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Hungary
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Abstract

The quantum harmonic model and the two-phase thermodynamics method (2PT)

are widely used to obtain quantum corrected properties such as isobaric heat capacities

or molar entropies. 2PT heat capacities were calculated inconsistently in the literature.

For water the classical heat capacity was also considered, but for organic liquids it was

omitted. We reanalyzed the performance of different quantum corrections on the heat

capacities of common organic solvents against experimental data. We have pointed out

serious flaws in previous 2PT studies. The vibrational density of states was calculated

incorrectly causing 39 % relative error in diffusion coefficients and 45 % error in the

2PT heat capacities. The wrong conversion of isobaric isochoric heat capacity also

caused about 40 % error but in the other direction. We have introduced the concept

of anharmonic correction (AC) which is simply the deviation of the classical heat

capacity from that of the harmonic oscillator model. This anharmonic contribution is

around +30-40 J/mol/K for water depending on the water model and -8-10 J/mol/K for

hydrocarbons and halocarbons. AC is unrealistically large, +40 J/K/mol for alcohols
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and amines indicating some deficiency of the OPLS force field. The accuracy of the

computations was also assessed with the determination of the self-diffusion coefficients.

1 Introduction

Accounting for nuclear quantum effects is essential to obtain meaningful thermodynamic

properties that are comparable to experimental observations.1 The most typical example is

that zero point energies are indispensable in the determination of reaction free energies. The

quantum harmonic oscillator model works quite well for small molecules and solid states,

but the anharmonicity becomes significant in macromolecules, interfaces and liquids and the

potential energy surfaces must be mapped using molecular dynamics or Monte Carlo simu-

lation. Berens proposed to add quantum correction to the classically calculated properties

using the harmonic oscillator model.2 Goddard improved this by the separation of different

motions like translation rotations and vibrations and using different partition functions for

each of them.3,4 This was abbreviated as two-phase thermodynamic (2PT) model referring

to the gas phase and solid phase motions in contrast to the one-phase thermodynamic (1PT)

method where only vibrations were considered. An anharmonic correction was also included

in Berens’ original idea, and thus we refer to that method as one-phase-thermodynamics

with anharmonic correction (1PT+AC).

2PT and 1PT+AC methods were successfully applied for the calculation of thermody-

namic properties of several systems such as Lennard-Jones fluids,3,5 water,2,4,6–15 aqueous

solutions,16,17 molten salts,18 organic liquids,19–21 carbon dioxide,22 urea,23 ionic liquids,24–27

carbohydrates,28 cellulose,29 mixtures30 and interfaces.31–36 Lately, 2PT was used for the def-

inition of the Frenkel line.37–40 Both 1PT/2PT methods are still in continuous development

in respect of accuracy and applicability.41–49

The 2PT method is the most excellent in the calculation of absolute entropy even from

short trajectories. Although the heat capacity is strictly determined from the temperature
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dependence of entropy according to the laws of thermodynamics, the calculation of the 2PT

heat capacity is not as consistent in the literature as the computation of the 2PT entropy.

The 2PT abbreviation refers to two conceptually different calculation procedures of the heat

capacity in different articles. The classical heat capacities were also taken into account in

the calculation of the 2PT heat capacity of water,9,10,17,33 but in the case of organic solvents

classical heat capacities were discarded.19–21 According to refs 19–21 we refer to 1PT and 2PT

heat capacities that do not contain anharmonic corrections calculated from classical values.

In previous studies there was no systematic comparison of the effect of this anharmonic

correction. In the present study we fill this gap and analyse the 2PT and 1PT+AC methods

in more details.

Here we focus on heat capacities to evaluate different types of quantum corrections be-

cause it contains large nuclear quantum effect and there are accurate experimental data that

can be used for the benchmark of force fields.6,17,19–21,25–27,29,50–58 In contrast to enthalpy or

Gibbs energy, heat capacity is an absolute quantity meaning that there is no need to set the

zero point. Additionally, the isobaric heat capacity is a state function, so if we know the

cp as a function of T and p, the other state functions such as the enthalpy and entropy can

be calculated as well. Previously, quantum corrected thermodynamic properties of organic

solvents were investigated in two systematic studies by Pascal, and Caleman.19,20 For the

same solvents they found similar results: the 2PT heat capacities were in good agreements

with the experimental data. Both studies showed that OPLS force field gave better results

than other general force fields such as GAFF or CHARMM. We reanalyzed 113 organic sol-

vents from ref 20 to test further the 1PT+AC and 2PT methods. 21 solvents were omitted

from the analysis of the heat capacities, because their calculated self-diffusion coefficients

were under 10−10 m2/s indicating that these systems do not behave like a real fluid but an

amorphous solid.
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2 Theory

For the determination of the quantum corrected thermodynamic properties the velocity

autocorrelation functions (VACF) are computed from molecular dynamics simulations that

can be defined as follows:

VACF(t) =

∞∫
0

mv(t+ τ) · v(τ)dτ

∞∫
0

mv(τ) · v(τ)dτ

(1)

where m is the atomic mass and v is the velocity as a function of time (t). With this definition

the autocorrelation function is always 1 at zero time i.e. VACF(0) = 1. The vibrational

density of states (VDOS) is the Fourier transform of the autocorrelation function (VACF)

VDOS(ν) = Ft {VACF(t)} (ν) = 2

+∞∫
0

VACF(t) · cos(2πνt)dt (2)

where ν is the frequency.

The Fourier transform of VDOS equals to the VACF:

VACF(t) = Fν {VDOS(ν)} (t) = 2

+∞∫
0

VDOS(ν) · cos(2πνt)dν (3)

If we set t = 0 in eq 3 then we obtain the norm of VDOS:

2

∞∫
0

VDOS(ν)dν =

∞∫
−∞

VDOS(ν)dν = Fν {VDOS(ν)} (0) = VACF(0) = 1 (4)

Originally Berens proposed that the quantum corrected density of states can be deter-

mined by the multiplication of VDOS with an appropriate weight function w:2

VDOSq(ν) = VDOS(ν) · w(ν) (5)
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In the 1PT method there is no separation of motions, all are considered as vibrations.

The quantum weight function for the heat capacity is59

wcVvib(ν) = exp (βhν)

(
βhν

1− exp (βhν)

)2

, (6)

where β = (kBT )−1, kB is the Boltzmann constant, T is the temperature, h is the Planck

constant. Thus the isochoric heat capacity can be calculated as

c1PT
V = 2fR

∞∫
0

VDOS(ν) · wcVvib(ν)dν , (7)

where R is the universal gas constant, and f = 3N is the number of degrees of freedom of

an N -atomic molecule.

Gaseous motions are separated from vibrations in the 2PT method. The total VDOS is

decomposed into two terms, solid and gaseous components:

VDOS(ν) = VDOSsol(ν) + VDOSgas(ν) (8)

The gaseous component is determined by VDOS(0) and the fluidicity factor fm:

VDOSgas(ν) =
VDOS(0)

1 +
(
πNVDOS(0)

2fmNmol
ν
)2 (9)

where Nmol is the number of molecules. With the definition of eqs 1 and 2, we obtain molar

quantities and Nmol = 1. In an improved version of 2PT the gaseous and solid components of

the VDOS are determined for both translation and rotation.4 This decomposition, however,

is not really needed because the gaseous component of the rotation is zero as in the case of

vibration. See the derivation in the Supporting Information.

Different weight functions are used for the different motions in the calculation of 2PT

heat capacity:19,20
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c2PT
V = 2fR

∞∫
0

[VDOSsol(ν)wcVvib(ν)+ VDOSgasw
cV
gas(ν)

]
dν (10)

The weight function of the gaseous component is 1/2 for the heat capacity.

In the 1PT+AC method a quantum correction (c∆
V ) is added to the classical isochoric

heat capacity (ccl
V )2 as Berens et al. proposed originally:2

c1PT+AC
V = ccl

V + c∆
V (11)

The quantum correction can be determined from the quantum harmonic weight function. c∆
V

given by

c∆
V = 2fR

∞∫
0

VDOS(ν) · (wcV (ν)− 1) dν (12)

If the integral terms are partitioned differently then the 1PT+AC notation becomes apparent:

c1PT+AC
V = 2fR

∞∫
0

VDOS(ν) · wcV (ν)dν + ccl
V

−2fR
∞∫
0

VDOS(ν)dν = c1PT
V + cAC

V

(13)

where the second term is the anharmonic correction:

cAC
V = ccl

V − 2fR

∞∫
0

VDOS(ν)dν = ccl
V − fR (14)

The 1PT+AC heat capacity is actually a sum of three terms: the heat capacity of f

classical harmonic oscillators plus an anharmonic- and a quantum correction:

c1PT+AC
V = ccl

V + c∆
V = c1PT

V + cAC = fR + cAC + c∆
V (15)

Jorgensen proposed to correct the classical heat capacity by the estimation of the in-

tramolecular component using the ideal gas value taken from experiments or ab initio cal-
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culations.50,51 If a given force field reproduces the experimental heat capacity of the gas

accurately then Jorgensen’s approach should give a similar value to the 1PT+AC method.

Some deviation may occur if the frequencies of the intramolecular vibrations differ in the

liquid and gas phases.

Recently we have shown that Berens’ original idea about the quantum correction on

thermodynamic properties can be extended to structural properties if the quantum correction

is applied in time domain instead of frequency domain.60,61 Our technique, the generalized

smoothed trajectory analysis (GSTA) gives identical results for thermodynamics properties

as 1PT+AC. For instance the heat capacity can be obtained from the VACF directly:

c1PT+AC
V = 2fR

+∞∫
0

γcV (τ) · VACF(τ)dτ + cAC
V (16)

where γcV is the Fourier transform of the weight function in eq 6:

γcV (τ) =
2π2

βh
csch2

(
2π2

βh
τ

)(
2π2

βh
τcoth

(
2π2

βh
τ

)
− 1

)
(17)

where csch is the hyperbolic cosecant function. This formalism allows a much more effective

calculation, because there is no need to calculate the VDOS.

The isobaric heat capacity can be determined from the isochoric heat capacity by em-

ploying the relation

cp = cV +
TMα2

p

ρκT
, (18)

where αp denotes the thermal expansion coefficient, M is the relative molar mass, ρ is the

density and κT is the isothermal compressibility. The isobaric 1PT+AC heat capacity is

computed as a sum of the classical isobaric heat capacity and the quantum correction from

eq 15 and the latter can be determined from VACF or VDOS according to eqs 7 and 16:

c1PT+AC
p = ccl

p + c∆
V (19)
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2PT can also be combined with an anharmonic correction that satisfies the correspon-

dence principle:

c2PT+AC
V = c2PT

V + ccl
V − 3R(N −Nmolfm/2) (20)

This definition of 2PT+AC heat capacity may correspond to previous 2PT calculations in

the literature where the classical heat capacities were also taken into account.9,10,17,22,33

3 Methods

We performed 10.6 ns long NpT simulations to determine the isobaric heat capacities and

self-diffusion coefficients by using the GROMACS simulation software.62 The settings and

inputs were taken from ref 20. (The input files can be found in the Supporting Information).

The cubic box always contained 1000 molecules. 1.1 nm cutoff was employed for the inter-

molecular interactions. The particle mesh Ewald algorithm was used for the computation

of the Coulomb interactions. The time constants of the Nose-Hoover thermostat and the

Parrinello-Rahman barostat were 1.0 and 5.0 ps, respectively. To determine the classical

heat capacity including all vibrations, no constraints were applied on bonds, they remained

flexible, and thus 0.2 fs time step was used. 2PT heat capacities were calculated with the

”dos” analysis tool of GROMACS. The classical heat capacity was determined from the

fluctuation of enthalpy

ccl
p =

(
〈∂H2〉
RT 2

)
p

(21)

4 Results and Discussion

4.1 Heat Capacity

According to the correspondence principle the quantum calculations should agree with the

classical results as the h Planck constant formally approaches zero. The 1PT model gives
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fR for the heat capacity in the classical limit. Applying the classical weight functions of 1

and 1/2 in eq 10 it is easy to see, that the 2PT model can give values between fR/2 and fR

for the isochoric heat capacities in the classical limit. The 1PT+AC and 2PT+AC models

always satisfy the correspondence principle in contrast with the 1PT or 2PT methods:

lim
h→0

c1PT+AC
p = lim

h→0
c2PT+AC
p = ccl

p (22)

This also implies that the technique is able to describe the effects of anharmonic motions.

The 1PT and 2PT isochoric heat capacities for a rigid water model with 3 translational and

3 rotational degrees of freedom cannot be higher than 6R = 49.9 J/mol/K. The fact that in

ref 9, 10, 17, 33 the calculated heat capacities are in the range of 57 and 81 J/K/mol which

is significantly larger than the theoretical limit of 49.9 J/K/mol implies that anharmonic

contribution was also considered. Since the experimental isochoric heat capacity is 74.5

J/K/mol, the anharmonic contribution is at least 24.6 J/K/mol.63 From previous simulations

the calculated anharmonic correction is around 30-40 J/K/mol depending on the water

model.60

In our previous study we showed that the 1PT+AC heat capacity can be significantly

overestimated if the left Riemann sum is used instead of the trapezoidal rule in the compu-

tation of VDOS in eq 2.60 To check whether this numerical error can occur in the calculation

of the 2PT heat capacities, we tested thoroughly the ”dos” analysis tool of the GROMACS

that was used in ref 20. The default Fast Fourier Transformation routine in GROMACS

applies the left Riemann rule but we also implemented a simple trapezoidal integral rule.

We analyzed the effect of the different algorithms on methanol. Decreasing the time interval

of the integration, the trapezoidal integral converged rapidly at 5 fs, meanwhile the default

left Riemann sum gave the correct 2PT heat capacity, 51.6 J/K/mol only in the ∆t→ 0 limit

(see Figure 1). At 4 fs time interval, which is generally used in 2PT calculations, the heat

capacity is 73.4 J/K/mol which means 40 % overestimation of the correct value. This agrees
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well with the result of 75.8 J/K/mol from ref 20. There is a breaking point for the 2PT heat

capacities at 9 fs. This is due to the fact that the period of OH vibration is exactly 9.0 fs,

and this coincidence causes large uncertainty in the calculation of VDOS at zero frequency.

The convergence of the 1PT method is also shown with the trapezoidal formula, and at 4 fs

the 1PT heat capacity is also converged with 60.7 J/K/mol.

Figure 1: Convergence of the isochoric heat capacity of methanol as a function of
time interval

When we recalculated the heat capacities of 9 common solvents from ref 19 and 20 with

both integral formulas, we reproduced the literature data but we obtained 45 % lower heat

capacities with the correct integral formula (see the Supporting Information). In ref 19 and

20 the 2PT heat capacities are similar to each other for the same solvents with OPLS force

field, which implies that in both works the same (incorrect) integration routine was used.

Surprisingly, in these previous works excellent correlations were found between the 2PT
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and experimental isobaric heat capacities. How is it possible that such a good correlation

has been achieved, if the values were overestimated by 45 %? It seems that there was an

(un)fortunate error cancellation, where the opposite error is connected to the conversion

between the isobaric and isochoric heat capacities in eq 18.

Figure 2: Calculated vs. experimental isobaric heat capacities

In ref 20 the cp−cV difference is always smaller than 0.1 J/K/mol, and in ref 19 this

correction was not larger than 1.2 J/K/mol. We recalculated the cp−cV differences for

the organic liquids from ref 20 and we obtained orders of magnitude higher values. In our

computations the average difference is 38.4 J/K/mol, and the heat capacity ratio is 1.31. For

a few molecules there are direct experimental data for the isochoric heat capacities (see the

Supporting Information). For instance the cp − cV differences of methanol and ethanol are

14 and 11 J/K/mol, respectively.64,65 This supports that we calculated correctly the cp− cV

values.
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We also tried to reproduce the heat capacity of methanol from ref 19 using the same sim-

ulation software, LAMMPS and the same program code that determined the heat capacities.

Although we obtained the same total VDOS with LAMMPS as we did with GROMACS, the

solid part was quite different (see the Supporting Information). It turned out that the solid

part of the VDOS function is calculated incorrectly in GROMACS, because the number of

atoms was used instead of the number of molecules in eq 8. In Pascal’s current 2PT code

the FFT algorithms give the numerically exact results and the classical heat capacity is also

taken into account in the final heat capacity.

We also determined the 2PT+AC heat capacities according to eq 20. The 2PT+AC heat

capacities are always slightly higher than the 1PT+AC heat capacities, and the maximum

difference is 0.33 J/K/mol which is definitely smaller than the uncertainty of the calculations.

Since the 2PT+AC heat capacities are almost identical with the 1PT+AC heat capacities

(see the Supporting Information), we discuss only the 1PT+AC heat capacities in the rest

of the paper.

The correctly calculated isobaric heat capacities are shown in Figure 2 as a function of

experimental values. The overall correlations are good for the predicted and experimental

heat capacities, the R2 is about 0.9 for all three methods. From the fitted lines it can

be seen that the slope of the 1PT and 2PT are almost perfect 1.01 and 1.02 respectively,

but for 1PT+AC the slope is 1.24. Both 1PT and 2PT overestimates the isobaric heat

capacities. The 2PT model yields systematically lower heat capacities than 1PT with around

2.1 J/K/mol, which can be easily explained by the fact the 2PT considers gaseous motions

as well that have smaller heat capacity than vibrations (R/2 vs. R per degree of freedom).

The methods perform differently for different types of compounds, and even their relative

goodness is varying.

The mean absolute deviations for different types of molecules are shown in Figure 3.

For all the compounds the error is 20 J/K/mol for the 1PT+AC method. The error is

smaller with 1PT and even smaller with the 2PT method. For hydrocarbons, organosulfures,
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halocarbons and heteroaromatics the 1PT performs the worst, and the 1PT+AC and 2PT

performs similarly better. For amines, ethers, alcohols and ketones the 1PT+AC performs

the worst, and the 1PT and 2PT methods perform much better. The large errors of the

1PT+AC heat capacities may originate from the deficiency of the force field and/or from

the inaccuracy of the 1PT+AC method. To separate these two errors, we investigated the

classical limits which characterizes the failure of the method.

Figure 3: Mean absolute errors (MAE) of the calculated isobaric heat capacities
compared to experimental data.

As mentioned above the 1PT and 2PT models do not satisfy the correspondence principle,

they cannot reproduce the classical heat capacities of anharmonic cases. To quantify these

deviations the mean error of the reproduction of the classical heat capacities is shown for

the 1PT and 2PT methods in Figure 4. 1PT+AC and 2PT+AC are not shown because

their errors are zero according to eq 22. This kind of error of 1PT equals the negative of
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the anharmonic correction 1PT+AC model. 2PT always underestimates the classical heat

capacity with 8.2 J/mol/K in average which is comparable to the mean absolute error relative

to the experiments, 14.2 J/mol/K. The 1PT method overestimates the classical heat capacity

for the heteroaromatics, halocarbons, organosulfures and hydrocarbons and underestimates

for the other compound groups. This classification correlates perfectly with the relative

performance of 1PT and 1PT+AC in Figure 3. If the 1PT heat capacity agrees better

with the experiment than the 1PT+AC, then it means that the anharmonicity is described

incorrectly by the force field. The Lennard-Jones potential is known to be too repulsive

and this may cause inaccuracies when stronger attractive interactions are also present. The

uncertainty of the anharmonicity is too large with the OPLS force field for the aliphatic N

and O compounds and this is why the 2PT method estimates the heat capacity of organic

liquids more accurately. These results suggest that the effect of anharmonicity is significantly

smaller than the quantum effect on the heat capacity of the organic liquids. In the 1PT+AC

method this means that the magnitude of the anharmonic correction is smaller than that of

the quantum correction in eq 15.
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Figure 4: Mean unsigned errors (MUE) of the isobaric heat capacities compared
to the classical limit.

Caleman and Pascal concluded from their studies that the reproduction of the experimen-

tal heat capacities could be improved by better description of the force constants of bonds

and angles.19,20 This is true for the quantum correction, but the anharmonic correction can

be adjusted with the non-bonding parameters. Our results indicate that the thermodynamic

properties are more sensitive to the intermolecular interactions than to the intramolecular

interactions. This is in line with the general experiences that in the simulation of the organic

liquids the bond lengths and angles can be constrained at room temperature.

4.2 Self-Diffusion

To estimate the consistency of the calculations of VACF and VDOS functions we computed

the self-diffusion coefficients with two different methods.66 First, we determined Ds from the
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VACF:

Ds =
〈v2〉

3
lim
t→∞

t∫
0

VACF(τ)dτ (23)

The self-diffusion coefficient can also be calculated from the mean square displacement

of the atoms using the Einstein equation:

Ds = lim
t→∞

∂〈(x(t)− x(0))2〉
6∂t

(24)

We computed the self-diffusion coefficients according to these equations with a time

lag of 10 ps. The two complementary approaches gave almost identical results (MAE =

0.05 · 10−9m2s−1, R2 = 0.998) which validates how we calculated the VACF and VDOS

functions (see the Supplementary Information). If we use the less accurate left Riemann sum

in eq 23 with the time interval of 4 fs then the self-diffusion coefficients are overestimated by

39 %. The self-diffusion coefficients were also determined from the 10 ns simulations using eq

24. Comparing to the available experimental data the mean absolute error is 0.62·10−9m2s−1

for 31 liquids, which means significant correlation (R2 = 0.79) (see Figure 5). In most cases

the differences between the 10 ps and 10 ns values are larger than the uncertainty of the

self-diffusion coefficients. Previous studies already showed that 10 ps time lag is not long

enough for converged self-diffusion coefficients (see in ref 67 and further references therein.)

The application of 10 ns time lag instead of 10 ps, however, do not improve the accuracy

of the self-diffusion coefficient compared to the experiment. Actually, the mean absolute

error is slightly lower, 0.55 ·10−9m2s−1 using 10 ps long VACF functions, and the correlation

coefficient is almost the same (R2 = 0.77).

4.3 Efficiency of Different Algorithms

Computation of the heat capacity from a converged VDOS function is a memory-intensive

calculation since all of the velocities need to be read from several picosecond long trajec-
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tories with time intervals of a few femtoseconds. This computational cost can be reduced

significantly with the GSTA approach. In the present case, if the VACF function is corrected

with eq 16, it is enough to compute the VACF 68 fs long, instead of the 10 ps length used

for the determination of the VDOS.

The calculation of the self-diffusion coefficient from a trajectory is orders of magnitude

more expensive with the Green-Kubo method than with the Eisntein equation. While in

the first case we needed to compute 10 ps long VACF with a resolution of 4 fs, in the latter

case it was enough to calculate the mean squared displacement at 8 and 12 ps. Moreover,

the calculation of VACF is almost unfeasible with a time lag of 100 ps or longer, when the

self-diffusion coefficient converges.

Figure 5: Calculated vs. experimental self-diffusion coefficients for 31 organic
solvents
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5 Conclusions

As a summary, we compared the 2PT and 1PT+AC heat capacities. We pointed out that

previous 2PT heat capacities in the literature were calculated incorrectly.19–21 We think that

the correct 2PT heat capacities include anharmonic correction (denoted 2PT+AC in the

present paper). The right program code is given in the Supporting Information to calculate

the correct 2PT, 1PT and 1PT+AC methods by using the GROMACS software. Based on

our benchmark calculations we suggest to use different methods for different purposes. De-

spite the 2PT method does not satisfies the correspondence principle, it can give reasonable

estimation for thermodynamic properties of organic liquids. If someone wants to benchmark

force fields, or develop new force field parameters it is recommended to use the 1PT+AC

method which accounts the anharmonicity correctly. Our results help to improve the accu-

racy of the calculated thermodynamic properties of large systems, and with the use of more

efficient algorithms even larger systems can be investigated.
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