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ABSTRACT 15 

Fourier-transform near-infrared (FT-NIR) spectroscopy was used to determine the geographical 16 

origin of 233 hazelnut samples of various varieties from five different countries (Germany, 17 

France, Georgia, Italy, Turkey). The experimental determination of the geographical origin of 18 

hazelnuts is important, because there are usually large price differences between the producer 19 

countries and thus a risk of food fraud that should not be underestimated. The present work is 20 

a feasibility study using a low-cost method, as high-field NMR and UPLC-QTOF-MS have 21 

already been used for this question. Sample sets were split with repeated nested cross validation 22 

and an ensemble of discriminant classifiers with random subspaces was used to build the 23 

classification models. By using a preprocessing strategy consisting of multiplicative scatter 24 

correction, bucketing and the mean averaging of five measured spectra per sample, a test 25 

accuracy of 90.6 ± 3.9% was achieved, which rivals results obtained with much more expensive 26 

infrastructure. The application of the feature selection approach surrogate minimal depth 27 

showed that the successful classification is mainly caused by protein signals. In addition, a low-28 

level data fusion of the NIR and NMR data was performed to assess how well the two methods 29 

complement each other. The data fusion was compared to a complementary approach, where 30 

the classification results based on the individual NIR and NMR models were jointly examined. 31 

The data fusion performed better than the individual methods with a test accuracy of 32 

96.6 ± 2.8%. A comparison of the outliers in all classification models shows conspicuities in 33 

always the same samples, indicating that robust classification models are obtained. 34 
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1. INTRODUCTION 38 

Hazelnuts (Corylus avellana L.) are a globally traded food with a production volume of 39 

approximately 1,125,000 t in 2019.[1] Turkey is the main producing country with a volume of 40 

776,000 t in 2019, representing 69% of the world production. Other major producing countries 41 

are Italy, Azerbaijan, the USA, Chile, China and Georgia, although producer prices vary widely 42 

in some cases. For example, the price for a ton of hazelnuts from Georgia in 2019 was only 43 

1550 USD/t, but in Italy it was 3600 USD/t, as these hazelnuts are considered to be of 44 

particularly high quality. Such a wide price range is bound to provide a financial incentive for 45 

food fraud, where hazelnuts from a low-price producing country are falsely declared with a 46 

different origin to increase profits. 47 

Bachmann et al. (2018) and Klockmann et al. (2016) explored the issue of determining the 48 

geographical origin of hazelnuts using high-resolution instrumentation, 1H NMR spectroscopy 49 

and ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry 50 

(UPLC-QTOF-MS) in combination with chemometric evaluation strategies.[2,3] These studies 51 

showed that it is possible to distinguish the origin of hazelnuts using metabolomics approaches. 52 

However, these tools are quite expensive and require a high level of scientific expertise, which 53 

is limiting, especially for smaller laboratories and small and medium-sized food companies. 54 

Fourier-transform near-infrared spectroscopy offers a cost-effective way to determine the 55 

geographical origin of food, as has already been shown with various foods such as pistachio, 56 

wheat, almonds and walnuts.[4–7] In addition, NIR can be used for a wide range of food-related 57 

issues in the food sector, e.g. quality control of olive oil, determination of storage time of pork 58 

and identifying oxidation of vegetable oils.[8–10] Other advantages of NIR spectroscopy are 59 

the absence of hazardous chemicals, the non-destructive nature, a fast measurement time and 60 

the fact that no extraction is required. Two Italian research groups have already used NIR 61 

spectroscopy to distinguish 'Nocciola Romana', which carries a Protected Designation of Origin 62 

(PDO), from other hazelnuts; however, a holistic comparison of several countries of origin has 63 

not yet taken place.[11,12] Both studies examined whole, shelled hazelnuts in order to develop 64 

a non-destructive rapid method. Based on a comparison of different preparation techniques for 65 

NIR measurement to determine the geographical origin of almonds, we decided to analyze the 66 

samples after homogenization and freeze-drying, as we expected this approach to provide a 67 

higher information content and a better representation of the sample populations.[13] One aim 68 

of this study is therefore to investigate the ability of NIR spectroscopy to determine the 69 

geographical origin of hazelnut samples, as there is a need for such a low-cost analytical 70 
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method. This could be used in industry for incoming goods inspection. To establish such a 71 

method, we compared various preprocessing strategies and classification approaches. In 72 

addition, surrogate minimal depth (SMD) was applied, a random forest based approach for 73 

feature selection and relation analysis that has already been used to study other vibrational 74 

spectroscopic data.[14–16]  75 

The newly acquired NIR and the already existing NMR data were selected for low-level fusion 76 

due to their one-dimensionality and potentially complementary nature. Low-level fusion 77 

involves concatenation of the datasets with or without prior preprocessing methods.[17] In the 78 

case of hazelnuts as a matrix, the NIR captures mainly non-specific information on groups of 79 

substances with high concentration, e. g. lipids, carbohydrates and proteins, while the 1H NMR 80 

measurement of the polar extract provides more specific information on substances such as 81 

organic acids, amino acids and specific carbohydrates. To the best of our knowledge, this is the 82 

first publication on the experimental determination of the geographical origin of food by 83 

combining NIR and high-field NMR data in a multiclass model. The aim of the low-level data 84 

fusion approach of the NIR and NMR data is to obtain a statistical model that is better than the 85 

individual methods. 86 

 87 

88 
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2. Materials and Methods 89 

2.1. Hazelnut Samples 90 

In a previous study by our group 262 raw hazelnut samples were used for the determination of 91 

the geographical origin by means of 1H NMR.[2] Authentic reference material was provided by 92 

partners, distributors and suppliers. Of these, only 233 samples could be used for NIR analysis, 93 

as the sample material for some samples has already been used up. Samples from a total of five 94 

countries were analyzed, with several samples coming from economically important growing 95 

regions. In this study, 27 German samples, 116 French samples, 15 Georgian samples, 37 Italian 96 

samples and 38 Turkish samples were used. The same samples were also taken for the 1H NMR 97 

analysis and the low-level data fusion. More detailed information on origin and variety are 98 

given in the Supporting Information (Table S1). 99 

2.2. Sample Treatment 100 

All hazelnut samples were treated according to Bachmann et al.[2] Hazelnut samples were 101 

frozen in liquid nitrogen before they were homogenized with a Grindomix GM 300 knife mill 102 

and dry ice was added. After evaporation of the dry ice, the samples could be directly used for 103 

NMR analysis. To prepare the samples for NIR measurement, the homogenized samples were 104 

then freeze-dried for 48 hours. 105 

2.3. NIR spectroscopy 106 

1.250 g (± 0.005 g) of the ground and freeze-dried hazelnut samples were thawed at 22 °C 107 

(± 2 °C) in closed glass vials (52.0 mm x 22 mm x 1.2 mm, Nipro Diagnostics Germany GmbH, 108 

Ratingen, Germany) preceding NIR measurement. 109 

The NIR measurements were performed on a TANGO FT-NIR spectrometer (Bruker Optics, 110 

Bremen, Germany) equipped with an integrating sphere. Spectra were recorded in reflectance 111 

mode at room temperature (22 ± 2 °C), with the wavenumber range set to 11546-3949 cm−1 112 

collecting 50 scans at a resolution of 2 cm−1. Each sample was analyzed five times by shaking 113 

the lyophilisate in the glass vial between measurements. 114 

2.4. NMR spectroscopy 115 

The NMR spectra used for the data fusion were acquired by Bachmann et al. in an earlier study 116 

on a Bruker Avance III 400 MHz spectrometer (Bruker Biospin, Rheinstetten, Germany) 117 

operating at 400.13 MHz with the noesygppr1d pulse program.[2] 118 
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2.5. NIR spectra preprocessing 119 

All preprocessing techniques were performed using MATLAB R2020b (The MathWorks Inc., 120 

Natick, MA, USA). Multiplicative scatter correction (MSC) was applied to ensure a good 121 

comparability between samples. MSC is a commonly used preprocessing step to normalize the 122 

data and remove artifacts from the samples by using the mean spectrum of the available 123 

data.[18] These artifacts are mostly due to differences in particle size of the powdered sample, 124 

which leads to non-uniform scattering effects.[19] After MSC, either no derivative, the first 125 

derivative or the second derivative was applied to the spectra. The approaches that used a 126 

derivative also utilized a Savitzky-Golay smoothing filter with a window size of 11 and a 127 

polynomial order of 2 to minimize the negative effects of a derivative on the signal-to-noise 128 

ratio.[18] Next, variable reduction was achieved by calculating the mean of five adjacent 129 

features into one bucket, leading to a reduction from 3720 variables (spectral range: 11538-130 

3949 cm−1) to 744 NIR-buckets. Finally, the mean or median of the five measured spectra per 131 

sample was determined. The classification results of the different preprocessing strategies were 132 

then compared. 133 

2.6. NMR spectra preprocessing 134 

The NMR data were processed with Topspin 3.2 (Bruker Biospins, Rheinstetten, Germany). A 135 

Fourier transformation with a line broadening factor of 0.3 was applied on the FIDs, then 136 

baseline corrected and phased. Integrals of signals and regions from the NMR spectra were 137 

determined manually in AMIX 3.9.14 (Bruker Biospins, Rheinstetten, Germany) as variable 138 

sized buckets and normalized to total intensity by scaling. A total of 222 NMR-buckets were 139 

defined for each sample. The mean and median of the triplicate measurement was 140 

determined.[2] 141 

2.7. NIR-NMR low-level fusion 142 

For the low-level fusion, the 744 NIR buckets of the best performing model were concatenated 143 

with the 222 NMR buckets, once mean and once median averaged.[17] Autoscaling was used 144 

as a scaling method for the fusion data.[20,21] 145 

2.8. Multivariate data analysis 146 

Multivariate data analysis was performed with MATLAB R2020b including the Classification 147 

Learner app (The MathWorks Inc., Natick, MA, USA). Samples were split into five equal parts 148 

with a stratified nested cross-validation stratified by geographic origin.[22] The internal 149 

validation was also split fivefold to avoid overfitting during model training. Repeated nested 150 
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cross-validation (RNCV) was iterated five times to obtain an average result, resulting in 25 151 

different corresponding training and test sets, with each sample being part of 20 training and 5 152 

test sets, as different sample splits can lead to large differences in model accuracy. The 153 

Classification Learner app was used to determine which classifiers would be suitable for the 154 

NIR, NMR and low-level fusion data, and then the chosen classifier was used for automatic 155 

model training and subsequent validation. The ensemble of discriminant classifiers using 156 

random subspaces was the best performing method and was trained with 372 subspace 157 

dimensions and 30 learning cycles.[23] The test accuracies given are the mean of the test 158 

accuracies of all sample splits from the RNCV. The macro-F1 score is calculated as the 159 

arithmetic mean of F1 score of the five classes, formed from the harmonic mean of the class-160 

wise precision and sensitivity. In addition, Fleiss’ kappa was calculated to determine the degree 161 

of agreement of the classifiers in each model.[24] 162 

2.9. Feature selection and relation analysis with surrogate minimal depth (SMD) 163 

The software R in version 3.6.3 and the R package SurrogateMinimalDepth in version 0.2.0 164 

(https://github.com/StephanSeifert/SurrogateMinimalDepth) were utilized for feature selection 165 

with the parameters ntree = 10000, mtry = 143, min.node.size = 1 and s = 149. In order to 166 

compensate for the class imbalance, case.weights were chosen accordingly meaning that 167 

samples from rare classes were sampled more frequently for training. Subsequently, the relation 168 

parameter mean adjusted agreement of the selected features was determined and depicted in a 169 

heatmap generated by the R package pheatmap in version 1.0.12. For the random forest 170 

classification, the R package ranger was applied with the above described parameters.[25] Since 171 

random forests provides an internal validation, no cross validation scheme had to be applied 172 

and all of the samples were utilized simultaneously. 173 

  174 
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3. RESULTS AND DISCUSSION 175 

3.1. NIR-Spectroscopy 176 

Hazelnuts are rich in fat (~61%), carbohydrates (~17%), protein (~15%) and have a water 177 

content of ~5%.[26] The fatty acid profile is dominated by oleic (72.8-83.5%), linoleic (7.6-178 

16.6%) and palmitic (4.1-6.8%) acid and is similar to that of olive oil.[27] A model NIR 179 

spectrum of a hazelnut sample is shown in the Supporting Information (S2). The NIR spectrum 180 

shows strong similarities to those of other species of nuts, because of akin nutrient 181 

composition.[6,7] Due to the broad absorption and the overlapping of the signals of the 182 

individual substances of the complex matrix, no peaks in the spectra can be clearly assigned to 183 

specific metabolites. Instead, signals and regions in the spectra can usually be assigned to 184 

different molecular vibrations caused mainly by compound classes of macronutrients. The peak 185 

at 8550 cm−1 can be assigned to HC=CH (C-H second overtone) caused by unsaturated fatty 186 

acids. Other signals that can be associated with lipids are the second overtone of C-H (C-H, C-187 

H2, C-H3) stretching vibrations between 8500-8000 cm−1, the first overtone of C-H between 188 

5900-5600 cm−1 and the combination bands of the methylenic CH2 between 4500-189 

4000 cm−1.[11,12] The first overtone of N-H and O-H of proteins can be observed in the region 190 

between 7100-6100 cm−1.[28] Another region related to proteins is between 4900-4600 cm−1, 191 

caused by the combination band of peptide bonds.[28] 192 

Principal component analysis (PCA) is arguably the most widely used unsupervised method for 193 

reducing the complexity of metabolomics data while preserving variance as much as possible 194 

and revealing underlying class information.[29] The limitations of PCA as an exploratory 195 

method are that underlying patterns cannot be uncovered if the intragroup variance of the 196 

sample groups is greater than the intergroup variance.[30] The advantages of PCA include an 197 

initial unbiased look at the data to examine the extent to which samples are similar within and 198 

outside their groups and to identify potential outliers.[31] Figure 1A shows the PCA scores plot 199 

of the unprocessed samples, where the first principal component (PC) contains 85.0% of the 200 

variance and 8.3% the PC 2. The plot shows a cluster of all samples with no outliers or clear 201 

group separation. Nevertheless, the different groups show similarities. The French samples are 202 

in the center-left of the plot, while the German samples are below and the Georgian samples 203 

are above. The Italian and Turkish samples mostly scatter from the center to the right side of 204 

the plot along the first principal component (PC1). The PCA scores plot of the preprocessed 205 

data is shown in Figure 1B with PC 1 accounting for 60.2% of the variance and PC 2 206 

representing 23.7%. The plot shows a coherent cluster with no outliers, but with less clear 207 
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spatial allocations of the different groups. As expected, PCA cannot identify separate groups 208 

with respect to the origin of the samples. Hence, supervised multivariate analysis was 209 

performed to determine the geographical origin of the hazelnut samples. 210 

 211 

Figure 1. (A) PCA scores plot of unprocessed, mean averaged NIR spectra. (B) PCA scores plot of NIR spectra 212 

after MSC, bucketing and mean averaging. 213 

Table 1. Test accuracy, macro-F1 score and Fleiss’ kappa coefficient of the different preprocessing strategies of 214 

the NIR analysis attained by using an ensemble of discriminant classifiers using random subspaces. 215 

Strategy Preprocessing Test Accuracy Macro-F1 Fleiss’ Kappa 

NIR-I MSC – Mean 89.5 ± 4.3% 85.9% 87.4% 

NIR-II MSC – Median 84.2 ± 5.3% 80.1% 78.5% 

NIR-III MSC – Bucketing – Mean 90.6 ± 3.9% 88.1% 88.7% 

NIR-IV MSC – Bucketing – Median 81.3 ± 5.2% 76.7% 77.8% 

NIR-V 
MSC – 1. Derivative – Smoothing – 

Bucketing – Mean 
76.6 ± 5.3% 70.5% 73.7% 

NIR-VI 
MSC – 1. Derivative – Smoothing – 

Bucketing – Median 
75.1 ± 5.3% 68.5% 75.8% 

NIR-VII 
MSC – 2. Derivative – Smoothing – 

Bucketing – Mean 
67.6 ± 4.8% 57.9% 67.7% 

NIR-VIII 
MSC – 2. Derivative – Smoothing – 

Bucketing – Median 
68.6 ± 4.8% 56.9% 70.9% 

NIR-IX Cut – MSC – Bucketing – Mean 83.6 ± 3.8% 79.6% 77.7% 

NIR-X Cut – MSC – Bucketing – Median 75.2 ± 6.0% 70.6% 66.4% 

NIR-SMD 
MSC – Bucketing – Mean –  

SMD feature selection 
86.4 ± 4.7% 82.1% 78.1% 

For the application of supervised approaches different preprocessing strategies and different 216 

classifiers were applied and different parameters to assess their performance were utilized. The 217 

test accuracy is the most common measure for machine learning models. The macro-F1 score 218 
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provides information about the mean class-wise precision and sensitivity of a sample split.[32] 219 

Fleiss’ kappa is a measure of inter-rater reliability for determining the homogeneity of the 220 

RNCV’s ratings of the samples, regardless of whether they were correctly allocated or not.[33] 221 

The algorithm used for multivariate analysis was an ensemble of discriminant classifiers using 222 

random subspaces.[23] This algorithm showed the best results for strategies I-IV. However, 223 

strategies IV-VIII showed slightly better results with other classifiers (data not shown), but for 224 

clarity and comparability the same classifier was used for each strategy and the results are 225 

shown in Table 1. The mean spectra of preprocessing strategies I, V and VII are depicted in the 226 

Supporting Information (S3). 227 

The adverse effects on the signal-to-noise ratio due to smoothing and the use of the derivative 228 

of the spectra is reflected in the relatively poor results of preprocessing strategies V-VIII. 229 

Strategies VII and VIII, which use the second derivative, have a test accuracy of 67.6 ± 4.8% 230 

and 68.6 ± 4.8%, respectively. Including the information from the confusion matrices shows an 231 

even worse picture. Macro-F1 scores of 57.9% and 56.9% for strategies VII and VIII, 232 

respectively, show a more dramatic decline to their test accuracies compared to other 233 

preprocessing strategies. This is probably due to the fact that the French sample group has the 234 

highest number of samples and a large proportion of the samples from other countries are 235 

misclassified as French. The strategies with the first derivative already show significantly better 236 

results with a test accuracy of 76.6 ± 5.3% for strategy V and 75.1 ± 5.3% for strategy VI. The 237 

macro-F1 scores are also much closer to test accuracies. Since additive effects are observed in 238 

the spectrum, the use of the first derivative is reasonable in theory. In the practice of this study, 239 

however, the negative effects of the derivative on the signal-to-noise ratio may have led to 240 

poorer predictive performance of the models. The NIR preprocessing strategies IX and X cut 241 

off the spectrum above the wavenumber of 9000 cm−1. This is a common preprocessing step as 242 

this region is usually not very information-rich and contains mainly bands from the third and 243 

the fourth overtone vibrations.[28,34] Both strategies lead to a decrease in test accuracy of 7.0% 244 

and 6.1% compared to strategies III and IV, which contain features from the whole spectrum. 245 

This suggests that the bands in this region are relevant for the research question. Although all 246 

strategies forgoing the derivative show good model performance, the results of strategies I and 247 

III show the highest test accuracy of 89.5 ± 4.3% and 90.6 ± 3.9%, a macro-F1 score of 85.9% 248 

and 88.1% and a Fleiss’ kappa coefficient of 87.4% and 88.7%. NIR strategy I only used MSC 249 

and mean averaging as preprocessing steps, while NIR-III also used bucketing of the variables. 250 

Although strategy I shows similar results to those of strategy III, this preprocessing approach 251 

is not pursued further because bucketing ensures a more robust model, reduces the risk of 252 
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overfitting and requires less computing time. In summary, the best preprocessing method is one 253 

of the simplest. Forgoing a part of the spectra and using derivatives resulted in a loss of 254 

information and thus lower classification accuracies. Consistent with all preprocessing 255 

strategies except those using the second derivative is that mean averaging lead to a higher test 256 

accuracy. The advantage of the median is its robustness and protection against outliers but using 257 

the mean average can improve the spectral resolution, leading to better classification results. 258 

  Predicted Class  
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DE 20.8 5  0.4 0.8 77.0% 

FR 1.6 111.8 1 1.6  96.4% 

GE  1.2 11.8 0.4 1.6 78.7% 

IT  5.8 0.8 30.4  82.2% 

TR  1.6  0.2 36.2 95.3% 

Precision 92.9% 89.2% 86.8% 92.1% 93.8% 90.6% 

 259 

Figure 2. Confusion matrix of NIR preprocessing strategy III. The values given correspond to the mean of the five 260 

runs of the RNCV. Mean classification accuracy (90.6%), precision and sensitivity scores of the classes are also 261 

given. Confusion matrices of the other NIR preprocessing strategies are in the Supporting Information (S5). [Color] 262 

The good classification results show the impact of geographical influences on the macronutrient 263 

profile of hazelnut, despite variable factors such as post-harvest processing and different harvest 264 

years, making NIR spectroscopy well suited for determining the geographical origin. An 265 

external classification accuracy of 90.6 ± 3.9% for a multiclass model with five classes is 266 

impressive in the field of geographical origin determination of food using NIR (figure 2). To 267 

put this result in relation to other publications in this field: A classification model determining 268 

the geographical origin of walnuts from seven countries achieved a classification accuracy of 269 

77.0 ± 1.6% using a linear discriminant analysis.[7] Another study that investigated the 270 

geographical origin of almonds obtained a classification accuracy of 80.3 ± 1.5% when 271 
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comparing six countries of origin with a support vector machine model.[6] Less complex 272 

models than that one, comparing only two sample groups of hazelnuts, have been developed by 273 

Moscetti et al. (2014) and Biancolillo et al. (2018).[11,12] Moscetti et al. (2014) compared 274 

‘Nocciola Romana’ hazelnuts, which have a Protected Designation of Origin (PDO) indication, 275 

with hazelnuts of the ‘Tonda di Giffoni’ and ‘Barrettona’ cultivars and reported a classification 276 

accuracy of 95.5% using a support vector machine algorithm.[35] Biancolillo et al. (2018) 277 

investigated a similar question by comparing the ‘Nocciola Romana’ PDO with ‘other’ 278 

hazelnuts originating from Italy or the USA, resulting in a correct classification rate of 93.9% 279 

for ‘Nocciola Romana’ and 95.1% for ‘others’ by partial least square discriminant analysis. 280 

In order to identify features that are responsible for this successful classification and to analyze 281 

their relationships, the feature selection approach surrogate minimal depth (SMD) was applied 282 

to the NIR data of preprocessing strategy III. Unlike other feature selection techniques, SMD 283 

does not evaluate the importance of the features individually, but by including their relations 284 

with each other.[14] SMD selected 245 of 744 buckets, and the high number of selected features 285 

can be explained by the fact that the bands in the NIR spectrum are quite broad and many 286 

features belong to the same signal. To obtain a more comprehensive interpretation of the 287 

important features, the mean adjusted agreement, a relation parameter that takes into account 288 

the mutual association to the result, is also obtained by SMD. The results of this relation analysis 289 

are presented in a heat map (Figure 3A) and in a spectrum colored according to the respective 290 

clusters of the relation analysis (Figure 3B). The heat map shows six distinct clusters that mainly 291 

contain neighboring buckets confirming the conclusion previously drawn from the high number 292 

of selected features. Somewhat surprisingly, four of the clusters are located in the wavenumber 293 

range between 11300-8700 cm−1 and contain only low intensity signals. Cluster 1 (red), cluster 294 

2 (blue) and cluster 3 (purple), which show moderate to strong relations to each other, are in 295 

the region between 11500-10200 cm−1, which can be assigned to the third overtone of C-H from 296 

methyl and methylene. However, cluster 3 (purple) contains features in the range of 10600-297 

10200 cm−1, where also bands of the N-H stretch-second overtone are found. The importance 298 

of the spectral regions represented by the clusters 1-4 is also confirmed by the results of the 299 

NIR preprocessing strategy IX, which did not include the buckets over 9000 cm−1 and gave a 300 

lower classification accuracy of 83.6 ± 3.8% (Table 1). However, the fact that this accuracy is 301 

still quite high shows that the features in clusters 5 (green) and 6 (gray) are even more important 302 

for classification. Moreover, these clusters show very interesting relations between the distinct 303 

regions 7000-6000 cm−1, 4800-4700 cm−1 and 4400-4300 cm−1. Signals in the region between 304 

7000-6000 cm−1 can be assigned to the first overtone of N-H from the peptide bond and side 305 
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chains of amino acids as well as the first overtone of O-H.[28,36] N-H combination from 306 

proteins, C-H/C=O lipid associated and O-H combination bands are in the region between 4800-307 

4700 cm−1.[28] Signals in the region between 4410-4390 cm−1 can be ascribed to C=O and N-308 

H in α-helix and β-sheet structures in peptides.[28] Since all of these related bands can be 309 

assigned to functional groups of proteins, we can conclude that the successful classification is 310 

caused by different protein compositions of the hazelnut samples. 311 

 312 

Figure 3. Results of the SMD feature selection and relation analysis: A Heatmap of the relation parameter mean 313 

adjusted agreement of the 245 selected features (A), as well as an example NIR hazelnut spectrum with buckets 314 

colored according to the respective associated clusters (B) are shown. 315 
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It is also worth noting that the random forest analysis on which SMD is based on has a much 316 

lower classification accuracy of 60.1% compared to the previous analysis (Supporting 317 

Information, Figure S5.11). The main difficulty of the random forest model was to distinguish 318 

between similar groups of Germany and France, and Turkey and Italy. To assess how much of 319 

the relevant information is contained in the significant buckets, we repeated the RNCV and 320 

classification using only these features resulting in a classification accuracy of 86.4 ± 4.7%. As 321 

this is only 4.2% less than the model with the best performance using all features, this shows 322 

that the 245 selected buckets carry the most important information for classification and that 323 

the SMD performs well for feature selection, even though the random forest analysis shows 324 

comparatively poor results for classification. The averaged NIR spectra of samples from the 325 

five countries of origin (Supporting Information, Figure S4) were overlaid to check for 326 

differences in the spectra. In agreement with the feature selection results, the spectral regions 327 

11500-10000 cm-1, 7000-6000 cm-1 and 5100-4500 cm-1 show the largest differences. The 328 

region between 4400-4000 cm-1 also shows differences, but the signals in this region were 329 

susceptible to matrix effects, as evident by the inconsistencies of this region across the five 330 

measurements of a single sample. 331 

3.2. NIR-NMR-Data Fusion 332 

In the original publication, which used 1H NMR spectroscopy to determine the geographical 333 

origin of hazelnuts based on the polar metabolome, 262 hazelnut samples were divided into a 334 

training set containing two-thirds of the samples (172) and a test set with one-third of the 335 

samples (90).[2] Subsequently, several classification algorithms were trained with the training 336 

set and the test set was used to externally evaluate model performance. As with the results of 337 

the NIR spectroscopy, an ensemble of discriminant classifiers with a random subspace 338 

algorithm showed the best results. This is quite interesting because despite different observed 339 

features, both datasets appear to have similar underlying structures in the processed data. The 340 

model achieved a cross validation accuracy of 91% for the training set and an accuracy of 96% 341 

for the test set. Due to the use of a smaller number of samples and a stratified repeated nested 342 

cross validation to capture the variance of different sample splits, the NMR classification results 343 

were recalculated using the same external splits into training and test sets. The NMR data were 344 

Fourier transformed, baseline corrected, phased and 222 regions were defined as variable sized 345 

buckets, which were normalized to total intensity by scaling.[2] The NMR measurements were 346 

performed in triplicate, so the median and mean were compared for averaging. The 347 

classification results of the NMR and Fusion preprocessing strategies are shown in Table 2. 348 
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Table 2. Test accuracy, macro-F1 score and Fleiss’ kappa coefficient of the recalculated NMR analysis and the 349 

different NIR-NMR-Fusion approaches obtained using an ensemble of discriminant classifiers using random 350 

subspaces. 351 

Strategy Preprocessing Test Accuracy Macro-F1 Fleiss’ Kappa 

NMR-I NMR – Mean 94.3 ± 3.2% 93.6% 93.2% 

NMR-II NMR – Median 95.1 ± 3.0% 94.4% 94.2% 

Fusion-I NIR-III + NMR-Mean Fusion 96.1 ± 2.7% 95.3% 95.1% 

Fusion-II NIR-III + NMR-Median Fusion 96.1 ± 3.2% 95.4% 94.0% 

Fusion-III 
NIR-III + NMR-Mean Fusion – 

Autoscaled 
96.6 ± 2.8% 96.0% 96.4% 

Fusion-IV 
NIR-III + NMR-Median Fusion – 

Autoscaled 
96.0 ± 2.7% 95.4% 95.8% 

The results of the mean and median were quite similar. Median averaging of the NMR data 352 

yielded a test accuracy of 95.1 ± 3.0%, a macro-F1 score of 94.4% and a Fleiss’ Kappa 353 

coefficient of 94.2%. NMR-I, using the mean of the NMR data, achieved a 0.8% lower 354 

classification rate and similarly low values for the macro-F1 score and the Fleiss’ Kappa 355 

coefficient. Due to the similar results of the two NMR spectroscopy strategies, both datasets 356 

were tested in a low-level data fusion with the NIR spectroscopy strategy III data. In this case, 357 

all buckets used for NIR, and NMR analysis were combined in a matrix resulting in 966 358 

features. The dataset was then scaled using autoscaling, resulting in a standard deviation of one 359 

for each feature.[37] Fusion-I combined the data of NIR-III and NMR-I, while Fusion-II used 360 

the median averaged NMR buckets. Both fusions yielded similar results, with a test accuracy 361 

of 96.1% and only small differences in the other measures. Test accuracy of Fusion-I is 1% 362 

higher compared to NMR-II, which only uses the median averaged NMR buckets, indicating a 363 

better classification performance of the model. Fusion-III and Fusion-IV subjected the datasets 364 

from Fusion-I and -II to autoscaling. Fusion-IV used the fused dataset of NIR strategy III and 365 

the median averaged NMR buckets leading to a test accuracy of 96.0 ± 2.7% thus showing 366 

almost the same results as Fusion-I and -II. Fusion-III instead used mean averaged NMR 367 

buckets in the fusion and yielded a test accuracy of 96.6 ± 2.8%, a macro-F1 score of 96.7% 368 

and a Fleiss’ kappa coefficient of 96.4%, thus showing the best results for each measure out of 369 

all examined models. Compared to the NMR-II approach, test accuracy increased by 1.5%. 370 

Such an increase is quite large considering that the statistical measures of all models are higher 371 

than 90%. A further comparison of NMR-II (Supporting Information, Figure S6.2) and Fusion-372 

III (Figure 4) shows improvements in the classification of the German, French and Italian 373 

samples, while the accuracy for Georgian and Turkish samples remains the same. 374 
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  Predicted Class  

  DE FR GE IT TR 
Sensi-

tivity 

T
ru

e 
C

la
ss

 
DE 23.8 2.8  0.4  88.1% 

FR 0.6 114.4 0.4 0.4 0.2 98.6% 

GE   15   100% 

IT  0.8 0.8 35.4  95.7% 

TR  1 0.2 0.2 36.6 96.3% 

Precision 97.5% 96.1% 91.5% 97.3% 99.5% 96.6% 

Figure 4. Confusion matrix of Fusion-III. The values correspond to the mean of the five runs of the RNCV and 375 

the mean classification accuracy (96.6%), precision and sensitivity scores of the classes are also shown. Confusion 376 

matrices of the NMR strategies and the other data fusions are shown in the Supporting Information (S6).  377 

The individual allocations of the classification model of Fusion-III (Supporting Information, 378 

Table S7) were examined to obtain information about problematic samples. In total, 13 samples 379 

were misclassified at least once, and four samples were misclassified in each split of RNCV. 380 

These were two German samples, one from Bavaria and one from Rhineland-Palatinate, one 381 

French sample and one Turkish sample. These samples were also misclassified at least once in 382 

the individual models of NIR-III and NMR-II, but only the Turkish sample was falsely 383 

classified in all RNCV splits. One of the misclassified German samples was from Rhineland-384 

Palatinate, which was the only sample from this federal state. It was classified three times as a 385 

French sample and twice as an Italian sample. The other German sample is of mixed variety 386 

from the municipality of Aiglsbach in Bavaria, which has always been misclassified as French. 387 

As there are five samples from Aiglsbach, the reason for these misclassifications is probably 388 

not the lack of enough samples for training but the individual composition of this sample. For 389 

a similar reason, a Turkish mixed variety sample from the Düzce region was always 390 

misclassified as French even though there are 13 samples with the same characteristics that 391 

were not misclassified once. The models did not show clear results regarding the French sample, 392 

which was misclassified in all five splits. It was classified twice as Georgian and Italian sample 393 

and once as Turkish sample. Again, these misclassifications are probably due to the individual 394 
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composition of this sample, as there were seven other samples of the Pauetet variety from the 395 

Midi-Pyrénées region, which were always correctly classified. 396 

For comparison, a complementary approach, i. e. cross-checking the NIR and NMR 397 

classification results with respect to misclassified samples, was performed using the best 398 

performing models based on NIR-III and NMR-II (Supporting Information, Table S7). The 399 

results of the two models show a large overlap in the classification of the samples. 192 of the 400 

233 samples analyzed were correctly classified by both models. A total of 41 samples were 401 

misclassified at least once in the RNCV by the NIR approach and 21 samples by the NMR 402 

approach. Again, the models overlap, as 11 samples were misclassified at least once by both 403 

models. This demonstrates that both classification models perform well and misclassify similar 404 

samples. However, it is also shown that the models also provide complementary information. 405 

In total, only two samples were incorrectly classified in all five splits, all as French, of the 406 

RNCV and in both models indicating the conservative nature of this approach. One of these 407 

samples is a Turkish sample of a mixed variety from the province of Düzce and the other is of 408 

the ‘Tonda di Giffoni’ variety from the Campania region in Italy, which has a Protected 409 

Geographical Indication (PGI). The Turkish sample is the same one that Fusion-III 410 

misclassified. Of all 233 samples, eight are of the ‘Tonda di Giffoni’ variety from France and 411 

three from Italy. This suggests that the metabolome of the misclassified Italian ‘Tondi di 412 

Giffoni’ sample may be more influenced by the cultivar than by environmental factors, so more 413 

samples of this cultivar from Italy are needed to adequately train the models. Of the 11 samples 414 

that were misclassified at least once in the complementary approach, eight were also 415 

misclassified at least once in Fusion-III, indicating the similarity of the results. Another factor 416 

to consider at this point is the fact that these samples were obtained from suppliers and in 417 

principle there is the possibility of a mix-up, even if it is very unlikely.  418 

The question remains whether a data fusion should be used when determining the geographical 419 

origin of hazelnuts. If both methods have already been used, data fusion may even give better 420 

results than the methods on their own. In this case, the fusion and subsequent autoscaling of the 421 

NIR dataset, which used MSC, bucketing and mean, with the NMR dataset, which used the 422 

mean of the buckets, gave the best individual model for the hazelnut geographical origin 423 

question. However, the complementary approach of analyzing samples sequentially using NIR 424 

and NMR spectroscopy proves to be a more conservative and reliable method. This method 425 

would also be suitable for transfer to industry, where NIR analysis is used as a level 1 analysis 426 

and conspicuous samples are subsequently analyzed in an analytical laboratory using NMR as 427 

a level 2 analysis. 428 
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