
  

  

 The DP5 Probability, Quantification and Visualisation of Structural 
Uncertainty in Single Molecules  
Alexander Howarth,a Jonathan M. Goodman*a 

Whenever a new molecule is made, a chemist will justify the proposed structure by analysing the NMR spectra. The widely-
used DP4 algorithm will choose the best match from a series of possibilities, but draws no conclusions from a single candidate 
structure. Here we present the DP5 probability, a step-change in the quantification of molecular uncertainty: given one 
structure and one 13C NMR spectra, DP5 gives the probability of the structure being correct. We show the DP5 probability 
can rapidly differentiate between structure proposals indistinguishable by NMR to an expert chemist. We also show in a 
number of challenging examples the DP5 probability may prevent incorrect structures being published and later reassigned. 
DP5 will prove extremely valuable in fields such as discovery-driven automated chemical synthesis and drug development. 
Alongside the DP4-AI package, DP5 can help guide synthetic chemists when resolving the most subtle structural uncertainty. 
The DP5 system is available at https://github.com/Goodman-lab/DP5  

Introduction  
 
Molecular structure elucidation and verification are central 
problems in organic, synthetic and natural product chemistry. 
Due to richness of the structural information its spectra contain, 
NMR spectroscopy has cemented itself as the method chemists 
use to solve these problems. Due to the complex nature of NMR 
spectra and often subtle variation between similar molecules, 
interpretation of these spectra can sometimes present a 
significant challenge. As a result, incorrectly assigned structures 
remain pervasive in the literature.1 Many of these incorrectly  
assigned are only discovered after costly and time consuming 
total syntheses are completed revealing a discrepancy between 
the experimental and literature NMR data.2,34 
Over the last two decades, many computational tools have been 
developed to aid the assignment of NMR spectra and 
elucidation of molecular structures.5–7 Comparing experimental 
NMR shifts with those calculated for a candidate structure using 
density functional theory (DFT) is now a well-established 
methodology and has been used to solve the structures of many 
molecules.8–11 A powerful way of performing this analysis is to 
calculate the DP4 probability.12 Unlike comparative metrics 
such as MAE and CMAE, the DP4 algorithm applies Bayes 
Theorem to calculate the probability that each candidate 
structure is the correct one. DP4 requires a list of possible 
structures as its input, and it assumes that one of these 
structures is correct. It is common for structures to be 
determined except for uncertainty in the details of their 
stereochemistry. DP4 has proved invaluable in the resolution of 
many such cases.13–17 DP4 can also be used to resolve non-
stereochemical uncertainty, provided that all of the acceptable 
possible structures can be enumerated. However, in cases 
where all the proposed candidate structures may be incorrect 
or only a single structure has been proposed, DP4 analysis 
cannot be applied. Until now in these very common situations 
chemists would have no quantitative way of assessing the 
probability of their proposed structure being correct given the 
NMR spectra.  
To solve this problem, we present the DP5 probability, a new 
methodology and complete software package for quantifying 

uncertainty in molecular structures. Similar to the DP4 
probability, the DP5 probability gives the probability that a 
candidate structure is correct. However, in contrast to DP4, DP5 
calculates normalised stand-alone probabilities and hence, the 
user can propose one or many structures without having to 
assume any of their proposals are correct. As a result, DP5 can 
be used to answer different questions to DP4 and will prove 
valuable in situations where this type of analysis was previously 
impossible. The DP5 probability is calculated given only  one-
dimensional 13C NMR data and utilises the same computational 
engine as the latest iteration of our DP4 software, DP4-AI. This 
program manages all NMR processing, assignment, DFT 
calculations and statistical modelling automatically. DP5 can 
also be used on a case-by-case basis utilising the graphical user 
interface (GUI). 
The system was developed and rigorously tested utilising a 
dataset of 5140 organic molecules from NMRShiftDB originally 
selected for NMR prediction using machine learning by Paton et 
al. (see supporting information section 6).18,19 To demonstrate 



 

 

the performance of the DP5 probability in even more 
challenging situations, the system was also evaluated using 13 
case studies of molecular structures that have undergone 
reassignments in the literature and addition 42 challenging 
relative stereochemistry elucidation examples. 
DP5 represents an exciting leap forward in quantifying 
molecular uncertainty. This system will prove valuable in fields 
requiring high throughput molecular structure elucidation such 
as automated chemical synthesis, but also in traditional organic 
chemistry as a tool to aid and guide expert chemists in their 
development of complex syntheses. DP5 has been made 
possible following recent advances in molecular machine 
learning techniques and increased data availability.20–25  
 
Computational Methods 
DFT calculations for the structure reassignment and 
stereochemistry elucidation examples were performed using 
the method developed in previous works.26–28 All molecular 
mechanics calculations were performed using MacroModel 
(Version 9.9)29. All conformational searches were performed in 
the gas phase utilizing the MMFF force field30–35 and a mixture 
of Low Mode following and Monte Carlo search algorithms.36,37 
The step count for MacroModel was set so that all low energy 
conformers were found at least 5 times. Quantum mechanical 

calculations were carried out using Gaussian0938. NMR 
shielding constants were found using the GIAO method.39–41 The 
functional mPW1PW9142 was chosen with the 6-311G(d)43,44 
basis set for NMR shift prediction as this has been shown to be 
optimal for DP4 calculation. For molecules containing iodine, 
the basis set def2-SVP45,46 was chosen. All DFT calculations were 
performed using the implicit PCM solvent model.47 The 
molecular geometries were also optimized at the DFT level of 
theory, this was performed using the B3LYP functional48,49 with 
the 6-31G(d) basis set. Finally, single-point energies were 
separately calculated using M06-2X50 functional and def2-
TZVP45,46 basis set.  
The calculations were managed by the DP4-AI28 Python script 
written in Python 3.7. DP4-AI is available from http://www-
jmg.ch.cam.ac.uk/tools/nmr/ and GitHub 
https://github.com/orgs/Goodman-lab/. 
DFT optimised geometries and NMR shift calculations for the 
molecules from NMRShiftDB were obtained from the training 
data of the GNN NMR shift prediction software CASCADE.19 A 
single conformer of each of these molecules was optimised 
utilising the M062X functional and def2-TZVP basis set and NMR 
shift calculations performed using in 6-311g(d) basis set and 
mPW1PW91 functional.  

Figure 1. Schematic of the DP5 program. The required inputs from the user are a candidate structure and the raw 13C NMR data (or a 
list NMR signals). The DP5 probability is built on top of the DP4-AI analysis. 



 

 

Calculation of FCHL atomic representations, l2 distances and 
gaussian kernel transformations were performed using the 
python package qml.51  
 
Program Description  
A schematic of the DP5 program is displayed in Figure 1. 
Structure inputs can be made as any combination of, .sdf files, 
SMILES, SMARTS or InChIs. 13C NMR data can be input as raw 
data (for automated analysis) or as a list of peaks from a user 
analysis.  
DP5 calculates NMR shifts for the atoms in populated 
conformers of the candidate structure utilising the highly 
optimised and well established methods within DP4-AI (see 
supporting information section 2.1).26–28  
Raw NMR data interpretation is handled by a part of DP4-AI 
called NMR-AI.28 This system was developed to remove the 
requirement for the user to process and assign NMR spectra 
and has been demonstrated to complete this task to at least the 
same high standard as an expert chemist. 
 Once the geometries of populated conformers have been 
calculated, the probabilities of the observed DFT-NMR 
prediction errors for each atom in that conformer can be found. 
To do this a probability density function (PDF) describing the 
DFT-NMR prediction error distribution for that atomic 
environment is required (see supporting information section 
S2.2). This PDF is found empirically by performing a Kernel 
Density Estimation (KDE) on a dataset of 63542 known 
prediction errors calculated for the DFT optimised geometries 
of 5140 molecules from NMRShiftDB. This dataset was originally 
developed for training machine learning models for NMR shift 
prediction, the generality and near chemical accuracy achieved 
by these models has been taken as justification for using this 
dataset in this similar task (details regarding this dataset can be 
found in the original publication).19 It is well known that the 
expected magnitude and variance of DFT prediction errors for 
different functionals show strong complex, nonlinear 
dependencies on atomic environment.52,53 This process takes 
this into account by weighting the contribution to the error PDF 
for the test atom of each atomic environment in the database 
by its similarity to the test environment. The similarity of these 

atomic environments is calculated by finding the Euclidian 
distance between a vector representation of the test atomic 
environment and those in the training set. These distances are 
converted into covariances utilising a gaussian kernel (equation 
(1); see supporting information section S2.4). By setting the pre-
exponential scaling factor to one, these covariances can be 
interpreted as a measure of the similarity. The resulting PDF is 
integrated by equation (2) (see supporting information section 
S2.5) to yield a prediction error probability for the test atom. 
This process is then repeated for each atom in each conformer 
of the proposed structure. Once  atomic probabilities have been 
calculated for each atom in each conformer, these values are 
Boltzmann weighted to produce overall atomic probabilities for 
the structure. This process is summarised in Figure 2. 
The atomic representation used by DP5 was investigated in 
great detail. In recent years many representations have been 
developed for applications in molecular machine learning, such 
as the coulomb matrix,54 bag-of-bonds,55 aSLATM56 and FCHL.24 
Kernel ridge regression (KRR) utilising the FCHL atomic 
representation have been shown to predict NMR shielding 
constants with near chemical accuracy (also tested in this work 
see supporting information section S3.4.1).57 These works 
demonstrate that FCHL contains the information required to 
accurately encode atomic environments. Due to the similarity 
of these tasks, the FCHL representation has been chosen for use 
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The similarity between the FCHL representation of 
atom 𝑖, 𝑋)	and that of atom 𝑗 in the test set 𝑋* is 
calculated using a gaussian kernel.  
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A prediction error probability for atom 𝑖	is calculated by 
integrating the bespoke prediction error function 
generated for that atom, where ∆) is the (internally 
scaled) prediction error for atom 𝑖 and ∆E corresponds 
to the mean absolute prediction error for the training 
set. 
 

 

Figure 2. Schematic diagram of how the probability of 
observing a DFT-NMR prediction error for an atom in a given 
environment is calculated as described in the text. 



 

 

in the DP5 probability calculation (see supporting information 
section S2.3). 
A particular challenge in the development of the DP5 probability 
was determining an equation to combine individual atomic 
probabilities to yield probability for the whole structure. If any 
single atom is given too much influence, a molecular probability 
of one or zero will usually be assigned, whilst if there is too 
much smoothing over individual atomic probabilities, the 
resulting molecular probabilities will not show enough useful 
variation. A number of formulae were tested during this study 
(see supporting information section S2.7). Overall equation (3) 
was found to yield useful variation in molecular probabilities, 
whilst combining the atomic probabilities in a mathematically 
meaningful way. The inclusion of the geometric mean in 
equation (3) was found to be necessary to prevent single atoms 
with a very high or low probability having too much influence 
on the final result.  
The last stage in the calculation scales the molecular probability 
using a Bayesian correction function to yield the final DP5 
probability (see supporting information section S2.8). This 
empirical stage of the process ensures the DP5 probability 
assigned matches the probability of the structure being correct 
as closely as possible. This empirical correction function was 
found by first calculating a PDF for the molecular probabilities 
assigned to the 5140 NMRShiftDB molecules. By finding all the 
possible pairs of spectra and structures in this dataset with the 
same number of carbon atoms, a PDF of the molecular 
probabilities of incorrect spectra-structure pairs was also 
generated. In this instance, each pair was assigned a weight to 
ensure the mean absolute DFT-NMR prediction error 
distribution of these incorrect pairs matched that of the correct 
structure-spectra pairs (see supporting information section 
S3.2). Given any proposed structure must be either correct or 
incorrect, by applying Bayes Theorem the DP5 probability is 
defined by equation (4). 
 

 
Calculation of the DP5 probability has been integrated into the 
well-established DP4-AI workflow.28 All the required 
calculations and analysis of NMR data can be performed 
automatically with no user input required. DP5 can hence be 

integrated into pre-existing automatic 
reaction/characterisation workflows. DP5 analysis can also be 
performed on single molecules with the GUI. This GUI can be 
used to launch calculations, analyse NMR assignments made by 
NMR-AI and also to investigate the DP5 statistics. The GUI 
visually displays the atomic probabilities, helping the chemist 
identify potential regions of the molecule that may be incorrect 
and determine possible modifications (Figure 3).  
 
Results  
A major challenge in the development of DP5 involved 
constructing a method to assess the efficacy of the system. As 
the DP5 probability is not a physical property that can be 
measured, it is not straightforward to compare the DP5 
probability assigned to a molecule with an experimental value. 
In this study two rigorous evaluation methods were devised to 
assess and improve the real-world effectiveness of the DP5 
probability. 
The database of 5140 organic molecules from NMRShiftDB was 
used in comprehensive leave-one-out style cross validation 
study summarised in Figure 4 (see SI 3.2). In this study DP5 
analysis of correct and incorrect proposed candidate structures 
was simulated by permuting the experimental data between 
the structures in the dataset to form correct and incorrect pairs 
of structure and spectra. This analysis is particularly powerful as 
negative examples could be synthesised from real world data, 
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Atomic DP5 probabilities are combined to form the 
molecular probability 𝑃M by equation 3, where 𝑛 is the 
number of atoms in the molecule and 𝑝) is the DFT-
NMR prediction error probability for atom 𝑖 
 

 

DP5 =
P(correct|PI)

P(incorrect|PI) + P(correct|PI)
		 

(4) 

The DP5 probability is calculated by applying Bayes 
Theorem to the molecular probability calculated in 
equation 3, where	P(correct|PI) gives the probability 
of a  molecule being correct given its calculated 
molecular probability PI. 

 

Figure 3. The GUI accompanying DP5 pictorially overlays atomic 
DP5 probabilities onto the molecular structure. This clearly 
displays regions of the structure that are expected to be correct 
and conversely regions that may require revision. This 
functionality will help chemistry assess and revise structure 
proposals. This structure revision example has been taken from 
a real-world case study of an incorrectly assigned molecule in 
the literature (see Results) 



 

 

avoiding more unreliable methods involving generating fake 
experimental or calculated spectra. This analysis was used to 
develop DP5 and was repeated for many different formulations 
of the DP5 probability (see supporting information section 
S4.1). The results for the final DP5 system can be seen in Figure 
4. To ensure the computational feasibility of this analysis, only 
a single DFT optimised conformer was considered for each pair 

of structure and spectra. Full conformational analysis here 
would require significant additional computational resources, 
we assume that any subsequent decreases in accuracy in the 
DP5 probabilities here will affect both the correct and incorrect 
pairs equally, and hence will not change the final conclusions 
sufficiently to justify the substantial extra expense. In all other 
experiments structures were subject to full conformational 

Figure 4.  Schematic diagram of cross validation analysis used to evaluate the performance of DP5. A) The experimental spectra of the 
5140 (𝑛) molecules from the NMRShiftDB training set with the same number of carbon atoms are permuted to produce	pairs of 
structures and experimental spectra. B) These pairs are separated into correct pairs, where the structure is paired to the correct 
spectrum and incorrect pairs where the molecule has been paired with a different spectra. All incorrect pairs with max errors <10ppm 
are considered in case 1. C) In case 2 the incorrect pairs are assigned sampling weights to force the MAE distribution of the incorrect 
pairs to approximate that of the correct pairs, this leads to an expected number of ~5330 incorrect combinations. All DP5 probabilities in 
this study are calculated using a leave-one-out scheme. (see supporting information section S3.2). 



 

 

analysis (as is standard in the final program). The final DP5 
methodology was then evaluated against a series of thirteen 
real world structure reassignment problems from the literature, 
molecules S1a-S13b presented in Figure 5. The results of this 
study are shown in Figure 6. As the final and most subtle test, 
the DP5 probability was evaluated against the same dataset of 
42 relative stereochemistry problems used to evaluate DP4-
AI.28 With an average of 3.49 stereocentres per molecule and a 
diverse range of natural-product-like carbon skeletons, this 
dataset provides rigorous evaluation of DP5 for many real world 
applications. The results of this analysis are displayed in Figure 
7. 
 
Discussion 

results of the combinatorial cross-validation study are 
presented in Figure 4. In case 1, all incorrect pairs of structure 
and spectra with maximum errors <10ppm are considered 
equally. This represents the situation where an experienced 
chemist should be able to accurately and reliably predict 
whether a chemically reasonable proposed structure is likely to 
be correct or incorrect based on the DFT-NMR prediction errors 
alone. There is very little overlap between the DP5 probability 
distributions for the correct and incorrect structure proposals, 
the modal DP5 probability for correct structures being the 
maximum possible value (see supporting information section 
S2.8). The incorrect structures display the opposite pattern, 
with the modal value at close to zero. This result highlights the 
DP5 probability’s ability to differentiate reliably between 
correct and incorrect structures in these situations. Therefore, 

Figure 5. Test set of real-world structure reassignment problems taken from chemical literature. In each example an incorrect structure 
was initially published (S#a) which was later reassigned to the corresponding correct structure (S#b) 



 

 

DP5 will perform as well as an experienced chemist when 
classifying structures based on DFT prediction errors alone. 
When paired this way, the correct and incorrect pairs show 
different MAE distributions, with the incorrect pairs displaying 
a larger modal MAE and a greater variance. The DP5 probability 
would be even more useful if it could reliably differentiate 
incorrect structure proposals following the same MAE 
distributions as the correct structures. This is tested in Figure 4, 
case 2. The incorrect pairs are assigned weights to ensure that 
they follow the same MAE distribution as the correct pairs (see 
supporting information section S3.2). This represents the 
radically more challenging situation where the correct and 
incorrect structure proposals are practically indistinguishable 
by their DFT prediction errors. In this situation an expert 
chemist would have significant difficulty deciding whether a 
proposed structure is correct or incorrect, and in some cases 
this may be impossible without collecting additional 
information. The results of this study are particularly exciting, 
as despite this test proving to be more demanding, the DP5 
probability is still able to correctly differentiate many correct 
and incorrect structures. This is shown by the DP5 probability 
frequency distributions, with the correct pairs maintaining a 
strong peak at the maximum possible value and the incorrect 
pairs having significant density towards zero.  
A very interesting feature that these results illuminate is the 
value of the maximum possible DP5 probability. This value is 
dependent on many factors including, the dataset of atomic 
environments, the atomic representation chosen, and, most 
notably, the inherent uncertainty in the DFT NMR predictions. 
Using this state-of-the-art and highly-optimised set of 
conditions, DFT NMR predictions still have a MAE of 1.57ppm. 
As a result, even if a proposed structure is correct, the DP5 
probability has to take into account the possible variance in 
NMR predictions and reflect this uncertainty. Therefore, when 
using this set of DFT conditions, the user can never be more 
than 72% confident that a structure is correct using one 
dimensional DFT NMR predictions alone. However, one can 
sometimes be 100% confident that a structure is incorrect. This 
value acts as a metric for assessing the accuracy of DFT NMR 
calculations and the reliability of the DP5 calculations. We 
expect that the use of even larger databases and even higher 
levels of theory will raise this limit. Equivalently, this can be 
interpreted as acknowledging that an incorrect structure could 
possibly produce a set of errors equally or more convincing than 
the correct structure, just as two molecules may produce similar 
experimental spectra. However, this is seldom a problem in 
organic chemistry as in most real-world applications, there are 
additional constraints on the potential structures that need to 
be considered. For example, in robot-controlled syntheses, the 
particular sequence of reactions is known limiting the potential 
products. In most cases, a DP5 probability of 73%, combined 
with this additional data, will give the chemist much higher 
levels of certainty their structure is correct. In cases where 
multiple structures give high DP5 probabilities for the same 
spectra, this is a good indication of where DP4 can be applied in 
conjunction with DP5 to give even more accurate relative 
probabilities.  

To further test the efficacy of DP5 analysis, the system was 
evaluated against thirteen real-world examples of structures 
originally incorrectly published in the literature and later 
reassigned, these structures are presented in Figure 5.1,55,58–62 
The results of this study are striking and are presented in Figure 
6. In all cases the DP5 probabilities of the incorrect structures 
are equal to or close to zero, illustrating that DP5 can reliably 
pick out even the most subtle inconsistencies in molecular 
structures. These results illustrate the power of DP5 analysis: 
even for these difficult examples. There are three examples 
where the DP5 probabilities of the correct and incorrect 
structure are both equal to zero (S12, S2, S13). This result is not 
surprising and is due to the complex and subtle rearrangements 
involved in these revisions. These results do not show a 
weakness, but rather a distinct advantage of the DP5 probability 
over DP4. Being a single structure probability, DP5 is able to 
question the initial structure and the revision independently, if 
both structures are improbable DP5 can assign low probabilities 

Figure 6. (top) DP5 probabilities calculated for the thirteen 
incorrectly published structures and corresponding revised 
structures. DP5 assigns much greater confidence to the revised 
structures and also displays the three cases where both the 
initially proposed and revised structures are equally improbable. 
(bottom) DP4 probabilities calculated for the same thirteen 
examples. These results show how the DP5 probability can be 
used to test the reliability of a DP4 calculation, as only DP5 can 
discern if any of the structure proposals are likely to be correct. 



 

 

to both. In these situations, when all the candidate structures 
are unlikely, DP4 probabilities must still sum to one and DP4 will 
typically randomly show overconfidence in one of the 
structures. This behaviour was clearly displayed when the 
analysis was repeated using DP4. Only in these three cases did 
DP4 assign any confidence to the incorrect structures and in two 
cases (S12 and S2) DP4 assigned the most confidence to the 
incorrect structures. The low DP5 probabilities for S8, S9 and 
S13, suggest DP4 may have also assigned these structures 
correctly by chance. These results highlight the consequences 
of the underlying assumptions of the DP4 methodology. For DP4 
probabilities to be reliable, the correct structure must be 
present in the list of candidates. When this is true, DP4 is often 
more accurate than DP5 as it is more sensitive to slight 
differences in NMR spectra and as more information is available 
within the calculation. This makes DP4 the perfect system when 
the correct structure is guaranteed to be in the list of proposals. 
However, in cases where none of the candidate structures may 
be correct, only the DP5 probability can reflect this and can be 
calculated to assess the reliability of the DP4 calculation. These 

results show how utilising DP5 analysis may have prevented 
these incorrectly assigned structures from being published. 
Finally, DP5 was evaluated against a set of 42, real world relative 
stereochemistry elucidation problems originally used to test 
DP4-AI (see supporting information section 5.1).28 This test is 
significantly different to those already presented. In the 
previous examples, a single structure is proposed for a single 
spectra. In contrast, when resolving relative stereochemistry, 
multiple candidate structures (diastereomers) are proposed for 
the same spectra and the correct structure is assumed to be one 
of the candidates. This is the situation for which DP4 was 
designed; DP5 does not make this assumption. Despite this, 
Figure 7 shows the performance DP5 and DP4 is rather similar 
in this regime: DP4 assigns 19 molecules correctly whilst DP5 
assigns 16 correctly, the probabilities of assigning as many 
molecules in this dataset correctly by chance are ~0.0001 and 
~0.01 respectively. Interestingly, whilst the number of 
molecules correctly assigned by the two systems is very similar, 
the behaviours of the two systems are distinct. DP5 typically 
assigns similar probabilities to all of the diastereomers, whilst 

Figure 7. Results of DP5 (top) and DP4 (bottom) calculations on a dataset of 42 challenging real world stereochemistry elucidation 
examples (see supporting information section 5.1 for structures). In both plots probabilities calculated for each diastereomer are 
stacked in the same order with matching colours, the correct diastereomer is always represented by the blue bar at the bottom of the 
stack. The checkmarks above each plot indicate molecules correctly assigned by each program. The DP5 probabilities have been divided 
by the number of diastereomers for each molecule, this ensures the total sum of these probabilities is within the 0-1 range. The total 
height of each stacked bar in the DP5 plot hence represents the average probability assigned to diastereomers of the same molecule. 
These results show the two systems display similar stereochemistry elucidation performance, DP4 assigns 19 molecules correctly, whilst 
DP5 assigns 16 correctly, the probabilities of assigning as many molecules in this dataset correctly by chance are ~0.0001 and ~0.01 
respectively. Both DP5 and DP4 probabilities are based only on 13C NMR data.  



 

 

DP4 often shows greater confidence in a smaller number. These 
behaviours clearly reflect the questions DP5 and DP4 have been 
designed to answer. DP5 is individually comparing each 
diastereomer to chemical space. DP5 assigns similar 
probabilities to diastereomers as they are more similar to each 
other than they are to other molecules across chemical space. 
In contrast, DP4 is directly comparing the diastereomers against 
each other, leading to a greater variation in the probabilities. 
This is often beneficial for DP4 as it always assumes the correct 
structure is in the list of proposals, whilst DP5 does not. These 
results again highlight the DP5 gives reliable overall 
probabilities without this assumption, while DP4 shows 
additional sensitivity based on this assumption. In certain 
situations the reliability of the DP4 can be further increased, for 
example when the user has developed a custom statistical 
model for working with a particular class of molecules or when 
multiple sets of spectral data are available. 
These results also demonstrate how DP4 and DP5 can be used 
together. In examples: JB5 OD1, NL1B, NL2A and NL2B, where 
the DP5 probabilities for all the diastereomers are low (the total 
height of each bar in DP5 results in Figure 7 can be interpreted 
as the average confidence the diastereomers) this suggests that 
the DP4 probabilities are likely to be less reliable. There are a 
number of reasons why the DP5 probability may be low in this 
way, for example, the correct structure may be missing from the 
list, there may be a problem with the NMR assignment or there 
may be an impurity in the spectrum. The results of this test are 
very exciting and the application of the DP5 probability in 
situations with multiple structure proposals is now being more 
thoroughly explored.  
These examples show how DP5 can serve as a valuable tool 
whenever a new molecule is made, increasing confidence when 
proposed structures are correct, highlighting cases where they 
are not and also playing a stern jury when an improbable but 
correct structure has been proposed.  
 
Conclusions 
In conclusion, we have developed a new measure to quantify 
molecular structural uncertainty, the DP5 probability. This work 
represents a leap forward in quantification of structural 
uncertainty as instead of a comparative dimensionless 
parameter, DP5 quantifies the probability of a structure being 
correct. This system was rigorously evaluated by a cross 
validation study and it was found that DP5 could perform as well 
as a human in classifying correct and incorrect structure 
proposals and in some cases could classify structures 
indistinguishable to a chemist. DP5 was evaluated against 
thirteen real-world examples of structures that were incorrectly 
published and subsequently revised in the literature. In all these 
challenging cases, DP5 expressed the maximum concern for the 
incorrect structures and was on average 41% more confident in 
the revised structures. DP5 was finally evaluated against 42 real 
world stereochemistry elucidation examples, displaying almost 
equal performance to DP4. The DP5 probability can be 
calculated fully automatically and so should find wide 
applications in uses cases such as high throughput reaction 

screening, automated chemical synthesis and drug discovery. In 
addition, DP5 may be run on a single molecule basis and the 
results explored utilizing the GUI, helping to guide the 
development of complex syntheses. This work also suggests 
how DP5 may be developed to help further to accelerate 
chemical discovery. The DP5 probability has been evaluated 
here with 13C NMR data, DP5 is currently being extend to utilise 
different types of spectral data, and a DFT free version of DP5 is 
also being explored. In addition utilizing DP5 alongside 
generative models and other machine learning methods to 
automatically guide structure determination is an attractive 
possibility. The DP5 system is available as open-source software 
at https://github.com/Goodman-lab/DP5 
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