frequent core scaffolds of each library. At every instance, 

the substitution sites present in the complete database (all the libraries) are indicated, as well as the 

number of molecules represented in the specific library between brackets. The analog series ID (ASID) is 

indicated in square brackets. 
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Figure 3. Quantification of scaffold diversity based on Bemis-Murcko. A) Percentage of unique scaffolds. 

B) Percentage of scaffolds with a frequency of at least two. C) Cyclic system recovery curves. 
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Figure 4. Fingerprint-based similarity of the eleven data sets calculated with RDKit fingerprints and the 

extended Jaccard-Tanimoto coefficient at different coincidence thresholds. 
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Figure 5. Constellation Plots for selected data sets. Every dot represents a core structure, and analog 

series consisting of more than a single core are connected by lines. The mapping in the chemical space 

is the same for all libraries. Above, a few reference cores (stars) are shown to illustrate the fact that 

constellations represent the chemical space of analog series. Below, the distribution of selected data 

sets is shown by coloring cores represented in the corresponding library. For inspecting the distribution 

of every data set see the Supplementary Information, Figure S4.  
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Figure 6. Visual representation of the chemical space of the 11 libraries using extended Chemical Space 

Networks using RDKit fingerprints at coincidence threshold of 90. Code: 0: ApeXBio; 1, Asinex; 2, 

ChemDiv; 3, Enamine; 4, LifeChemicals; 5, MedChemExpress; 6, OTAVA DNMT1; 7, OTAVA DNMT3b; 

8, SelleckChem; 9, Targetmol; 10, TocrisScreen. 
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Figure 7. Three most representative compounds (medoid) as calculated with RDKit fingerprints. 

 

 

 


