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ABSTRACT 

The rational search for allosteric modulators and the allosteric mechanisms of these modulators 

in the presence of evolutionary mutations, including resistant ones, is a relatively unexplored 

field. Here, we established novel in silico approaches and applied to SARS-CoV-2 main protease 

(M
pro

) as a case study. First, we identified six potential allosteric modulators (SANC00302, 

SANC00303, SANC00467, SANC00468, SANC00469, SANC00630) from the South African 

Natural Compounds Database (SANCDB) bound to the allosteric pocket of M
pro

 that we 

determined in our previous work. We also checked the stability of these compounds against M
pro

 

of laboratory strain HCoV-OC43 and identified differences due to residue changes between the 

two proteins. Next, we focused on understanding the allosteric effects of these modulators on 

each protomer of the reference M
pro

 protein, while incorporating the symmetry problem in the 

functional homodimer. In general, asymmetric behavior of multimeric proteins is not commonly 

considered in computational analysis. We introduced a novel combinatorial approach and 

dynamic residue network (DRN) analysis algorithms to examine patterns of change and 

conservation of critical nodes, according to five independent criteria of network centrality 

(betweenness centrality (BC), closeness centrality (CC), degree centrality (DC), eigencentrality 

(EC) and katz centrality (KC)). The relationships and effectiveness of each metric in 

characterizing allosteric behavior were also investigated. We observed highly conserved network 

hubs for each averaged DRN metric on the basis of their existence in both protomers in the 

absence and presence of all ligands, and we called them persistent hubs (residues 17, 111, 112 

and 128 for averaged BC; 6, 7, 113, 114, 115, 124, 125, 126, 127 and 128 for averaged CC; 36, 

91, 146, 150 and 206 for averaged DC; 7, 115 and 125 for EC; 36, 125 and 146 for KC). We also 

detected ligand specific signal changes some of which were in or around functional residues (i.e. 



chameleon switch PHE140). Using EC persistent hubs and ligand introduced hubs we identified 

a residue communication path between allosteric binding site and catalytic site. Finally, we 

examined the effects of the mutations on the behavior of the protein in the presence of selected 

potential allosteric modulators and investigated the ligand stability. The hit compounds showed 

various levels of stability in the presence of SARS-CoV-2 M
pro

 mutations, being most stable in 

A173V, N274D and R279C, and least stable in R60C, N151D V157I, C160S and A255V. 

SANC00468 was the most stable compound in the 43 mutant protein systems. We further used 

DRN metric analysis to define cold spots as being those regions that are least impacted, or not 

impacted, by mutations. One crucial outcome of this study was to show that EC centrality hubs 

form an allosteric communication path between the allosteric ligand binding site to the active site 

going through the interface residues of Domain I and II; and this path was either weakened or 

lost in the presence of some of the mutations. Overall, the results of this study revealed crucial 

aspects that need to be considered in drug discovery in COVID-19 specifically and in general for 

rational computational drug design purposes. 
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1. INTRODUCTION 

With the advent of COVID-19, researchers across the world reacted quickly with the proposal of 

multiple potential inhibitors designed to abrogate viral protein activity using rational drug design 

approaches and wet lab experiments. This concept primarily involves targeting critical viral life-

cycle proteins 
1–4

. The SARS-CoV-2 main protease (M
pro

) protein plays a crucial role in the viral 

maturation cycle by lysing itself (autocatalysis) and other viral polyproteins 
5
. This presents 

SARS-CoV-2 M
pro

 as a key drug target for designing wide-spectrum 
6,7 

anti-COVID-19 

inhibitors or allosteric modulators that terminate the viral replication cycle 
8
. Among the 

multitude of studied COVID-19 related proteins, the active site of SARS-CoV-2 M
pro

 has been 

extensively targeted by virtual screening of both natural and non-natural compounds 
9–11

. In 

contrast, the rational search for allosteric modulators of the protein is still relatively unexplored. 

Additionally, allosteric mechanisms in the presence of mutations have not yet been a subject of 

focus in drug screening. In our previous study, a potential dual allosteric pocket of SARS-CoV-2 

M
pro

 was identified through multiple in silico tools in the presence of 50 early pandemic 

mutations 
12

. These two pockets are mirrored across the dimer interface and are individually 

composed of residues from each protomer. As a continuation of our previous SARS-CoV-2 M
pro

 

work 
12

, here we aim to set up alternative innovative therapeutic concepts on identification of 

allosteric modulators in the presence of early evolutionary mutations of the virus. These concepts 

are explained under three subsequent sections: 

PART I: Here, we identified potential allosteric modulators for the dimeric SARS-CoV-2 M
pro

 

protein, at a protonation state corresponding to pH 7.0, by screening it against 625 South African 

natural compounds 
13,14

. Parallel to this, we also docked the natural compounds against the M
pro

 

protein of one of the seven human coronaviruses, HCoV-OC43. Previously, HCoV-OC43 was 



suggested as a model to study SARS-HCoV without the need for Biosafety Level 3 facilities 
15

. 

This strain is, indeed, commonly used as the laboratory strain. Thus, using in silico techniques 

we wanted to see if similar results would be obtained from the M
pro

 protein in each strain. This 

analysis sheds light on potential considerations to factor in when transferring findings from 

HCoV-OC43 to SARS-CoV-2, using the M
pro

 allosteric site as example. 

PART II: Next, our focus was on understanding the allosteric effects of the selected hit 

compounds (PART I) on each protomer of the reference M
pro

 protein (wild type, WT). From our 

previous study, we came across the problem of protein symmetry, where we observed that 

protomer dynamics could be switched between identical copies of a protomer in a homodimer. 

Symmetry correction was performed then by aligning single equilibrium conformations. In the 

current study, we investigated the phenomenon in greater detail using a combinatorial approach 

to examine patterns of change and conservation of critical nodes, according to five independent 

criteria of network centrality (betweenness centrality (BC), closeness centrality (CC), degree 

centrality (DC), eigencentrality (EC) and katz centrality (KC)), used as averages. While doing 

so, we also investigated the relationships and effectiveness of each metric in characterizing 

allosteric behavior. We hypothesized that allosteric change might be expressed through complex 

routes involving intraprotomeric and interprotomeric combinations of critical residues. By 

monitoring the centrality patterns of these residues across the homodimer under the influence of 

intrinsic (e.g. protein mutations and ligand binding) and extrinsic (simulation parameters) factors 

during molecular dynamics (MD) simulations, we aimed to extract further details from the 

homodimer state of the protease. To our knowledge this phenomenon is not typically addressed 

in the case of homodimeric protein complexes. While we believe that the same phenomenon 



exists at the homomultimeric level, a less complex case involving allosterically bound dimeric 

M
pro

 is investigated herein.  

Further, we, for the first time, introduced the concept of analyzing globally central nodes (i.e. 

the 5% most central nodes measured across all samples) for each of the five metrics of dynamic 

residue networks (DRNs). The metrics comprised averaged versions of BC, CC, DC, EC and KC. 

Even though some of these metrics were, previously, used for static protein structure analysis 
16–

18
 to our knowledge, this is the first study that gathers together information from these metrics 

over molecular dynamics (MD) simulations. Additionally, the hub data was itself reformulated as 

a set of network graphs, which were queried in order to decipher the complex patterns of hub 

conservation and transition (according to each DRN metric) from the apo state to one that is 

allosterically occupied. 

PART III: In the third part of the study, we examined the effects of the mutations on allosteric 

behavior of the protein in the presence of selected potential allosteric modulators and 

investigated ligand stability. Structure-based drug discovery approaches have been successfully 

used for the design of many orthosteric drugs 
19

 and to some extent allosteric modulators 
20

 for 

the treatment of communicable and non-communicable diseases. A good example is that of HIV 

protease inhibitor 
21

. However, consideration of the impact of evolutionary mutations of 

pathogens, including those linked to drug resistance, is mostly undetermined in rational drug 

design. Depending on their position and physicochemical properties, mutations can modulate 

protein behavior by altering their stability and/or affinity to other interacting biological 

molecules 
22–25

. A more complex, yet subtle phenomenon may be observed at the level of 

entropic effects of mutations, whereby differences may be seen at the level of the rate of visiting 

certain states, and not by the mere presence or absence of a defined state (or set thereof) 
26–28

. A 



classic case is the distance effect of pathogenic mutations that keep the function of the protein 

while gaining resistance 
23,29

; hence the purpose of this part of the study is to understand the 

effect of evolutionary mutations in the attempt of COVID-19 rational drug design. We believe 

the information gleaned here may help to develop drugs that could potentially minimize the risks 

of having premature drug inactivation; and may reduce potential drug resistance effects to 

provide a longer-lasting treatment option. 

For that purpose, mutant protein-allosteric modulator complexes were subjected to 20 ns all-

atom MD simulations at a fixed pH, and the results were, then, evaluated in the same manner as 

introduced in the second part of the article. The potential effectiveness of the allosteric 

modulators was identified in the presence of some of the early pandemic mutations of the 

protein. Even though no solid evidence of the effect of these mutations has been reported, 

involving them in drug development might help further our understanding of the enzyme’s 

mechanics and pre-empt the most worrying feature of mutations: drug resistance. 

Overall, the results of this study revealed crucial aspects that need to be considered in 

structure-based drug discovery such as the way in which the allosteric modulators should be 

identified; and how the stability of these modulators should be considered in the presence of 

mutations. We further argue that consideration of potential asymmetric behavior of homodimer 

proteins; of the novel DRN approaches and data analysis that are presented here would be 

applicable and useful in any computational drug discovery research. 

2. MATERIALS AND METHODS 

2.1. Preparation of the reference and mutant SARS-CoV-2 M
pro

 and HCoV-OC43 M
pro

 

structures 



The three-dimensional (3D) structure of the SARS-CoV-2 M
pro

 was retrieved from Protein Data 

Bank (PDB)
30

 (PDB ID: 5RFV
 31

), and its dimeric unit assembled as described in our previous 

study 
12

. In this study, we also utilized a set of 50 SARS-CoV-2 M
pro

 mutant proteins that were 

prepared in our previous study 
12

. The list of mutations that were acquired from the Global 

Initiative on Sharing All Influenza Data (GISAID) 
32

 as described in our previous work is 

presented in Table S1
53

.  

5RFV was further used as a template to model the 3D structure of the human coronavirus 

strain (HCoV-OC43) M
pro

 via MODELLER, using the automodel function parameterized with a 

slow refinement with loop deviation of 2.5 Å 
33

. This protein is a close homolog of the SARS-

CoV-2 M
pro

, and the strain is generally used in inhibition assays in the laboratory. Prior to 

homology modelling, the HcoV-OC43 protein sequence was retrieved from the replicase 

polyprotein 1a record available from UniProt (Entry ID: P0C6U7; position 3247-3549), and was 

aligned against the sequence and structure of 5RFV using PROMALS3D 
34

. The model with the 

lowest z-DOPE score was selected from a parallel run of 50 models. The PROPKA tool under 

the PDB2PQR algorithm 
35

 was, then, utilized to assign protonation states of all the proteins at a 

pH of 7. The calculations were done with the AMBER force field 
36

. 

Based on the assembled and protonated SARS-CoV-2 M
pro

 dimeric structure, all 50 mutations 

were inserted using BIOVA Discovery Studio Visualizer 
37

. This approach was utilized to 

minimize structural variations across the proteins. All mutated structures were subsequently 

protonated using the same procedure as for the reference structure. 

2.2. High-throughput virtual screening of SANCDB compounds against M
pro

 proteins 

A total of 623 compounds were first obtained from the South African natural compound database 

(SANCDB) 
13,14

. Partial charges were assigned to compounds and the protonated proteins using 



the Gasteiger-Hückel protocol in AutoDockTools (ADT) 
38

. The AutoDock/Vina plugin from 

PyMOL was used to place the docking grid around the dimeric SARS-CoV-2 M
pro

 reference 

protein. A docking box size of 65 x 71 x 80 Å with a grid spacing of 1 Å was centered at 

coordinates (0.00, 0.65 and 0.00). The exhaustiveness of 1000 was used, and the maximum 

number of docking poses was increased to 20. Blind docking (BD) simulations were performed 

in parallel, with 12 cores per job at the Center for High-Performance Computing (CHPC) using 

the QuickVina-W program
 39

. After having docked the SANCDB compounds, the ligand PDBQT 

files were split into their separate poses before being converted to PDB format. Preliminary 

filtering was then applied using an in-house C++ script to every file to retain ligand poses that 

had a centroid distance of less than 10 Å to any of the allosteric pockets irrespective of binding 

energy. The pre-filtered poses were then manually curated in PyMOL (version 2.4) 
40

 to remove 

those that did not localize to the allosteric pocket. For each of the filtered ligands, the number of 

poses was tallied and ranked in ascending order of binding energy 
41,42

. The top six compounds 

from the SARS-CoV-2 M
pro

 were then short-listed based on residue interactions for their 

respective lowest energy poses. HCoV-OC43 M
pro

 underwent the same steps, to be used as a 

comparator. 

2.3. Molecular dynamics simulations protocol of M
pro 

and mutant systems 

100 ns all-atom molecular dynamics (MD) simulations were conducted using GROMACS 

(version 2019) 
43

 for SARS-CoV-2 M
pro

 reference protein and the HCoV-OC43 strain homolog 

protein both in the absence and presence of six hit compounds bound at the previously identified 

allosteric site. In order to investigate the effect of mutations, 50 ligand-bound SARS-CoV-2 M
pro

 

mutants were similarly taken into 20 ns MD for each of the six compounds. GROMACS-

compatible structure and ligand topology input files were derived using the AMBER03 force 



field
 36

 and the ACPYPE tool 
44

 respectively. A total of 314 systems [(reference protein x 6) + 

(homolog protein x 6) + Apo-reference protein + Apo-homolog protein + (50 mutant x 6 

compounds)] were solvated using the TIP3P water model 
45

 in a cubic box, with a minimum 

distance of 1 nm between the box edge and the protein. All systems were subsequently 

neutralized with 0.15 M NaCl. Solvated systems were first minimized for 5000 steps using the 

steepest descent algorithm until the relaxed systems converged to a maximum force of 1000 

kJ/mol/nm. Following minimization, systems were equilibrated at constant number, volume and 

temperature (NVT) at 300 K temperature and constant volume using the modified Berendsen 

thermostat algorithm 
46

 followed by NPT (constant number of particles, pressure and 

temperature) at 1 bar pressure and constant volume and temperature ensemble using the 

Parrinello–Rahman barostat algorithm 
47

 In all ensembles, systems coupling groups and time 

constraints were set at 0.1 ps. All bonds were constrained under the LINCS holonomic 

constraints algorithm 
58

 whereas the Particle-mesh Ewald (PME) algorithm 
48

 was set to include 

the contribution of long-range electrostatic interactions. The overall MD protocol was carried out 

on the Center for High-Performance Computing (CHPC), Cape Town, South Africa using 384 

cores with total CPU hours of ~2921472. Structure coordinates were written after every 10 ps 

and periodic boundary conditions (PBC) were removed. 

2.4 Calculation of dynamic residue network metrics 

To study the effect of ligand binding on the active site, as well as on inter-and intra-domain 

residue dynamics over the course of MD simulations, dynamic residue network analysis (DRN) 

was done using MDM-TASK-web scripts 
49

. DRN 
50

 was applied on the last 10 ns trajectories of 

the apo and ligand-bound M
pro

 systems. Residue network analysis uses graph theory concepts 

and characterizes residues in a protein structure in which each amino acid is represented as a 



node and inter-connected residues (Cβ - Cβ and in Gly Cα - Cα atoms) are depicted as edges based 

on a specified cut-off distance (6.7 Å) 
50

. DRNs were analysed based on five metrics; averaged 

betweenness centrality (BC), averaged closeness centrality (CC), averaged degree centrality 

(DC), averaged eigencentrality (EC) and averaged katz centrality (KC) via the cal_network.py 

script incorporated in the web server, MDM-TASK-web 
49

. Each of the metrics is a time-

averaged summary of the network metrics obtained during MD simulations. 

The averaged BC metric is defined as how often a residue is traversed along the shortest paths 

connecting every other residue pairs 
51

. This metric was calculated based on the equation: 

𝐵𝐶(𝑣) =
1

𝑚
∑ ∑

𝛿(𝑣𝑖 𝑡𝑖|𝑣𝑖 )

𝛿(𝑠𝑖,𝑡𝑖)𝑠,𝑡∈𝑉
𝑚
𝑖=1     (1) 

where δ(s,t|v) symbolises the number of shortest paths bridged between a residue n and other 

nodes s and t. δ(s,t) denotes the averaged shortest paths existing between residues s and t where s 

and t are part of the set V, which comprises the set of all nodes, while m indicates the overall 

number of frames. 

Averaged closeness centrality (CC) of a residue is calculated as the reciprocal of the average 

number of the shortest paths linking a residue n and all other residues in the network.  

𝐶𝐶 (𝑥) =  
1

∑ 𝑑𝑦 (𝑣,𝑢)
    (2) 

where d (v, u) is the total distance between residue v and all other residues u. 

Additionally, metric degree centrality (DC) defines the number of neighboring nodes (the local 

connectivity) around a given node. It is normalized by both the number of nodes in the network 

and the number of MD frames. The equation for computing the averaged DC is as follows: 

𝐷𝐶(𝑘) =
1

𝑚(𝑛−1)
∑ ∑ 𝐴𝑖𝑗𝑘

𝑛
𝑗=1

𝑚
𝑖=1   (3) 



where n indicates the number of residues, m denotes the number of frames; Aijk indicates 

adjacency in time frame i, being 1 if residues with indices j and k are adjacent and 0 otherwise. 

Eigencentrality (EC) measures the high centrality given to high degree residue, or to a residue 

that is connected to other high degree residues. The procedure for calculating EC is summarized 

here, and further details are in the literature 
52

. The formula for the computation of EC for a 

single residue i for the k
th

 frame is as follows: 

𝐸𝐶𝑖𝑘 = 𝜖𝑘
−1 ∑ 𝐴𝑖𝑗𝑘

𝑛
𝑡=1 ⋅ 𝐸𝐶𝑗𝑘    (4) 

The weighted multiplication operation between the adjacency matrix A is repeated against the 

vector EC until convergence. Aij is an adjacency, k
 
is a frame, ECik is the j

th
 component of the EC 

vector for the k
th

 frame, and n is the number of nodes. The averaged EC for the i
th

 node is then 

computed from the matrix of EC likewise using MDM-TASK-web as follows: 

𝐸𝐶𝑖 =
1

𝑚
∑ 𝐸𝐶𝑖𝑘

𝑚
𝑘=1     (5) 

Lastly, the Katz centrality (KC) measures the relative degree of influence of a residue i within 

connected residues in a network. The procedure for calculating KC is summarized here, and 

further details are in the literature 
52

. The KC of node i is 

𝐾𝐶 =  𝛼 ∑ 𝐴𝑖𝑗 𝑥𝑗 +  𝛽𝑗    (6) 

where A represents the adjacency matrix and KC is the eigenvector computed by NetworkX in 

MDM-TASK-web. α and β denoted the attenuation factor and weight assigned to the immediate 

neighbors of node i. The same metric is computed for each frame before averaging the value 

across frames for each residue. 

2.5. Identification of top 5% global high network centrality residues  

DRN metrics were computed for the reference and the mutant SARS-CoV-2 M
pro

 samples using 

MDM-TASK-web for both the apo and the six ligand-bound complexes. In order to estimate 



residue hubs, all related samples that were to be compared were combined in order to have a 

common scale. Therefore, for each individual DRN metric, the data points of samples (apo, 

mutant and ligand-bound) belonging to that metric were concatenated into a single vector, which 

was sorted in descending order to focus on nodes of highest overall centrality. The top 5% of 

these values were extracted [304 residues x 2 chains x (1 apo reference + 6 bound reference) 

systems x 0.05 = 212 elements]. The value at this index was used as a threshold for the selection 

of entries from the original data set. Then, each of the original matrices was searched for any 

component that is greater than or equal to that minimum number. To accomplish that, a binary 

matrix was built that contained the number “one” for any cell that satisfied the condition, and 

from which the row sums were then computed, in order to select any row with a non-zero row 

sum. This generated a set of row indices that were used to subset the original matrix of centrality 

values. In this manner, the globally high network centrality values were obtained in the presence 

of their counterpart values in other samples, thus showing how the hubs perform sample-wide. 

This approach was performed separately for each of the 5 metrics. 

2.6. Application of binary logic to investigate protomer hub combinations from DRN 

analysis 

For each DRN metric, a global network was built using as nodes the detected globally central 

hubs for all of the reference protein states (ApoA/B, SANC00302A/B, SANC00303A/B, 

SANC00467A/B, SANC00468A/B, SANC00469A/B), which have as labels components of the 

protein state and protomer to which each hub residue belongs. These labels were inserted as 

nodes, and undirected edges were created from them by linking their respective hub nodes to 

them. As this global network was too dense to analyze, a sub-network was extracted for each 

individual complex and was merged to the apo protomers. In this way, one could identify 



whether a hub was shared, gained or lost from the apo state upon ligand binding. This 

representation was applied and analyzed in a systematic manner (according to Table 1) to 

investigate whether ligand binding had any effect, as we posited that the effects of a ligand's 

presence in the allosteric site may manifest itself not only in the bound protomer, but also in the 

unbound one. In this way it was possible to track patterns of hub conservation and divergence. 

Table 1. Hub combination possibilities for any given residue between two dimers. A tick symbol 

(✓) denotes the presence of a hub from a given protomer, while a cross (x) denotes absence of 

that same hub from a chain. Apo - A: Apo protein, protomer A; Apo - B: Apo protein, protomer 

B; Complex A: Protomer A of protein-ligand complex; Complex B: Protomer B of protein-

ligand complex 

 Apo - A Apo - B Complex 

A 

Complex 

B 

Score Interpretation 

1 ✓ x x x 1 Potential ligand effect inferred by asymmetry 

2 x ✓ x x 1 Potential ligand effect inferred by asymmetry 

3 x x ✓ x 1 Potential ligand effect inferred by asymmetry 

4 x x x ✓ 1 Potential ligand effect inferred by asymmetry 

5 ✓ ✓ x x 2 Complete hub loss: ligand effect 

6 x ✓ ✓ x 2 Inconclusive effect 

7 x x ✓ ✓ 2 Hub gain on ligand presence 

8 ✓ x ✓ x 2 Inconclusive effect 

9 ✓ x x ✓ 2 Inconclusive effect 

10 x ✓ x ✓ 2 Inconclusive effect 

11 ✓ ✓ ✓ x 3 Potential ligand effect inferred by asymmetry 

12 x ✓ ✓ ✓ 3 Potential ligand effect inferred by asymmetry 

13 ✓ x ✓ ✓ 3 Potential ligand effect inferred by asymmetry 

14 ✓ ✓ x ✓ 3 Potential ligand effect inferred by asymmetry 

15 ✓ ✓ ✓ ✓ 4 No ligand effect from symmetry 

16 x x x x 0 Not applicable 

 

 



3. RESULTS AND DISCUSSION 

3.1. Revisiting the structure of M
pro 

and mutants 

The SARS-CoV-2 M
pro

 protein comprises 306 residues 
2
 and is active in its dimeric state at a pH 

of 7.0 
6,53

. The dimeric functional state regulates catalytic turnover using the subunit flip-flop 

mechanism where the two monomers are used alternately for acylation and deacylation steps 

54,55
. Each monomer (designated protomer A and B) harbors three distinct domains (I-III) 

2,10
 and 

contains a His-Cys catalytic dyad signature (His41 and Cys145) located within a well-defined 

hydrophobic substrate-binding site between domain I and II (Figure 1). The catalytic dyad 

residues are key for hydrolysis in which His41 functions as a general base 
6,56

. SARS-CoV-2 

M
pro

 domains I (residue 10-99) and II (100-183) consist of antiparallel β-barrel structure
2
 that 

form the catalytic domains of the protein as the active site was located between domain I and II. 

Domain III (198-303) is predominantly antiparallel α-helices 
53,57

 and connected to the catalytic 

domains by a long loop region (184-197). This domain is involved in the regulation of enzymatic 

activity of the virus 
58

. The interaction interface, which is crucial for dimerization and enzymatic 

activity, is formed between domain II of protomer A and N-finger region (1-9) of protomer B 

and vice versa 
56,59

. These two N-finger signatures interact with Glu166 to maintain the correct 

orientation of the substrate-binding site subsite S1. The N-finger feature is similar to that of 

previously reported M
pro

 from other coronaviruses 
8,53,60,61

. Each protomer has subsites (S1 – S5) 

located in the active site cavity and the active site cavity comprises the following residues: 25
62

, 

27, 41
2,6,63

, 44
62

, 45, 46
62

, 49
2,6,62,63

, 54
2,62

, 140
2,6,62

, 141
2,62

, 144
6,63

, 145
2,6,63

, 163
2,6,62,63

, 164
2,62

, 

165
2,62,63

, 166
2,6,62,63

, 167
2,62

, 168
2,6,62,63

, 172
2,62,63

, 187
2,62

, 188
62

, 189
2,6,62,63

, 190
2,62

, 191
2,62

, 

192
2,62

. 



 

Figure 1. A structural representation of the homo-dimeric nature of SARS-CoV-2 M
pro

. The 

structural domains (I-III) are shown in red, royal blue and orange cartoons, respectively. The N-

finger region (residue 1-9) and the long loop connecting domain II to III (linker) are indicated in 

cyan and green colors, respectively. The substrate-binding pocket and allosteric pocket on a 

monomer are illustrated in grey and pink wireframe and dotted lines respectively. The 

distribution of SARS-CoV-2 M
pro

 mutations identified from the GISAID database 
32

 is labeled 

on the structure. 



In our previous study, we identified dual allosteric pockets located at the interface of protomer 

A and B (Figure 1), that concur with key residues for functional dimerization and enzymatic 

activities 
53

. The residues of this allosteric pocket of SARS-CoV-2 M
pro

 are 116, 118, 123, 124, 

139, and 141 on protomer A and residues 5–8, 111, 127, 291, 295, 298, 299, 302, and 303 on 

protomer B; or vice versa. We also demonstrated that there is a correlation between substrate 

binding site and predicted allosteric sites and this correlation changes in the presence of some of 

the studied 50 mutations which spanned several secondary structures in M
pro

 domains as well as 

the N-finger and linker region (Figure 1). 

 

PART I: 

3.2. Identification of allosteric modulators against dimeric SARS-CoV-2 M
pro

 protein 

We identified six compounds in SARS-CoV-2 and 15 compounds in HCoV-OC43 by blind 

docking and preliminary filtering of the 625 SANCDB compounds against the dimeric M
pro

 

proteins (Figure 2A). The high degree of search exhaustiveness increased the likelihood of 

finding certain binding poses more than once, despite having less favorable binding energy 

scores. This approach draws from the idea of the use of pose clustering in AutoDock 
64

, as we 

have noticed that non-equilibrium binding energy scores tend to be affected by the length of the 

ligand. The poses corresponding to either copy of the allosteric site were tallied for each 

compound to be compared across all hit compounds in both coronavirus strains. As seen in 

Figure 2A, the lowest energy hits for the mirrored allosteric site occur in HCoV-OC43 but are 

not the most abundant hit compounds. Of notable interest are compounds SANC00209, 

SANC00210 and SANC00211, which are halogenated monoaromatic terpenoids produced from 

the marine alga Plocamium corallorhiza, with anti-proliferative properties. The four most 



abundant hits for the SARS-CoV-2 allosteric site (SANC00467, SANC00468, SANC00469 and 

SANC00630) occurred in both coronavirus strains, despite showing less favorable energy scores. 

While SANC00467, SANC00468 and SANC00469 all come from Drimia robusta 
65,66

, 

SANC00630 is from Senecio oxyodontus 
67

. All of them are monophenolic compounds. The fact 

that this allosteric site tends to bind to different aromatic compounds may suggest that this may 

be a scaffold for small molecules to target. Compounds SANC00302 and SANC00303 did not 

fare as well as the other compounds in terms of energy scoring of number of poses; however, we 

decided to carry them forward for MD analysis to cross-check their stability. The latter two 

compounds are halogenated indoles from Distaplia skoogi that have shown moderate 

cytotoxicity against cancerous cells 
68

.  

The ligand RMSD graph of the last 10 ns of 100 ns MD simulations (Figure 2B) identified 

that these six compounds have relatively different behavior in the M
pro

 protein of SARS-CoV-2 

and of HCoV-OC43; while SANC00467, SANC00468 and SANC00469 demonstrated the most 

stable single conformation (unimodal distribution) in SARS-CoV-2 protein. Ligand RMSDs of 

the 100 ns simulations are presented in Figure S1. The different behavior of the compounds can 

be attributed to the varying compound-protein residue interaction profiles as observed in docking 

(Figure 2C, Table S2) as well as the residue differences of the two homolog proteins at the 

allosteric sites (Figure 2D). ALA7, PHE8, GLN127, PHE291 and ARG298 of SARS-CoV-2 

M
pro

 are replaced with VAL7, ASN8, HIS127, LEU291 and GLN298 in the M
pro

 of HCoV-OC43 

lab strain (Figure 2D). In SARS-CoV-2, residues ALA7 and PHE8 comprise the N-finger region 

crucial for dimer stabilization 
69

. GLN127, PHE291 and ARG298 have been reported to play 

important roles in dimerization and enzymatic activity in SARS-CoV M
pro

 
70

. 



 

Figure 2. Overall binding profile of ligands in the allosteric site of SARS-CoV-2 and HCoV-

OC43 strains. (A) Scatter plot of selected allosteric site ligands and their respective binding 

energies to SARS-CoV-2 (orange) and HCoV-OC43 (blue). (B) Kernel density plots of the 

ligand RMSD values over the last 10 ns of the 100 ns MD simulations. (C) Protein-ligand 

molecular interactions in SARS-CoV-2. Residue contribution from protomer A and B are 

labelled in black and red respectively. (D) Conservation of residues between the two strains. 

  

In SARS-CoV-2 M
pro

, several ligand interactions (such as hydrogen bond, hydrophobic and Pi 

interactions) with allosteric site residues were observed (Table S2). Compounds SANC00467, 



SANC00468, SANC00469 and SANC00630 formed at least two hydrogen bonding interactions 

with some polar residue side chains (MET6, SER123, GLN299 and VAL303) that may play a 

role in ligand stabilization and retention within the pocket. The replacement of valine by a longer 

side chain in isoleucine at position 303 in HcoV-OC43, suggests that the site in HCoV-OC43 

may not behave in the same way as that of SARS-CoV-2. On the other hand, at least seven 

hydrophobic interactions were observed across all modulators, indicating the enrichment of 

hydrophobic interactions in allosteric sites. The substitution of hydrophobic residue Phe8 and 

polar residues (SER121, SER301) in SARS-CoV-2 M
pro

 with polar ASN8, charged LYS121 and 

the hydrophobic residue LEU301 in HCoV-OC43 may explain the different ligand-binding 

patterns.  

Our results indicated that the use of this strain for experimentation on allosteric modulation in 

SARS-CoV-2 M
pro

 may have some limitations. 

 

PART II: 

3.3. Identification of hub residues while considering symmetry in homodimers 

Depending on the level of resolution desired for the analysis of homodimers, comparing MD-

simulated pairs of a homodimeric protein can introduce conceptual challenges. For instance, one 

cannot easily know with certainty whether protomer A (or sections thereof) in one dimer behaves 

the same as its homologous position in protomer A in the second dimer. While a simpler 

protomer assignment approach based on permuted structural alignments was used in our earlier 

work 
12

 for single conformations, our attempt here investigates this issue in more depth, firstly by 

isolating potential hubs, and secondly by producing a representation of all the possible hub node 

combinations (Table 1) in order to obtain a scheme by which hub node importance can be 



assessed. While a hub is generally accepted as a high connectivity (degree) node, it has also been 

used to mean high BC 
71

, but can also be understood as any node that may cause non-negligible 

topological alterations to a network when removed 
72

. In this analysis the term is used in its more 

general sense to mean any node that forms part of the set of highest centrality nodes, here 

arbitrarily specified as the top 5% centrality nodes measured across all related samples, for any 

given averaged centrality metric. This procedure differs from the identification of 1 to 2 standard 

deviation from the mean or top 5% residues in individual samples that we generally used in our 

previous studies 
73–75

, in that it considers the strongest actors across samples and shows how 

other non-hub residues behave at the homologous position. We assume that investigating hub 

transitions in this manner is more likely to detect the most significant shifts in residue 

importance when exposed to a particular environment. We also used this approach to be able to 

handle a large amount of data analysis. 

Figure 3 shows the heat maps of the five DRN metrics for the reference protease in the 

absence and presence of ligand binding; with the designated ligand-bound allosteric pocket of 

the dimer always being referenced as protomer A. Specifically, the ligand was assigned to 

protomer A based on its proximity to a terminal alpha helix in the same chain. In the case of 

SANC00467, where the allosteric compound had bound protomer B, the protomer label was 

swapped. 

Preliminary examination of Figure 3 showed that there are some residues that preserve their 

hub statuses. We, here, introduce the following terms: (1) Constitutive hub: If a hub is present in 

both protomers of the reference protein and remains as a hub irrespective of the apo or a ligand-

bound state, it will be called a constitutive hub (see Table 1; score 4); (2) Persistent hub: If a hub 

remains across all systems compared, then the hub will be called persistent; in Part II, across all 



systems would be apo protomers and all ligand-bound dimers of reference protein, and in Part III 

it would be both protomers of the reference and mutant proteins with a specific ligand. (3) Super-

persistent hub: In Part III, we will use the concept of a “Super-persistent hub”, meaning that the 

hub is persistent across all the ligands considered in both reference and mutant proteins. Most of 

the constitutive and persistent hubs are metric-specific giving a different perspective to the 

network. As the five averaged centrality metrics refer to different measures of importance within 

a network, these terms will be used with respect to a given centrality metric and will not be 

shared between them.  



 

Figure 3. Heat maps for the potential hubs according to the global top 5% for each of the five 

DRN metrics, for the reference protein in the apo and the six allosterically bound states. Detected 

hubs are annotated with their centrality values, while their homologous residues in alternate 



samples are not, but are only shown for the sake of comparison. For each metric, low to high 

centrality values are colored white, through yellow, orange and red to black. Measurements for 

the ligand-bound protomer (chain A) have been systematically presented on the left side, while 

those of the unbound protomer are on the right – this does not apply to the apo state. 

 

3.4. Metric based investigation of persistent hubs 

3.4.1. Betweenness Centrality  

According to Figure 3, MET17, THR111, PHE112 and CYS128 hub residues were found to be 

unaltered from the reference protein apo state, or upon any selected ligand binding irrespective 

of protomer for the averaged BC. At individual ligand level, each of these hubs is constitutive 

and indicates that there is no ligand effect due to symmetry (Table 1, score 4). 

For the entire system (apo + 6 ligand systems), these hubs are persistent hubs indicating that 

the allosteric modulators did not change the information path for these key residues; and any loss 

to these hubs may disrupt the communication.  

Residues MET17 and CYS128 had been previously picked up from multiple simulations, but 

were not examined in depth in our previous work involving several M
pro

 mutants in the apo state 

12
. The current analysis further showed that all conserved averaged BC hubs occurred as 

intrachain or interchain hinges within the dimer (Figure 4A), both in the absence and presence of 

different allosterically bound compounds. Residue MET17 establishes intraprotomer contacts 

within the domain I/II interface by interacting with several residues of the beta hairpin. More 

specifically, it forms alkyl interactions with LEU115, PRO122 and CYS117. Of notable interest 

is the alpha helix that supports the N-finger. Being also part of the high BC hubs, it is possible 

that LEU115 and MET17 form an important bridge that relays interdomain information, 

potentially influencing N-finger stability, and by extension impacting the activity of the alternate 



protomer. THR111 (from domain II) also plays a role in maintaining intraprotomeric 

interdomain stability by forming periodic H-bonds with ASP295 (from domain III), and at the 

same time mediating information flow. THR111 is also firmly bound to the other hub residue 

CYS128 via multiple hydrogen bonds and carbon H-bond. CYS128 is firmly seated on a beta-

strand, forming non-bonded interactions with TYR126, VAL114 and PHE112. 

 

Figure 4. Cartoon representation of SARS-CoV-2 M
pro

 dimeric structure with the distribution of 

the persistent hubs as per five metrics of DRNs. (A) Averaged BC, (B) Averaged CC, (C) 

Averaged DC, (D) Averaged EC, (E) Averaged KC. Protomers A and B are shown as cartoon in 

teal and grey respectively. Protomer A persistent hubs are depicted in red spheres and protomer 

B ones are in blue. (F) Collective presentation of persistent hubs in orange spheres. 

3.4.2. Closeness Centrality  

CC is calculated as the inverse of the average of the shortest path length from the node to every 

other node; hence identifies the central nodes which are closer to most of the nodes. Previously 

we showed that residues with low average shortest path are correlated with the low mobility 



(increased rigidity) of the protein 
51

. Thus, high CC values are most likely to occur within the 

protein core. Previously, CC metric calculations over single static structures were used to 

identify active site residues with the support of other approaches, e.g. conservation, solvent 

accessibility 
76,77

 to distinguish them from residues located in the core. Here, our persistent 

averaged CC hubs are MET6, ALA7, SER113, VAL114, LEU115, GLY124, VAL125, TYR126, 

GLN127 and CYS128 (Figure 3). Visual inspection of the residue mappings showed that they 

are all located at the vicinity of the dimeric center of mass found within the very stable domain II 

(Figure 4B), as reported in our earlier work 
12

. In the same work, ALA7 (part of the N-finger) 

was reported to be very rigid, and probably is the reason for the similar behavior in its immediate 

neighbor residue 6 within the same chain. SER113, VAL114, LEU115 and TYR126 are 

juxtaposed within the same beta sheet, supported by networks of H-bonding interactions, and are 

next to ALA7, which forms intraprotomeric alkyl interactions with VAL125 and interprotomeric 

H-bonds with VAL125 from the alternate protomer. More generally, these residues are mainly in 

direct contact with the center of the opposing protomer, and the reason for their high averaged 

closeness may be related to the way in which the protomers were reported to slide over each 

other, remaining at the same pivot point, centered at domain II (with the N-finger ALA7 also 

sandwiched in-between). Residue 7 appears crucial for maintaining the bulk of the averaged CC 

hubs. 

3.4.3. Degree Centrality 

DC defines the number of neighboring nodes around a given node, hence provides information 

on the local connectivity, but not how central it is in the entire network. Persistent averaged DC 

hubs in M
pro

 are comprised of residues VAL36, VAL91, GLY146, PHE150 and ALA206 

(Figure 3). 3D visualization of this metric showed that averaged DC tends to be concentrated at 



the confluence of secondary structural elements, irrespective of inter- or intraprotomeric 

locations (Figure 4C). VAL36 occurs within a beta sheet and establishes several types of non-

bonded interactions with multiple residues within domain I, namely LYS88, LEU89, VAL68 and 

VAL18. Residue 91 occurs on another strand of the same beta sheet, next to VAL36, and 

establishes several types of non-bonded interactions with residues ASP34, LEU75, ARG76 and 

VAL77. Residue GLY146 is another persistent DC hub of potential significance, found next to 

the catalytic residue CYS145. It was found that GLY146 established durable intraprotomeric 

contacts with 10 residues, namely LEU27, ASN28, GLY29, CYS38, PRO39, CYS145, SER147, 

VAL148, MET162 and HIS163. This involved both intradomain (domain I) and interdomain 

interactions, and occurred in each protomer and both in the presence and absence of allosteric 

binding. The high averaged DC of GLY146 may be related to the fact that this area has to be 

kept relatively stable for the proper positioning of the catalytic residues CYS145 and HIS41, 

from domains II and I respectively. Given the presence of such a residue at the interface of 

domains I and II suggests that it may have a high BC as well, which is generally observed in both 

protomers A and B (Figure 3). PHE150 similarly interacted with several residues in each 

protomer across all samples, and we observed high contact frequencies for 10 residues, namely 

VAL13, PHE112, SER113, VAL148, GLY149, ASN151, VAL157, SER158, PHE159 and 

CYS160, once more involving residues from domains I and II. ALA206 was similarly 

surrounded by 10 durable intraprotomeric contacts within domain III, being composed of 

residues VAL202, ASN203, LEU205, TRP207, TYR209, ALA210, PHE291, THR292, PRO293 

and VAL296, in all cases. More generally, the shared high DC hubs seem to occur in each 

domain of the protein, probably due to their independent roles in maintaining the organization 

and integrity of the individual domains. 



3.4.4. Eigencentrality 

EC measures both the number of connections of a given node and its relevance in terms of 

information flow. It is based on a recursive allocation of centrality on the basis of nodes that 

draw importance from that of their successive connections, given that initial centrality is based 

on DC. Based on this calculation, one would expect high EC values to also have high DC values, 

or be in spatial proximity to high connectivity residues. However, we found that many of the 

high DC residues did not show up among the EC hubs, suggesting that EC is mostly gained via 

proximities to high DC residues, and do not necessarily have high connectivities themselves.  

Persistent hubs of averaged EC for the M
pro

 reference protein comprised residues ALA7, 

LEU115 and VAL125 (Figure 3). LEU115 is the only residue that maintained its importance 

according to averaged DC and EC measurements. Weighted residue contact analysis of this 

residue showed that LEU115 maintained high contact frequencies (>0.60) with residues 

CYS117, PRO122, VAL125 and SER147, irrespective of ligand binding. SER10 and VAL13 

also showed high frequencies, except in the presence of SANC00302 where notable contact 

asymmetry was experienced; a similar pattern was observed for residues VAL148 and GLY149 

in the presence of SANC00467. 3D visualization of the EC residues shows that it is concentrated 

around the interface of protomers A and B (Figure 4D). The main message here is that high DC 

residues are sharing centrality to their immediate neighbors, and that the vicinity of the dimer 

interface seems to be the most residue-crowded area within the dimer. One should also bear in 

mind that centrality may also be coming from further degrees of separation. Other residues 

picked up as hubs in DC may be surrounded by fewer residues of high centrality, thus giving 

them less importance. 

3.4.5. Katz Centrality 



KC measures the relative degree of influence of a residue i within connected residues in a 

network. Irrespective of chain and ligand binding, nodes VAL36, VAL125 and GLY146 

remained as hub nodes according to the averaged KC metric (Figure 3). 

Visualization of the averaged KC metric (Figure 4E) showed that this metric is an 

intermediate between averaged EC and averaged DC, with the former being more conservative 

than the latter when assigning relative node importance. Persistent averaged KC hub 125 was 

also central according to averaged EC; and VAL36, GLY146 were also persistent hubs 

according to averaged DC. The default attenuation coefficient (alpha = 0.1) appears to minimize 

the effect of more distant nodes in the network, such that it assigns centrality patterns 

intermediate to DC and EC. 

In order to give an estimate of the hub similarities between those of KC and those from DC and 

EC, the Jaccard similarity coefficient (J) of hubs from protomer permutations was calculated, 

using as a rough estimate from the union of hubs across all states (ligand-bound and unbound) of 

the reference M
pro

, for each of the protomers. The similarities were evaluated likewise: [J (KCA, 

KC’A), J (KCA, KC’B), J (KCB, KC’B) and J (KCB, KC’A)], where the subscript denotes 

protomer label and KC’ denotes the complement of KC, in this case DC or EC. The hub 

similarities J (KC, DC) had a range of [0.375, 0.53] and those from J (KC, EC) had a range of 

[0.53, 0.76]. The observed ranges suggest that KC is more similar to EC than to DC. For 

comparison, J (KC, BC) and J (KC, CC) had ranges of [0.2, 0.3] and [0.16, 0.23], respectively 

denoting they tended not to share many hubs. 

The reasons for the high centrality values for residues SER10, LEU115 and VAL125 are as 

explained in averaged EC, with the main difference being that the effect of distal nodes was 



reduced due to the dampening coefficient. In this manner, averaged KC appears to improve the 

resolving power of averaged EC. 

Overall, the heat map representation of the identified hubs according to the global top 5% 

foreach of the five DRN metrics (Figure 3) allowed us to identify persistent hubs according to 

each of the centrality measurements, suggesting that they are exposing different key aspects of 

mechanical signal transduction within the protease regardless of apo and allosteric ligand bound 

forms of both monomers (Figure 4A-E). Collectively, these persistent hubs are spreading out 

from the allosteric site along the protein interface as well as to the antiparallel beta strands 

(Figure 5). Even though previously it is not reported, we believe that the antiparallel beta 

strands, and especially the first two nearest to the dimer interface, are functionally highly 

important. 

We also identified a number of changes to hub existence in the presence of potential allosteric 

modulators and these changes were investigated as explained in the next section. 

 

 

 

 

 

 



 

Figure 5: Cartoon representation of SARS-CoV-2 M
pro

 protomer A with the collective 

presentation of persistent hubs in spheres colored according to their domains. Catalytic residues 

are HIS41 and CYS145 are also depicted as spheres. 

 

3.5. Establishing subnetworks for further investigation of hub changes upon allosteric 

binding within the reference homodimer 

We also observed another layer of information within the homodimer, which exists due to the 

symmetry of the protomers, despite the adjustment made to present the ligand-bound protomer as 

the one left-hand side (protomer A) in Figure 3. We hypothesize that it is possible for a 

homodimer to switch states, because of their sequence identity. This is likely true for the apo 

state, but may also apply to the asymmetrically occupied allosteric sites, depending on how 

effective the allosteric pocket occupation is. This approach may also reveal if allosteric activity 

is manifested as a change of hub symmetry in the protein dynamics - for instance one or more 

hubs consistently appearing in one or even both of the protomers, when the allosteric site is 



occupied by a ligand. For this reason, the same data set (Figure 3) is further analyzed using 

another concept that we demonstrate in this section. 

For each allosterically bound ligand, a network was built using the detected centrality hubs as 

nodes, and the chains to which they belong. A subnetwork was then prepared by combining the 

edges from the apo protomers A and B, and those from the ligand-exposed dimer, while also 

tracking the protomer labels, given the ligands had settled at one chain of the blindly docked 

dimer (Figures 6 – 10). As indicated before the ligand was assigned to protomer A. In the case 

of SANC00467 where the compound bound to chain B, the chain label was swapped. The 

systematic hub representation was done to further investigate whether ligand binding had an 

effect, keeping a record of the chain labels, as we hypothesized that a ligand's presence in the 

allosteric site may manifest its effects not only in the bound protomer, but also in the unbound 

protomer, within the same dimer. 

The hub data set was analyzed based on the logic described in Table 1. To simplify the 

terminology used to describe the presence of hubs within any combination of protomers, the term 

"score" is used to specify the number of protomers where the hub is present. In other words, if a 

hub is present in both protomers of the apo protein, the hub (irrespective of the DRN metric) will 

have a score of 2. Similarly, if a hub is present in each protomer of the apo dimer, and in each 

protomer of the ligand-bound dimer, this hub will have a score of 4 (constitutive hub). Further, 

higher confidence was assumed on the basis of complete loss or complete gain of any hub in 

each constitutive protomer from either the apo protein or the ligand-exposed enzyme. Lower 

confidence was assumed when a single hub was gained (i.e. score 0 to 1, or 1 to 2) or lost (i.e. 

score 1 to 0, or 2 to 1) within a single protomer, out of all four protomers (i.e. the set of 

protomers: apo chains A/B and complex chains A/B), to account for the part stochasticity of MD 



simulations. Higher confidence was given to these weaker signals when they were conserved 

across several ligand-bound states. Cases where asymmetric hub distributions occurred (i.e. a 

hub was found in only one protomer from each of the apo and the ligand-bound dimers) were 

ambiguous, given the fact that the apo dimer already expressed both hub states. 

Here we will mainly focus on cases where we observed score of 2 and score of 1 gains or 

losses from each ligand-bound dimer with respect to the apo protein, in order to extract high 

likelihood ligand-induced changes. 

3.5.1. Betweenness Centrality 

While PHE140 was a constitutive hub in the presence of SANC00630, SANC00468 completely 

lost node 140 upon ligand binding (score of 2 loss). SANC00630 gained hub 13 (score of 2 gain) 

with respect to apo structure (Figure 6). The loss of BC from this "chameleon" switch residue 

(PHE140) suggests contact loss in its vicinity. VAL13, on the other hand, is found close to the 

N-finger – in a region where we previously reported lengthening and shortening of the alpha 

helix and suggested its possible involvement in dimer stability 
12

. 

While there are many score 1 hub gains and losses with each ligand-bound dimer (with respect 

to the dimeric apo protein), we report the ones which have the highest conservation among all 

these lower confidence cases, independent of the bound ligand. Hub residue GLY11 

systematically changed from a score of 0 in the apo dimer to a score of 1 in the dimeric 

complexes, suggesting an increased use or stabilization around this residue upon ligand binding. 

Coincidentally, hub residue SER10 systematically transited from a score of 1 in the apo state to a 

score of 0 upon ligand binding. The fact that these two residues are next to each other, and in fact 

interact with their interprotomeric counterpart suggests a possible rerouting of information flow 

in their vicinity upon introduction of a ligand. Score 2 to 1 (i.e. from the apo to the ligand-bound 



dimer) changes appeared not as consistent, but showed some agreement on hub nodes being lost 

from one of the "chameleon switches" in subsite S1, similar to what was seen more strongly in 

the presence of SANC00468, where both nodes were lost. This was observed for residues 

SER139 and/or PHE140 when exposed to SANC00302, SANC00303, SANC00467 and 

SANC00469. Score 1 to 0 changes were not observed when shifting the reference protein from 

an apo to a ligand-bound state, for any of the centrality metrics. 

 



Figure 6. Averaged betweenness centrality hubs represented as a networks for both the apo state 

and the six allosterically-bound complexes. Each of the sub-figures represents the subnetwork 

obtained for each of the allosterically bound ligands, namely (A) SANC00302, (B) SANC00303, 

(C) SANC00467, (D) SANC00468, (E) SANC00469 and (F) SANC00630, when merged with 

the apo protein, in each case. Red, orange, blue and green nodes (and edges) depict the protomers 

(apo chains A and B, and complex chains A and B, respectively) to which a hub belongs. Each 

node is also scaled by its score – i.e. the number of edges it holds. Hubs that are present in all 4 

protomers are in purple. Score 2 loss and gains from the reference are colored yellow and cyan, 

respectively. Score 1 losses and gains are colored brown. Inconclusive hubs are in grey. 

 

3.5.2. Closeness Centrality  

SER10 was a constitutive hub to five ligand-bound states, except SANC00302. Score 2 gains of 

high CC hubs were observed for residue 4 and 5 in the presence of SANC00302, SANC00303 

and SANC00468 – residue 4 also experienced a score 1 gain in the presence of SANC00630, 

while residue 5 experienced a similar gain in the presence of SANC00469 (Figure 7). THR111 

was also gained as a score of 2 hub, only in the presence of SANC00468. GLY138, which is part 

of the S1 subsite, manifested itself as a hub in only one monomer of the apo protein, 

transitioning to a score of 0 upon ligand binding in five out of the six bound states. Upon visual 

inspection, we find that this residue is next to residue ARG4 on the alternate protomer, even 

though they do not appear to interact via non-bonded interactions. By measuring the change in 

their C-alpha interprotomer distances [i.e. the distance between residue pair (4A, 138B) minus 

that between residues (4B, 138A)] in each of the apo and the ligand-bound M
pro

 showed us that 

one of the residue pairs from the apo form had a visibly larger variance in equilibrium distance 

compared to those all the ligand-bound proteins, as it had an interprotomer distance interquartile 

range (IQR) of 0.12 nm, compared to a maximum IQR of 0.07 nm across all six the ligand-bound 

states. The maximum upper quartile additionally informs us of the higher extent of dimeric 



asymmetry for the residue pair for the apo protein (0.22 nm), compared to that observed in the 

ligand-bound proteins, which displayed a maximum value of 0.13 nm overall. While 

counterintuitive, it would seem that asymmetry favors a higher centrality at one of the GLY138-

ARG4 (the N-finger from one protomer and domain II from the other) interfaces at the expense 

of the other in the apo state, while ligand occupation of only one of the detected allosteric sites, 

has a general stabilizing effect, which dilutes the centrality more evenly. 

 



Figure 7. Averaged closeness centrality hubs represented as a networks for both the apo state 

and the six allosterically-bound complexes for the reference dimer. Each of the sub-figures 

represents the subnetwork obtained for each of the allosterically bound ligands, namely (A) 

SANC00302, (B) SANC00303, (C) SANC00467, (D) SANC00468, (E) SANC00469 and (F) 

SANC00630, when merged with the apo protein, in each case. Red, orange, blue and green nodes 

(and edges) depict the protomers (apo chains A and B, and complex chains A and B, 

respectively) to which a hub belongs. Each node is also sized by its score – i.e. the number of 

edges it holds. Hubs that are present in all 4 protomers are in purple. Score 2 loss and gains from 

the reference are colored yellow and cyan, respectively. Score 1 losses and gains are colored 

brown. Inconclusive hubs are in grey. 

 

3.5.3. Degree Centrality 

LEU115 was a constitutive hub to five ligand-bound states, except SANC00302 (Figure 8). 

Scaffold-related conservation patterns were not apparent using this metric, however some 

differences did occur. Residue LEU115, which occurs in proximity to the persistent hub, 

PHE150, was highly crowded and formed several durable contacts with its neighbors, namely 

VAL114, ALA116, CYS117, PRO122 and VAL125. LEU115 had a high frequency contact with 

PRO9 in only one chain in the presence of SANC00469 and a low frequency contact with 

VAL13 in only in one chain in the presence of SANC00302. 

A score 2 hub gain was experienced by VAL18 when exposed to SANC00303, SANC00467, 

SANC00468, SANC00469 and SANC00630. The same residue incurred a score 1 gain in the 

presence of SANC00302. Upon contact visualization, we found the systematic significant 

increase in contact frequency between VAL18 and GLN69 in each protomer upon ligand 

binding. While their C-alpha distances were relatively similar throughout the apo and ligand-

bound M
pro

 (averaging 0.59 nm), the C-beta distances were significantly larger in the apo 

(average of 0.69 and 0.70 nm in the apo protomers) compared to those of the ligand-bound states 



(averages ranging from 0.63 to 0.65 nm), which suggests a rotational decrease of the C-beta 

distance upon ligand binding. A score 2 gain was also experienced by residue GLY29 when 

exposed to SANC00468 and SANC00630. 3D visualization shows that GLY29 is H-bonded to 

VAL18, and together with GLN69 they form a geodesic path travelling directly across 

antiparallel beta strands. The proximity and arrangement of these three residues may suggest 

they may act in a concerted manner. 

Score 2 losses were observed for VAL86 when exposed to SANC00467 and SANC00468; and 

for residues LEU253 and VAL296 in the presence of SANC00302, indicating that the 

connectivity around these areas was reduced. Conserved score 1 to 0 changes were observed for 

residue TYR126 in the presence of ligand binding, suggesting a possible increase in local 

compaction in that area in the presence of any of the ligands. 



 

Figure 8. Averaged degree centrality hubs represented as a networks for both the apo state and 

the six allosterically-bound complexes. Each of the sub-figures represents the subnetwork 

obtained for each of the allosterically bound ligands, namely (A) SANC00302, (B) SANC00303, 

(C) SANC00467, (D) SANC00468, (E) SANC00469 and (F) SANC00630, when merged with 

the apo protein, in each case. Red, orange, blue and green nodes (and edges) depict the protomers 

(apo chains A and B, and complex chains A and B, respectively) to which a hub belongs. Each 

node is also sized by its score – i.e. the number of edges it holds. Hubs that are present in all 4 



protomers are in purple. Score 2 loss and gains from the reference are colored yellow and cyan, 

respectively. Score 1 losses and gains are colored brown. Inconclusive hubs are in grey. 

 

3.5.4. Eigencentrality 

PRO9 and SER10 were constitutive hubs to five ligand-bound states, except SANC00302 

(Figure 9). GLY146 experienced a score 2 gain in the presence of SANC00302 and 

SANC00630. The same was observed for CYS38 in the presence of SANC00302. While score 1 

gains from 1 to 2 were not completely conserved, hub score changes from 0 to 1 were conserved, 

comprising residues MET17, ASN28 and GLY29 in the presence of ligand binding, suggesting 

an increase in centrality in the vicinity of these residues. Visual inspection shows that MET17 is 

proximal to ASN28, which is next to GLY29 on a beta strand. The high averaged EC for MET17 

is likely due to its high degree centrality combined to that of VAL18. It is possible that ligand 

binding further stabilizes its residue neighborhood, compared to the absence of occupation of the 

allosteric pocket. Hub residues ASN28 and GLY29 appear to draw centrality from the higher 

degree centrality residues VAL36 and VAL18. Together these domains I residues line the 

interface of domain II, indicating a possible stabilization around this area in the presence of an 

occupied allosteric pocket. 

A very interesting communication path emerges when combining the persistent averaged EC 

hubs (ALA7, LEU115 and VAL125) and ones collectively gained by ligand binding (MET17, 

ASN28 and GLY29) (Figure 10). We thus describe the path MET7-VAL125-LEU115-MET17-

GLY29-ASN28-HIS145, which originates from the N-finger to converge towards the catalytic 

HIS145, which is itself proximal to second catalytic residue CYS41. From these observations, it 

is possible that the intradomain MET17-LEU115 contact may be a crucial information path for 

the SARS-CoV-2 M
pro

, as it plays a pivotal role in maintaining relaying information from the 



allosteric pocket. This complements our previous observation of the bridging function of SER17 

in the apo M
pro

 using averaged BC. Extending on the finding of a common path shared by ligand 

binding, we also describe an alternate path SER9-PRO10-LEU115-MET17-GLY29-ASN28-

HIS145 being specifically used in the apo state and the ligand-bound states, with the exception of 

SANC00302. It is possible that this difference stems from the lack of stability of this compound 

in the pocket. The complete communication paths are further analyzed in Part III. 

A score 2 loss was observed by GLY149 in the presence of SANC00630. The same residue 

experienced a score 2 to 1 change in the presence of the other compounds. This residue is found 

at the bifurcation of two beta hairpins that do not completely line up all the way into a beta sheet, 

close to a main contributor of degree centrality, residue LEU115. The generic decrease in 

averaged EC in at least one protomer points to a possible loss of contact in this hub's vicinity that 

occurs upon ligand exposure. Residue 9 was also lost as a score 2 hub, only in the presence of 

SANC00302. Score 1 to 0 changes were inconsistent. 



 

Figure 9. Averaged eigencentrality hubs represented as a networks for both the apo state and the 

six allosterically-bound complexes. Each of the sub-figures represents the subnetwork obtained 

for each of the allosterically bound ligands, namely (A) SANC00302, (B) SANC00303, (C) 

SANC00467, (D) SANC00468, (E) SANC00469 and (F) SANC00630, when merged with the 

apo protein, in each case. Red, orange, blue and green nodes (and edges) depict the protomers 

(apo chains A and B, and complex chains A and B, respectively) to which a hub belongs. Each 

node is also sized by its score – i.e. the number of edges it holds. Hubs that are present in all 4 



protomers are in purple. Score 2 loss and gains from the reference are colored yellow and cyan, 

respectively. Score 1 losses and gains are colored brown. Inconclusive hubs are in grey. 

 

 

Figure 10. The path traced by averaged EC hubs, starting from the allosteric ligand towards the 

catalytic residue. The protease is depicted by a cartoon representation onto which the averaged 

EC hub residues are overlaid as sphere representations, together with the non-hub catalytic 

residues HIS41 and CYS145 (circled in orange). EC persistent hub residues are circled in black; 

the alternate path is circled in blue; and the one triggered by the binding of all ligands is circled 

in green. One of the compounds is also shown in stick figure representation, as an example. 

 

3.5.5. Katz Centrality 

SER10 and LEU115 were constitutive hubs to five ligand-bound states, except SANC00302 

(Figure 11). SER10 was also a constitutive hub and LEU115 was a persistent hub in EC. KC 

hubs residues VAL36, GLY146, LEU115 were also central according to averaged DC. 



Hub node 29 gained by a score of 2 in the presence of SANC00302, SANC00303, 

SANC00468 and SANC00630, with respect to the apo protein, and the same residue incurred a 

score 0 to 1 gain in the presence of SANC00467 and SANC00469, indicating that this residue 

gains in KC in at least one protomer upon ligand exposure. Score 2 gains are also observed for 

residues 28 (in the presence of SANC00302 and SANC00468), 39 (in the presence of 

SANC00467), 17 (in the presence of SANC00468) and 20 (in the presence of SANC00630). 

Score 2 losses comprised residue 7 in the presence of SANC00467 and SANC00468; and residue 

10 in the presence of SANC00302. The similarities in hub response patterns in the presence of 

SANC00467 and SANC00468 may suggest that these changes may be related to their common 

scaffold, or to a similar conformational sampling. 

 

 

 



 

Figure 11. Averaged Katz centrality hubs represented as a networks for both the apo state and 

the six allosterically-bound complexes. Each of the sub-figures represents the subnetwork 

obtained for each of the allosterically bound ligands, namely (A) SANC00302, (B) SANC00303, 

(C) SANC00467, (D) SANC00468, (E) SANC00469 and (F) SANC00630, when merged with 

the apo protein, in each case. Red, orange, blue and green nodes (and edges) depict the protomers 

(apo chains A and B, and complex chains A and B, respectively) to which a hub belongs. Each 

node is also sized by its score – i.e. the number of edges it holds. Hubs that are present in all 4 



protomers are in purple. Score 2 loss and gains from the reference are colored yellow and cyan, 

respectively. Score 1 losses and gains are colored brown. Inconclusive hubs are in grey. 

 

Collectively, the analysis of hub transitions induced by allosteric binding in the homodimer via 

subnetworks showed that the DRN metrics shared similarities, but also emphasized importance 

in different ways. By focusing on sample-wide centrality at the expense of protein-specific 

importance, and possibly narrowing the information content, we extracted key features in the 

modulation of the mirrored allosteric pocket of M
pro

. Changes in averaged BC hub patterns 

hinted at a possible rerouting of information flow from 10 to 11 induced by ligand stabilization. 

CC hub transitions lead to the observation of a ligand-induced stabilization, verified by the 

decreased interprotomer asymmetry of the distances between residues 4 and 138, compared to 

the apo protein. DC hubs detected a consistent decrease in compaction around TYR126, in the 

presence of any ligand, and further analysis showed an associated intraprotomeric side-chain 

rotation involving residues VAL18 and GLN89, upon ligand binding. The aggregation of 

persistent and gained averaged EC hubs revealed a common path connecting the allosteric 

occupation by ligands, to the active site, involving the interaction between MET17 and LEU115 

(Figure 10). It is possible that due to its proximity to one of the EC hubs (VAL125) that 

TYR126 may have a role in the path traced via averaged EC. Averaged KC mainly showed 

similarities with averaged EC and DC. 

PART III: 

3.6. The stability of allosteric modulators in the presence of evolutionary mutations 

Coronaviruses, including SARS-COV-2, depend on RNA-dependent RNA polymerase (RdRp) 

for RNA synthesis 
8,78

. Due to the error-prone nature of RdRp, they can accumulate high rates of 

mutations, some of which may alter their virulence and antigenicity. As there is no drug for 



COVID-19 yet, we do not know which of these mutations could affect drug efficacy, or cause 

drug resistance. Hence it is important to understand the potential effects of a range of mutations 

in hit identification studies. To date, only a few studies have considered the impact of SARS-

COV-2 M
pro

 variations in apo protein 
4,12,79

. However, to our knowledge, there is no systematic 

research incorporating hit identification with analysis of structural and functional effects of 

variations. Here, we further analyzed the behavior of six potential allosteric modulators that we 

identified in reference protein in the presence of early evolutionary mutations. In order to quickly 

examine the stability of ligands in a total of 300 mutant systems (6 ligands x 50 mutant proteins), 

the ligand poses via ligand RMSDs were calculated and ligand RMSD kernel plots produced for 

the last 10 ns of 20 ns simulations of mutant-ligand and of 100 ns MD simulations of reference 

protein-ligand complexes (Figure 12, Figure S1). Overall, all ligands were well anchored in the 

allosteric pocket of mutant proteins, as seen from the ligand RMSD median values below 2.0 Å. 

Regarding the variations in ligand motion, a more stable conformation (unimodal distribution) 

was observed across SANC00468, SANC00467 and SANC00469 bound to mutant proteins, 

followed by SANC00630 as compared to the conformational stability of SANC00302 and 

SANC00303 (Figure 12). This observation was in agreement with docking results where the first 

four compounds exhibited high stability through various hydrogen bond interactions with key 

allosteric site residues (Figure 2C, Table S2). A closer view of each ligand revealed the subtle 

movement of the bromide SANC00302 and SANC00303 and the hydroxyl groups of 

SANC00630 in some mutant proteins as seen from the bimodal distributions (Figure 12). 

Figure 12 was further evaluated to calculate a consensus score across six ligands within each 

mutant system. For that, a table (Table S3) was prepared in which the y-axis contained 

individual mutant proteins and x-axis was for six ligands. For each ligand, kernel plots were 



checked and the ligands with a unimodal distribution in each mutant protein system received a 

tick (✓) in the table; the selected ones are also indicated in Figure 12 with black oval shape in 

the x-axis. Surprisingly, out of 50 mutant proteins, only three of them (A173V, N274D and 

R279C) received a consensus score of six (Table S3), meaning all ligands in these mutant 

proteins stayed stable over the MD simulation. Over all the systems, the best performing ligands 

were SANC00468 and SANC00469, which gave highly stable motions for 43 and 41 mutant 

samples, respectively (Table S3). 

The concept of allosteric effects of mutations and their role in the modulation of protein 

activity was previously discussed in literature 
22,80

. Our results, here, demonstrated the 

importance of incorporating the mutation information in hit identification, as mutations might 

have distal-allosteric effects (allosteric mutations) to the ligand-binding site. As a next step, we 

further calculated the five DRN metrics (BC, CC, DC, EC, KC) for these 50 mutant systems 

complexed with each allosteric modulator and compared to the reference system as detailed in 

the next section. 



 

 
 

Figure 12. Kernel density distribution plot of ligand RMSD values in ligand-bound wildtype (WT) and mutant systems extracted from 

the last 10 ns simulation. Each panel A to F is for the ligand indicated.
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3.7. Persistent and super persistent hubs of the averaged DRN metrics in the presence of 

mutations 

In Part II, we identified the persistent hubs for each averaged DRN metric on the basis of their 

existence in both protomers in the absence and presence of all ligands. This gave us MET17, 

THR111, PHE112 and CYS128 for averaged BC; MET6, ALA7, SER113, VAL114, LEU115, 

GLY124, VAL125, TYR126, GLN127 and CYS128 for averaged CC; VAL36, VAL91, 

GLY146, PHE150 and ALA206 for averaged DC; ALA7, LEU115 and VAL125 for EC; 

VAL36, VAL125 and GLY146 for KC (Table 2; reference rows). 

Here, to analyze the residue-residue communications, in the presence of potential allosteric 

modulators in mutant protein systems, we calculated the global top 5% averaged BC, CC, DC, 

EC, KC metrics for 51 protein systems (50 mutant protein systems and reference protein) 

(Figure S2-S6); and extracted the persistent hubs on the basis of their conservation in both 

reference protein and mutants bound to a specific ligand (Table 2). If a persistent hub is retained 

across all the ligand systems (in both protomers), then we called it a super-persistent hub.  

In the case of averaged BC (Table 2, Figure S2), we did not observe any super-persistent hub; 

however, MET17 retained as the main persistent hub in all protein-ligand systems except in the 

presence of SANC00630 in which the protomer B of the mutant M49I protein lost the hub node. 

Hub 111 was retained as persistent hub in the presence of SANC00468, SANC00469 and 

SANC00630; and hub CYS128 was persistent in the presence of SANC00302 and SANC00467. 

PHE112 remained as a persistent hub in all 51 protein systems complexed with SANC00630.  

Super-persistent hubs of averaged CC for 51 protein systems of all allosteric modulators were 

observed for residues MET6, ALA7, SER113, LEU115, VAL125, TYR126 and GLN127 

(Figure S3). In the presence of SANC00302, mutant protein A7V and in the presence of 
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SANC00468, the mutant protein G15S lost hub 124 in their protomer B; hence GLY124 stayed 

as a persistent hub in only SANC00303, SANC00467, SANC00469 and SANC00630 ligand 

systems. Additionally, hub 128 stayed as persistent in all ligand systems except SANC00468 in 

which it was lost in protomer B of K61R, A193V, I259T and N274D mutant protein systems in 

the presence of SANC00468. We also observed a new persistent hub for residue 10 in the 

presence of SANC00303.  

In the case of averaged DC (Table 2, Figure S4), we did not observe any super-persistent hub 

over all the ligand systems. The key persistent averaged DC hubs in the presence of most 

allosteric ligands were comprised of residues 150 and 206. PHE150 was a persistent hub to all 

ligand system, but was missed as a hub in protomer B of P184L and A116V mutant proteins in 

the presence of SANC00467. ALA206 was again a persistent hub to all ligand systems, except 

SANC00468 in which the hub was missing in protomer A of L220F mutant protein. Interestingly 

persistent hub GLY146 was lost in the presence of all allosteric modulators.  

Again, we did not observe any super-persistent hub in EC metric either (Table 2, Figure S5). 

But a new persistent hub (residue 10) in the presence of SANC00303 and SANC00469 was 

obtained. LEU115 was retained as persistent hub in all ligand systems, except in the presence of 

SANC00468 (the hub node was lost in protomer B of double mutant protein (A191V, L220F)); 

and in the presence of SANC00630 (the hub node was lost in protomer B of two mutant proteins 

M49I and A193V). Interestingly, the persistent hub, ALA7, was lost in the presence of all 

allosteric modulators according to averaged EC metric.  

LEU115 was also the key persistent hub according to KC metric, and it was only lost in the 

presence of SANC00302 due to absence of the hub node in protomer B of reference protein 

(Table 2, Figure S6). Two new persistent hubs (residues 10 and 150) were introduced in the 
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presence of SANC00469. Interestingly, the persistent hub, VAL36 was lost across all allosteric 

modulators according to averaged KC metric. 

Table 2: Persistent hubs (in grey) as observed in reference protein (apo and all ligand-bound 

states) and their comparison to 51 protein systems (reference protein + mutants) in the presence 

of each allosteric modulator. Super-persistent hubs are highlighted in orange. The hubs that are 

lost across all ligand systems are in pale blue. 

Metric  HUB 

 

 

 

Betweenness 

Centrality 

(BC) 

Reference 17 111 112 128 

SANC00302  17   128 

SANC00303 17    

SANC00467 17   128 

SANC00468 17 111   

SANC00469 17 111   

SANC00630  111 112  

 

 

 

Closeness 

Centrality 

(CC) 

Reference 6 7  113 114 115 124 125 126 127 128 

SANC00302  6 7  113  115  125 126 127 128 

SANC00303 6 7 10 113 114 115 124 125 126 127 128 

SANC00467 6 7  113  115 124 125 126 127 128 

SANC00468 6 7  113  115  125 126 127  

SANC00469 6 7  113  115 124 125 126 127 128 

SANC00630 6 7  113 114 115 124 125 126 127 128 

 

 

 

Degree 

Centrality 

(DC) 

Reference 36 91  146 150 206 

SANC00302   91   150 206 

SANC00303  91   150 206 

SANC00467 36 91 115   206 

SANC00468 36  115  150  

SANC00469   115  150 206 

SANC00630  91   150 206 

 

 

 

Eigencentrality 

(EC) 

Reference 7  115 125 

SANC00302    115 125 

SANC00303  10 115 125 

SANC00467   115  

SANC00468     

SANC00469  10 115 125 

SANC00630     

 

 

 

Reference  36  125 146  

SANC00302      146  

SANC00303   115    
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Katz 

Centrality 

(KC) 

SANC00467   115    

SANC00468   115    

SANC00469 10  115 125  150 

SANC00630   115    

 

 

In general, by tracking the conservation of the persistent hubs as defined PART II, we 

observed that the presence of the mutations affected the highly conserved communication hubs. 

This was evident by some of them being completely absent, i.e. hub 146 (DC), hub 7 (EC), hub 

36 (KC). Some of the persistent hubs were lost in the presence of some ligand systems. We also 

observed newly introduced persistent hubs in some of the metrics, i.e. hub 10 (KC; SANC00499 

and EC; SANC00303 and 469). The super-persistent hubs were only observed in the CC metric 

and this is probably because CC identifies short communication networks (the central nodes 

which are closer to most of the nodes). 

3.8. Mutation cold spots via analysis of five DRN metrics  

There are only limited studies about identification of mutation cold spots with varying 

definitions of what it means 
62,81–83

. The techniques that have been used include in silico 

saturation mutagenesis, meaning mutating every residue to all the other 19 residues and 

predicting the change in stability 
81

; or simply identifying regions where the mutations have not 

yet occurred in an organism 
62

. Here we propose to use DRN metric analysis and define the cold 

spots as the regions that are the least affected or not affected at all, by mutations. In the previous 

sections, we introduced persistent hubs and super-persistent hubs, and we will consider the cold 

spots as being those hubs that are super-persistent, or almost so. The super-persistent hubs of CC 

metric are all located mainly in the interface of the dimer as well as in the first two antiparallel 
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beta strands. We believe, these regions should be strongly considered in structure based drug 

discovery. 

3.9. Identification of ligand specific allosteric communication paths and changes in the 

presence of mutations  

In this section we zoomed into the global top 5% averaged metric calculations for reference and 

50 mutant protein systems in the presence of allosteric modulators (Figure S2-S6). We picked 

up two ligands as specific examples: SANC00302 being the least stable compound and 

SANC00468 being the most stable within all mutant systems. We specifically focused on the 

protomer A EC results (Figure 13) as a follow up on the allosteric communication path defined 

in Section 3.5.4, in which the path from allosteric site to the active site was defined via averaged 

EC persistent hubs (ALA7, LEU115 and VAL125) and hub score changes from 0 to 1 (MET17, 

ASN28 and GLY29) in the presence of ligand binding.  

Protomer A of M
pro

-SANC00302 reference protein – ligand complex has 18 centrality hubs for 

EC (residues 7, 10, 17, 28, 29, 38, 113, 115, 116, 117, 122, 124, 125, 146, 147, 148, 149, 150), 

including the path residues identified in Section 3.5.4 (Figure 13). When we collectively mapped 

these centrality hubs to the protein-ligand system, we had another very interesting observation: 

These centrality hubs form a communication path between the allosteric ligand binding site to 

the active site going through the interface residues of Domain I and II (Figure 14A). In the case 

of Protomer A of M
pro

- SANC00468 reference protein – ligand complex, some new centrality 

hubs are gained (9, 11, 13, 14), and some lost (38, 149) compared to that of M
pro

-SANC00302 

system; totaling to 20 EC hub residues (7, 9, 10, 11, 13, 14, 17, 28, 29, 113, 115, 116, 117, 122, 

124, 125, 146, 147, 148, 150) (Figure 13). 
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Figure 13. Heat map for the potential hubs according to the global top 5% for averaged EC 

metric for the reference and 50 mutant proteins in allosterically bound state to SANC00302 and 

SANC00468. Detected hubs are annotated with their centrality values, while their homologous 

residues in alternate samples are not, but are only shown for the sake of comparison. Low to high 

centrality values are colored white, through yellow, orange and red to black. Mutants 

demonstrating highly different centrality hub profiles are marked with red boxes. 
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Figure 14. The communication path traced by averaged EC hubs, starting from the allosteric 

ligand towards the catalytic residue. The protease is depicted by a cartoon representation onto 

which the averaged EC hub residues are overlaid as sphere representations, together with the 

non-hub catalytic residues HIS41 and CYS145 (in orange). (A) M
pro

-SANC00302 reference 

protein – ligand complex. Allosteric modulator is in green. (B) Mutant M
pro

 (G71S)-SANC00302 

complex. Mutant (in purple) indicated by arrow. (C) M
pro

- SANC00468 reference protein – 

ligand complex. Allosteric modulator is in purple. (D) Mutant M
pro

 (A173V)-SANC00468 

complex. Mutant (in purple) indicated by arrow. Ligand positions are as observed after MD 

simulation. 

 

Next, we looked at how these averaged EC hubs of protomer A change in the presence of 

mutations. In general, we observed that, there are more mutant cases where a large number of the 

centrality hubs is lost in the presence of SANC00302 than of SANC00468. Some examples of 

these cases from SANC00302 are V20L, G71S, I136V, C160S, V261A mutant proteins. We 
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further observed that the decreased number of EC hubs leads to weakened communication paths 

that are either weakened or totally lost. G71S-SANC00302 mutant system, for instance, could 

only maintain 7 EC hubs out of 18 (residues 9, 10, 11, 14, 115, 122, 125) (Figure 14B). Extreme 

examples to the loss of the communication path in the presence of SANC00468 include G15S, 

G71S and A173V mutants. A173V-SANC00468 complex with 8 EC hubs (7, 9, 10, 11, 113, 115, 

124, 125) is presented in Figure 14D. 

4. CONCLUSION 

In this study we have provided important novel insights towards computational drug discovery 

approaches and applied them to SARS-CoV-2 M
pro

 protein. Here, we will list these novel aspects 

and link to our findings for M
pro

 protein. 

We previously proposed a post-hoc analysis approach of MD simulations using DRN analysis 

to consider the dynamic nature of functional proteins and protein-drug complexes and to probe 

the impact of mutations and their allosteric effects. We also established a tool for DRN 
49

. We 

and others, in a number of publications, showed the effectiveness of our DRN approach 
12,25,90–

93,51,75,84–89
. In this study, for the first time, we investigated the relationships and effectiveness of 

five DRN metrics (BC, CC, DC, EC and KC) in characterizing key communication residues of 

reference M
pro

 protein and its allosteric behavior in the presence of potential allosteric 

modulators and evolutionary mutations. Further, we introduced the concept of analyzing globally 

central nodes (i.e. the 5% most central nodes measured across all samples) and developed an 

algorithm to pinpoint key hub residues, meaning any node that forms part of the set of highest 

centrality nodes for any given averaged centrality metric. 

We investigated the hub transition when exposed to a particular environment (i.e. ligand 

binding) by considering these strongest actors (hubs) across samples and showed how other non-
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hub residues behave at the homologous position. The key reason for using DRN analysis in M
pro

 

protein was to tackle the problem of protein symmetry that we identified in our previous study 
12

, 

where we observed that protomer dynamics could be switched between identical copies of a 

protomer in a homodimer. In this study, we investigated the phenomenon in greater detail using a 

combinatorial approach to examine patterns of change and conservation of critical nodes, 

according to five independent criteria of network centrality. Asymmetric behavior of multimeric 

proteins, in general, is not considered in computational analysis. To our knowledge, this is the 

first study tacking this problem via the use of five DRN metrics, and emphasizing the importance 

of this aspect, especially while analyzing the allosteric behavior of a protein in the presence of 

ligands and mutations. 

Applications of our approaches pinpointed a number of important aspects in SARS-CoV-2 

M
pro

 protein: (1) we identified hubs that stayed the same in apo and upon a ligand binding 

(constitutive hubs) indicating that there is no ligand effect from symmetry; (2) we captured 

different persistent hubs from each metric, and collectively they gave us highly crucial functional 

residues which were spreading out from the allosteric site to the interface and antiparallel beta 

strands. We believe that the antiparallel beta strands, especially the first two near to the dimer 

interface, are highly crucial in the mechanical signal transduction; (3) we also looked at the 

symmetry problem and analyzed hub losses and gains in the presence of allosteric modulators. 

The identified residues informed us about specific communication changes due to the presence 

of ligand and allosteric communication residues. A few examples of hub gains and losses that we 

observed in functional residues are VAL13 (next to the N-finger), GLY 138 (part of S1 subsite) 

and PHE140 (chameleon switch). We also observed a number of hub transitions in antiparallel 

beta strands; (4) very interestingly, we showed that EC centrality hubs form ligand specific 
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communication paths between the allosteric ligand binding site to the active site going through 

the interface residues of Domain I and II. 

In general, structure based drug discovery approaches have been used successfully for the 

design of many orthosteric drugs and to some extent of allosteric modulators. However, 

consideration of the impact of evolutionary mutations of pathogens is mostly undetermined in 

rational drug design; even though the information obtained may help to develop drugs that could 

circumvent or reduce potential drug resistance issues. Here, we applied this mostly neglected 

concept of computational drug discovery to identify potential allosteric modulators in the 

presence of 50 early evolutionary mutations of the SARS-CoV-2. We gained a number of 

observations: (1) stability of the ligands drastically changed in the presence of some of the 

mutations. R60C, N151D, V157I, C160S and A255V mutant proteins could only hold two 

compounds out of six stably. SANC00302 was the least stable compound (in 20 mutant systems) 

and SANC00468 was the most stable (in 43 mutant systems); (2) the persistent hubs, residue 7 

(EC), 36 (KC) and 146 (DC), lost their importance in the network communications in the 

presence of mutations; (3) in the presence of mutants some new persistent hubs (residue 10 (EC), 

115 (DC and KC), 150 (KC)) were gained; (4) Further, we defined super-persistent hubs, and we 

considered cold spots as being those hubs that are super-persistent, or almost so. These regions 

could be considered in structure based drug discovery; (5) in the presence of some of the 

mutations, the network communication within each protomer drastically differed from each 

other, emphasizing the asymmetric behavior of the dimer protein; (6) most importantly, the 

allosteric communication path, that was identified via EC centrality hubs, between the allosteric 

ligand binding site and the active site was lost in some of the mutant protein – ligand systems. 
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Collectively, our approaches offer routes for novel rational drug discovery methods and 

provide computationally feasible platforms (1) to determine globally central nodes that form part 

of the set of highest centrality nodes (hubs) for any given averaged centrality metric; (2) to 

identify key functional residues implicated in allosteric signaling in the presence of allosteric 

modulators; (3) to understand the potential asymmetric behavior of dimeric proteins under 

internal and external forces and to distinguish those introduced by ligand binding or by 

evolutionary mutations; (4) to utilize five DRN metrics to pinpoint cold spot residues that can 

potentially be chosen for structure guided drug discovery. 
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Table S2: Molecular interactions established between hits and their respective allosteric 

site residues in SARS-CoV-2 M
pro

. In black and red labels are residues from protomer A 

and B respectively. 

Table S3: The distribution of ligand stability across mutant samples. The symbol ‘✓’ 

indicates highly stable motion. The consensus score across each mutant system is the 

number of ‘✓’ entries in that row. 

Figure S1: (A) Kernel density plot of ligand RMSD of the whole 100 ns simulation in 

SARS-CoV-2 and HCoV-OC43 M
pro

. (B) 2D structure of identified allosteric modulators. 

Figure S2A-S2F: Heatmaps of the potential hubs as per to the global top 5% of the BC 

DRN metric for the reference (WT) and mutant systems in complex with allosteric 
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modulator: SANC00302, SANC00302, SANC00467, SANC00468 and SANC00630. BC 

measurements of ligand-bound protomer (chain A) are shown on the left while those of 

the unbound protomer B are on the right. Residue hubs are annotated with their centrality 

values, while their homologous residues in alternate samples are not. The colour scale 

from white, through yellow, orange and red to black indicates the degree of residue 

centrality.  

Figure S3A-S3F: Heatmaps of the potential hubs as per to the global top 5% of the CC 

DRN metric for the reference (WT) and mutant systems in complex with allosteric 

modulator: SANC00302, SANC00302, SANC00467, SANC00468 and SANC00630. CC 

measurements of ligand-bound protomer (chain A) are shown on the left while those of 

the unbound protomer B are on the right. Residue hubs are annotated with their centrality 

values, while their homologous residues in alternate samples are not. The colour scale 

from white, through yellow, orange and red to black indicates the degree of residue 

centrality. 

Figure S4A-S4F: Heatmaps of the potential hubs as per to the global top 5% of the DC 

DRN metric for the reference (WT) and mutant systems in complex with allosteric 

modulator: SANC00302, SANC00302, SANC00467, SANC00468 and SANC00630. DC 

measurements of ligand-bound protomer (chain A) are shown on the left while those of 

the unbound protomer B are on the right. Residue hubs are annotated with their centrality 

values, while their homologous residues in alternate samples are not. The colour scale 

from white, through yellow, orange and red to black indicates the degree of residue 

centrality. 



 62 

Figure S5A-S5F: Heatmaps of the potential hubs as per to the global top 5% of the EC 

DRN metric for the reference (WT) and mutant systems in complex with allosteric 

modulator: SANC00302, SANC00302, SANC00467, SANC00468 and SANC00630. EC 

measurements of ligand-bound protomer (chain A) are shown on the left while those of 

the unbound protomer B are on the right. Residue hubs are annotated with their centrality 

values, while their homologous residues in alternate samples are not. The colour scale 

from white, through yellow, orange and red to black indicates the degree of residue 

centrality. 

Figure S6A-S6F: Heatmaps of the potential hubs as per to the global top 5% of the KC 

DRN metric for the reference (WT) and mutant systems in complex with allosteric 

modulator: SANC00302, SANC00302, SANC00467, SANC00468 and SANC00630. KC 

measurements of ligand-bound protomer (chain A) are shown on the left while those of 

the unbound protomer B are on the right. Residue hubs are annotated with their centrality 

values, while their homologous residues in alternate samples are not. The colour scale 

from white, through yellow, orange and red to black indicates the degree of residue 

centrality. 
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