
A Computationally-Realizable Rigorous

Canonical Numbering Algorithm for Chemical

Graphs with its Open-Source Implementation

in Rust

Qin Wan∗

Chiral Ltd., Fukuoka, Japan

E-mail: chiral.co.jp@gmail.com

Abstract

Canonical numbering of the vertices from a graph has been a challenging open issue

for decades not only in the domain of graph theory but also in the cheminformatic

applications. This paper presents an efficient, fast and rigorous approach for canoni-

cal numbering and symmetry perception as the first workable solution with theoretical

completeness. The methodology is composed of a set of algorithms including extend-

able representation of vertex, high-performance sorting and graph reduction, etc. The

canonical numbering of vertices can be generated in a short time through the novel ver-

tex representation method. Furthermore, a new concept of graph reduction decreases

the amount of computation to determine constitutional symmetry of complex graphs

into the range of hardware capability. An open-source version of algorithms overall is

implemented in Rust thanks to the features of safety, performance and robust abstrac-

tion of this modern programming language. The results of experiments on more than

2 million molecules from ChEMBL database has been given at the end.

1



Introduction

Canonical numbering is a fundamental algorithms in cheminformatics for a wide range of

applications such as indexing of chemical compound, spectra interpretation, drug design,

etc.1 Related studies have been carried on for decades, as a result, numerous algorithms have

been proposed and implemented. Morgan created the Extended Connectivity Algorithm2

more than 40 years ago, which is considered to be the first efficient canonical numbering

algorithm and used by Chemical Abstract Services. The Morgan algorithm was improved

by many researchers later on, with the core concept of an iteration process, also named as

graph relaxation, not altered. Weininger et al. 3 uses products of primes instead of sum of

integers during the graph relaxation in order to remove the inherent ambiguity that will

lead to false symmetry perceptions. Schneider et al. 4 introduces a chiral invariant and a

highly-symmetry invariant so that the graph relaxation process can launch from a superior

starting status. Out of graph-relaxation based algorithms, Randić 5 uses the eigenvalues and

eigenvectors of the adjacency matrix to number the vertices. Jochum and Gasteiger 6 uses

the topological molecular information to partition the atoms into several equivalent classes

coarsely from the beginning, and then carry on more elaborate partitioning for each classes

to differentiate the atoms from each other.

The drawbacks of the Morgan algorithm, pointed out by Jochum and Gasteiger,6 are

oscillatory behavior and inadequacy of maximum differentiation on the basis of connectiv-

ity. Besides, we have found out that, when a graph-relaxation algorithm encounters failure

when dealing with special cases, to identify the root cause will be a too laborious task to be

completed. This is caused by the intrinsic empirical characteristic of the graph relaxation

algorithm. Eigenvalue based algorithms require a time-consuming process of solving eigen-

values for the adjacency matrix, leading to a loss of efficiency in comparison to their coun-

terparts. Carhart 7 finds out a category of counterexamples towards Jochum and Gasteiger’s

algorithm. He is also of the opinion that, an explicit investigation on all the vertex per-

mutations from the symmetric groups derived by a numbering algorithm, is inevitable for

2



provable reliability of results given by the numbering algorithm.

Ivaniciuc 1 summarizes a universal scheme for canonical numbering algorithms. It con-

sists of two parts: firstly Graph Invariant Vertex Partitioning (GIVP) and then Canonical

Numbering generation by Automorphism Permutation (CNAP). During the GIVP process,

the vertices are partitioned into several groups according to a comparable representation

value for each vertex. The vertices in each group are considered to be symmetric, however,

this symmetry given by the GIVP process could be false and the verification is unavoidable

according to Carhart’s declaration. The CNAP process has to be performed in which all

possible permutations from these equivalent groups are generated for automorphism inves-

tigation to determine finally the authentic constitutional symmetry. We follow the custom

from Ivaniciuc 1 to call a partitioned group of vertices as "an orbit" for the sake of a clear

explanation.

From the standpoint of graph hashing,8 the GIVP process can be described as, in ab-

stracto, hashing all the vertices by the local properties and the topological environment into

comparable values respectively, and then partitioning them according to these hash values

into orbits. The necessity of the CNAP process is more intuitive from this perspective, as

most of the time the topological molecular environment of each vertex is the most crucial

factor to differentiate vertices, and this information is incomparable with higher dimensions

in respect to the hashed comparable values. Therefore given any hash function, namely the

vetex representation method in the GIVP process, there could always be “hash collisions”

in which non-constitutionally-symmetric vertices are hashed to the same value and thus a

false symmetry is concluded by the GIVP process. As shown in Figure 1, for some hash

method, the symmetric vertices C,C ′
, C

′′ shall be hashed into equivalent values. Meanwhile

the asymmetric vertices B,C could be hashed into equivalent values too, creating a situation

of "hash collision" for the vertices B and C.

In this paper, we present a novel canonical numbering algorithm following the theoretical

framework combining both GIVP and CNAP.1 The vertex representation method and the

3



Figure 1: Vertex hashing

fast sorting algorithm are described in the Section GIVP. The CNAP algorithm is more easily

comprehensible, and will be explained in the Section CNAP. Although the CNAP algorithm is

theoretically straightway, the challenge remains that in practices the total computation often

goes beyond hardware limitation if there is a considerable amount of symmetric vertices which

cannot be differentiated by the GIVP process. In order to downscale the required amount of

computation for the CNAP process, we have proposed a recursive graph reduction algorithm

which turns a complicated graph into a simple one gradually until it can be solved directly

by the CNAP algorithm. The details about graph reduction algorithm will be presented

in Section Graph Reduction. Finally, explanation on implementation in the programming

language Rust9 of the algorithms mentioned above and the whole workflow are presented in

Section Implementation. The experimental results on database ChEMBL10 will be shown in

the Section Experiment.

Graph Invariant Vertex Partitioning (GIVP)

In order to partition the vertices of a graph, a comparable value assigned to each vertex is

required. The way how we get this comparable representation value from the local properties

4



of the vertex and its topological graph environment, is called a representation method. Two

types of vertex representation methods are defined in the GIVP algorithm of this paper, a

fixed one based on the local properties and an extendable one based on the topological graph

environment. A sorting method based on quicksort algorithm,11 namely partition-exchange

sort, together with a lazy extending strategy, is used for comparing the vertex representation

values with high performance.

Vertex Representation

The fixed representation values are used to partition the vertices into orbits as an initial

status for the GIVP process. The extendable representation values are then used to perform

an elaborate differentiation step-by-step for each orbit. For molecular applications, the fixed

representation value is composed of local properties of atom, such as degree, aromaticity,

atomic number, charges etc. The extendable representation value is related to the topological

molecular environment of atom. A sorted array of neighbour atom representation values is

used as the extendable representation value, where a neighbour atom representation value is

composed of bond type and atom numbering, as illustrated in Figure 2.

Figure 2: A representation value with bond type and neighbour atom numbering

The reason of making the representation for topological environment extendable, is that

comparing topological connectivities could be a computationally heavy task for a sophisti-

cated graph, e.g. a molecules with a large number of atoms. Figure 3 demonstrates the

5



extending operations on the atom from aniline indexed as 5 with the extending step of 1

bond each time. In order to avoid unnecessary extension and comparison, the vertex rep-

resentation value is extended with only a fixed number of edges before partitioning. Along

with the "extending and partitioning in tandem" strategy explained in next section, the

"lazy extending" strategy is applied that the extending operation is performed only inside

the orbits for which further partitioning is required.

Figure 3: Extending operations of an aromatic carbon atom from aniline

Extending and Partitioning in Tandem

The “lazy-extending” together with the “extending-partitioning-iteration” is the crucial part

of the GIVP algorithm. If a vertex is represented by a unique value, meaning that the vertex

stays in its own orbit alone and it’s differentiated from all the other vertices. The partitioning

process for the vertex has been completed in this case. The extending-partitioning process

continues for those orbits with more than one vertex. This strategy will save the execution

time substantially since the sorting operation is considered to be an algorithm with an average

complexity O(n log n). Only the represented values inside the same orbit are compared and

sorted which make a quite small n for the quicksort algorithm compared to the total number

of vertices in the graph. Another advantage of this tandem strategy is memory saving.

The temporarily equivalent vertices in the middle of the process are kept in the same orbit,

therefore the representation values of the last extending step can be discarded.

The results from one partitioning process will be a set of partitioned orbits of vertices.

In an orbit with more than one vertex, the representation values of any vertex in this or-

6



bit are equal. The extending-partitioning process will continue until the vertices are all

differentiated or the extendable representation value cannot be extended any more. An

extending-partitioning algorithm can be defined as follows:
Algorithm 1: The extending-partitioning algorithm
Input: An orbit of vertices InputOrbit to be partitioned

Output: OutputOrbits and the Numbering for each vertex

create an empty array ResidualOrbits;

add the InputOrbit as the first element of ResidualOrbits;

create an empty array OutputOrbits for storage of the results;

create an array Numbering for storage of the numbering after sorting each vertex;

while ResidualOrbits is not empty do

pop one orbit out of ResidualOrbits;

if the representative values reach the end of extending then

save this orbit into OutputOrbits;

else

extend the representation values for the vertices in this orbit;

partition the vertices according to the updated representation values via

quicksort algorithm;

update the Numbering accordingly;

push those orbits with more than 1 vertex from the partitioned results into

the ResidualOrbits;

end

end

return OutputOrbits, Numbering

Workflow for the GIVP Process

The whole GIVP workflow based on the extending-partitioning algorithm could be described

as follows:

7



Algorithm 2: The GIVP workflow
Input: Properties for each vertex and topological connectivities of the graph

Output: OutputOrbits and the Numbering for each vertex

calculate the fixed representation values for each vertex;

create an empty array ResidualOrbits;

create an array Numbering to store the numbering for each vertex;

partition all the vertices according to the fixed representation values via quicksort

algorithm, save the orbits resulted into ResidualOrbits and update Numbering

accordingly;

create an empty array OutputOrbits for the storage of the final results;

for an orbit with more than one vertex in ResidualOrbits do

apply the extending-partitioning algorithm on this orbit;

save the orbits from the output into OutputOrbits;

update the Numbering accordingly;

end

return OrbitsOutput, Numbering
Figure 4 and Table 1 shows a very simple example as demonstration on how the GIVP

process works on the molecule of aniline. From the fixed representation values, Atom 6 and 7

are partitioned into a solo orbit respectively. The extending-partitioning process continues for

the orbit with Atoms 1, 2, 3, 4 and 5. The first extending-partitioning process differentiates

Atoms 1 and 5 from Atoms 2, 3, 4. The second extending-partitioning process differentiates

Atom 3 from Atom 2 and 4. Until the extending operations can be no more continued, Atom

1 cannot be differentiated from Atom 5, and Atom 2 cannot be differentiated from Atom 4.

Table 1: The partitioned orbits from the GIVP process for aniline

Extending operations Orbits before partitioning Orbits after partitioning
Fixed representation values [1, 2, 3, 4, 5, 6, 7] [1, 2, 3, 4, 5], [6], [7]
Extend 1 bond [1, 2, 3, 4, 5] [1, 5], [2, 3, 4]
Extend 2 bonds [1, 5], [2, 3, 4] [1, 5], [2, 4], [3]
Extend 3 bonds [1, 5], [2, 4] [1, 5], [2, 4]

8



Figure 4: The GIVP process for aniline

Canonical Numbering generation by Automorphism Per-

mutation (CNAP)

The CNAP process is more intuitive as a brutal-force method comparing to the GIVP process.

It follows the definition of graph automorphism, and investigates all possible permutations

of vertices.

Investigation of Automorphic Permutations

Before introducing the definition of automorphism, we have to explain what a permutation

is at first. A permutation P can be represented in a two-row notation as follows:1 1 2 3 · · · i · · · N

p1 p2 p3 · · · pi · · · pN



9



This is a permutation with the meaning that, vertex 1 is permuted to vertex p1, vertex

2 is permuted to vertex p2, and vertex i is permuted to vertex pi etc. A permutation can be

considered as an order change of vertex indexes. However for the case when each vertex is

permuted to itself, it’s not viewed as a permutation.

Now, it’s easier to explain what automorphism is based on the definition of a permutation.

For a graph G = G(V,E) where V is the vertex set and E is the edge set, G is called

automorphic if the adjacency of vertices is preserved after a permutation of vertices is applied.

Expressing the automorphic condition in a mathematical way will be, for any eij ∈ E, then

epipj ∈ E. The CNAP algorithm is composed of repeated investigations on whether each

permutation is automorphic or not. If one permutation is proved to be automorphic, the

permuted two vertices are considered to be symmetric.

The CNAP Workflow

From the way how a vertex is represented, it can be inferred that if two vertices are consti-

tutionally symmetric, they will be represented as the same value. Conversely two vertices

with different representation values will definitely not be symmetric. Therefore, the consti-

tutionally symmetric orbits that we are looking for at the end of the CNAP process will

be a subset of the partitioned orbits from the GIVP process. To express this statement in

a mathematical way, given the partitioned result from the GIVP process, a set of orbits

{Oi}partition, and the constitutionally symmetric orbits {Oj}symmetry, for any Ok from the set

of symmetric orbits {Oj}symmetry, there exists an Ol ∈ {Oi}partition that all the vertices in

Orbit Ok can be found in Orbit Ol.

Based on this conclusion, it’s only necessary to investigate all the permutations from

the set of orbits {Oi}partition instead of those permutations from all the vertices. Precisely

speaking, there will be
∏

ki!− 1 permutations to be investigated where ki is the number of

vertex in Orbit Oi from the orbit set {Oi}partition.

10



Algorithm 3: The CNAP Algorithm
Input: A set of orbits generated by the GIVP process OrbitsGIVP

Output: The set of constitutionally symmetric orbits of the graph OrbitsCNAP

generate all the permutations from OrbitsGIVP;

for one permutation do

if automorphic condition is fulfilled then
save the permuted vertex pair as symmetric vertices into OrbitsCNAP

end

end

return OrbitsCNAP

Graph Reduction

The number of permutations to be investigated from the CNAP process is a product of

factorials, therefore the amout of computation explodes when there are quite a lot of sym-

metric vertices. The computational capability of hardware can be surpassed easily. To make

the CNAP process computable, A novel graph reduction algorithm based on mapping equal

subgraphs is proposed in this paper. It mimics the way how human brains perceive a sophis-

ticated graph: starting from a global view, then reducing the topologically equal subgraphs

into single vertices and finally calculating the results from the simplified new graph.

Figure 5: Reducing a sophisticated graph in two steps

The reduction process is composed of two reducing strategies, the breakable case and

the cyclic case. The reduction process goes recursively until the simplified graph becomes

11



CNAP computable, or none of the reducing strategies is applicable anymore.

The partitioned orbits and the numbering from the GIVP process play an indispensable

role during the reduction process. It provides valuable guidance not only on where to find

the reducible subgraphs but also on the constructing process of mapping among the vertices

from the reducible candidates.

To start one process of graph reduction, at first we need to find out a set of vertices

to start the mapping process. We name this set of vertices as "the starting orbit". The

starting orbit is selected from the GIVP orbits and a mapping among the neighbour vertices

is created according to the GIVP numbering. The mapping process continues further with

new neighbour vertices until terminating conditions are met. The breakable strategy and

the cyclic strategy both have their own terminating conditions respectively.

For CNAP incomputable and irreducible case, the graph will be processed tentatively

further as specific cases: highly symmetric ones or separable ones. If the graph remains to

be unsolvable by the algorithms designed for specific cases, it will be considered as failure of

the CNAP process.

The Breakable Case

The breakable strategy is defined on a concept of "breakable neighbours". Intuitively a

vertex becomes a breakable neighbour of a target vertex in a situation that when the edge

between the target vertex and this neighbour vertex is removed, no route can be found to

traverse from the neighbour vertex to the target vertex. For instance, the first reducing step

in Figure 5 is a breakable case according to this definition.

In the graph reduction process of our algorithm, since we are trying to find a set of

vertices to proceed the mapping process without vertex conflicts, the definition of breakable

neighbour can be generalized more widely. That is to say, the breakable neighbour of a target

vertex is the neighbour vertex from which there is no route to traverse to the other vertex

in the starting orbit except via the target vertex. Here below Figure 6 is an example that

12



taking the nitrogen atoms as the starting orbit, the oxygen atoms will meet the generalized

definition of breakable neighbour instead of the intuitive one, thus the breakable strategy is

nevertheless applicable in this case.

Figure 6: The oxygen atoms are breakable neighbours of the nitrogen atom.

The starting orbit is selected from the GIVP results with the conditions that the ver-

tices should have breakable neighbours. The mapping process stops when there are no new

neighbours remaining as the mapping candidates.

The Cyclic Case

The objective of the cyclic strategy is to establish a mapping among small cycles in the

graph, as shown in the example from Figure 7. The maximum size of cycles to be identified

is a configurable parameter depending on the type of application. For organic molecules, 5,

or 6, or 7-atom rings are commonly seen from molecular data, therefore a maximum cycle

size of 8 is used.

The cyclic strategy is applied in a moderate way that not all the vertices in the cycle shall

be thrown into the mapping process. Only the vertex with two edges will be reduced while

the others shared by two identified cycles shall not. Otherwise, there could be an unexpected

situation that the graph is over reduced. For instance two edges occur between two vertices,

as a phenomenon that shakes the fundamental of the graph definition. Figure 8 shows an

13



Figure 7: Graph reduction with the cyclic strategy

example when an ambitious strategy is applied with the 3-edge vertices 3, 4, 7 13 reduced,

the whole graph will be simplified into two vertices with two edges between them, which is

obviously not a valid graph any more.

Figure 8: An ambitious cyclic strategy

The starting orbit is selected from the GIVP results with the conditions that any vertex

in the orbit should be contained in an identified cycle, and the identified cycles shall not

overlap each other. The mapping process is limited to those vertices in the identified cycles

with a degree of 2. When all these 2-degree vertices have been mapped, the mappging process

will stop and quit.

The Mapping Process

The mapping process starts from the vertices in the starting orbit and continues for the

neighbours of those vertices. Those neighbours that have been mapped will be removed

from the list of mapping candidates. A mapping between two vertices can be establish only

if their numbering values from the GIVP process are equal. The GIVP results decrease the

neighour mapping permutations, consequently the amount of computation for mapping.

14



The Reducible Graph

If the breakable strategy or the cyclic strategy can be applied, the graph is called reducible.

When the mapping process of the graph reduction completes, the reducible graph will be

reduced to two simpler graphs, as shown in Figure 9. The one who represents the simplified

form of the original graph is the "reduced" graph. The other one who represents one of the

repeated subgraphs to be hidden during the reduction process is the "folded" graph.

Figure 9: The reduced graph and the folded graph after graph reduction

Irreducible Graphs

When none of the reducing strategies can be applied and the CNAP process remains being

incomputable, the graph becomes an irreducible one. The CNAP process for irreducible

graphs can proceed further by considering the graph to be separable or to be highly sym-

metric. When both of the dedicated algorithms for separable graphs and highly symmetric

graphs fail, we consider it to be a final failure for the CNAP process.

Separable Graphs

A separable graph is a graph in which the symmetry happens in local areas independently

meanwhile the CNAP process is incomputable when all the symmetric orbits mix and gen-

erate more permutations to be investigated. In this case the graph could be splitted into

15



multiple graphs for carrying on the CNAP process respectively, the amount of computation

will be decreased and the symmetric orbits from each CNAP process will be consolidated

together at the end.

Figure 10: A separable graph for the CNAP process

Figure 10 shows an example of a separable graph where the red part and the green part

will be treated separately with a new CNAP process for each of them.

Highly Symmetric Graphs

A highly symmetric graph is a graph with few symmetric orbits meanwhile a large number of

vertices in each symmetric orbit. Neither the breakable strategy nor the cyclic strategy can

be applied to reduce the highly symmetric graphs into simpler ones. They are not separable

too with no localized symmetry. We can list quite a lot of highly symmetric molecules such

as benzene, cubane, fullerene, etc. The algorithm for highly symmetric graphs will be last

tentative measure of the CNAP process.

Weininger et al. 3 had used a method named "breaking ties" in their unique SMILES

algorithm when there are constitutionally symmetric atoms in the molecule. The method

marks one of the symmetric atoms, making it to be different from the others, and then the

numbering for all the atoms of the molecule will change entirely. We follow this idea to

design a "symmetry breaking" algorithm for highly symmetric graphs. When the a graph

becomes less symmetric after breaking symmetry by marking a vertex or an edge, the new

graph will become much simpler for the CNAP process. The final results of symmetric orbits

16



come from the consolidation of the CNAP results from breaking each vertex and each edge

respectively. Since it’s possible that the symmetry will completely disappear after symmetry

breaking, the CNAP process for highly symmetric graphs is considered as successful only

if the resulted symmetric orbits are totally equal to the partitioned orbits from the GIVP

process.
Algorithm 4: The symmetry breaking algorithm for highly symmetric graphs
Input: A set of orbits generated by the GIVP process OrbitsGIVP

Output: The set of constitutionally symmetric orbits of the graph OrbitsCNAP

for each vertex from any orbit of OrbitsGIVP do

mark this vertex and generate a new graph;

carry on the GIVP process and the CNAP process for this new graph to get the

symmetric orbits

end

for each edge of the graph do

mark this edge and generate a new graph;

carry on the GIVP process and the CNAP process for this new graph to get the

symmetric orbits

end

Consolidate all the symmetric orbits from each loop into OrbitsCNAP;

if OrbitsCNAP equals to OrbitsGIVP then
return OrbitsCNAP

else
the CNAP process fails for this highly symmetric graph

end

The Canonical Numbering Process with Graph Reduction

Right now all the elements for an improved canonical numbering algorithm have been de-

scribed. It’s time to assemble them together in a recursive way in order to create a more

17



robust algorithm with graph reduction.

18



Algorithm 5: The canonical numbering process with graph reduction
Input: A graph with properties for each vertex and topological connectivities

Output: The set of constitutionally symmetric orbits of the graph OrbitsCNAP

and the Numbering for each vertex

run the GIVP process and get a set of orbits OrbitsGIVP generated by the GIVP

process and the Numbering;

if OrbitsGIVP can be solved by the CNAP process without graph reduction then
run the CNAP process without graph reduction and consolidate the results into

OrbitsCNAP;

else

if the breakable strategy or the cyclic strategy can be applied then

apply the strategy, get a reduced graph and a folded graph;

run the CNAP process with graph reduction recursively on the reduced

graph and consolidate the results into OrbitsCNAP;

run the CNAP process with graph reduction recursively on the folded graph

and consolidate the results into OrbitsCNAP;

else

if the graph can be solved as a separable graph then

split the graph accordingly into subgraphs;

for a splited subgraph do
run the CNAP process with graph reduction recursively on this graph

and consolidate the results into OrbitsCNAP;

end

else
consider the graph as a highly symmetric one, run the symmetry breaking

algorithm and consolidate the results into OrbitsCNAP;

end

end

end

return OrbitsCNAP and the Numbering19



Implementation

All the algorithms and the entire workflow have been implemented in Rust9 with the open-

sourced codes available12 The modern features of Rust for programming facilitates the work

of designing, coding and testing a complicated set of algorithms presented in this paper.

Thanks to its feature of generics, the implementation is splited into two major parts, the

core module and the extension module. The core module is purely graph related algorithms,

meanwhile the extension module is application-oriented. This kind of architecture is designed

for the intention of applying the methodology not only to chemical graphs but also other

types of graph applications.

For applications of chemical graphs, an extension module of molecule has been created

in our implementation, where parsing SMILES strings relies on a third-party open-sourced

library named Purr.13

Experiments and Results

We run the implementation on an Apple 8-Core M1 chip with 8GB memory for molecules

from the database ChEMBL. The maximum number of permutations to be handled directly

by the CNAP process without graph reduction is set as 8192. The maximum cycle size for

the cyclic strategy is set as 8.

Molecules with more than 250 atoms are not taken into consideration in order to save

time with limited computational power. 2,608 (0.13%) large molecules were removed from

2,066,311 molecules in total.

The experimental results for the remaining 2,063,703 molecules are summarized in the

Table 2 below. For 442,866 (21.46%) molecules, each atom is differentiated from the others

and stays in a sole orbit by the GIVP process, in which case the CNAP process is not

necessary any more. For 1,620,577 (78.53%) molecules, the results from the CNAP process

matches the results from the GIVP process. At last, 260 (0.01%) molecules failed for the

20



CNAP process since the two results do not match. Adding more dedicated algorithms for

specific graphs together with separable graphs and highly symmetric graphs could be a

potential solution to tackle these failure cases.

Table 2: The experimental results of the ChEMBL database

Total 2,063,703 100%
CNAP not necessary 442,866 21.46%
GIVP matches CNAP 1,620,577 78.53%
GIVP does NOT match CNAP 260 0.01%

The durations for the GIVP process and the CNAP process are recorded for each molecule

respectively and drawn versus the counts of the heavy atoms as in Figure 11 and Figure 12.

Most of the GIVP processes complete within 1 second, and the average duration is around

10 milliseconds. Meanwhile most of the CNAP processes complete within 1 second too.

However, the duration difference for molecules with the same total number of heavy atoms is

enlarged. This is reasonable that the CNAP process is not only related to how many atoms

there are, but also to how these atoms are connected in the graph.

Figure 11: The GIVP durations

21



Figure 12: The CNAP durations

Furthermore, the GIVP and CNAP algorithms list in this paper are effective especially

for sophisticated molecules with few symmetric atoms. For instance, the molecule with the

ID CHEMBL415840 was considered as a failure case from a graph relaxation algorithm.4

However, canonical numbering for this molecule with only two symmetric atoms can be

solved in milliseconds by our algorithms. Another molecule with ID CHEMBL2348759 from

the failure cases of the same reference is meanwhile a typical showcase of the breakable

strategy of graph reduction. The results of the canonical numbering for these two molecules

are shown in Figure 13.

Figure 13: The canonical numberings for CHEMBL415840 and CHEMBL2348759

22



Future Works

Chirality of molecule for chemical graph application is not taken into consideration in this

paper. We are of the opinion that chirality is a 3D spacial phenomenon and it’s better

to solve the chirality issue with additional application-oriented algorithms on top of our

methodology.

To make a parallel version of the algorithms is another interesting field to be explored.

For a graph with a large amount of vertices, parallelizing the GIVP process could save the

execution time and boost the whole workflow to be faster.

The methodology cannot guaranty that the CNAP process will complete with successful

results for each case, therefore to reduce the failure cases is an important topic too. The

advantage of the algorithms presented in this paper is that how the failure happens could

be traced and analyzed in an easy way, so that it’s possible to design specific algorithms

targeting at those failure cases.

Conclusion

A workable theoretically complete solution for canonical numbering is presented in this pa-

per. It is composed of two part: GIVP and CNAP. The GIVP part calculates the canonical

numbering and the CNAP part proves the symmetry suggested by the GIVP part. Accord-

ing to the experimental results on the ChEMBL database, the results from the GIVP is

reliable and might be used solely depending on the requirements of the applications. The

graph reduction in the CNAP part provides a perspective of multiple-scale representation on

how to perceive a graph, thus leading to a computable solution for hardwares with limited

computational capability. The methodology is modularized, traceable and extendable and

we hope it could grow to be a fundamental framework for the issue of canonical numbering

and symmetry perception in graph applications.

23



References

(1) Ivaniciuc, O. In Handbook of Cheminformatics ; Gasteiger, J., Ed.; Wiley-VCH: Wein-

heim, Germany, 2003; Chapter 12, pp 139–160.

(2) Morgan, H. L. The Generation of a Unique Machine Description for Chemical

Structures-A Technique Developed at Chemical Abstracts Service. Journal of Chemical

Documentation 1965, 5, 107–113.

(3) Weininger, D.; Weininger, A.; Weininger, J. L. SMILES. 2. Algorithm for generation

of unique SMILES notation. Journal of Chemical Information and Computer Sciences

1989, 29, 97–101.

(4) Schneider, N.; Sayle, R. A.; Landrum, G. A. Get Your Atoms in Order—An Open-

Source Implementation of a Novel and Robust Molecular Canonicalization Algorithm.

Journal of Chemical Information and Modeling 2015, 55, 2111–2120, PMID: 26441310.

(5) Randić, M. On Unique Numbering of Atoms and Unique Codes for Molecular Graphs.

Journal of Chemical Information and Computer Sciences 1975, 15, 105–108.

(6) Jochum, C.; Gasteiger, J. Canonical Numbering and Constitutional Symmetry. Journal

of Chemical Information and Computer Sciences 1977, 17, 113–117.

(7) Carhart, R. E. Erroneous Claims Concerning the Perception of Topological Symmetry.

Journal of Chemical Information and Computer Sciences 1978, 18, 108–110.

(8) O’Boyle, N.; Sayle, R. Making a hash of it: the advantage of selectively leav-

ing out structural information. https://www.nextmovesoftware.com/talks/OBoyle_

MolHash_ACS_201908.pdf.

(9) Why scientists are turning to Rust. 2000; https://www.nature.com/articles/

d41586-020-03382-2.

24



(10) Database ChEMBL.

(11) Hoare, A. Algorithm 64: Quicksort. Communications of the ACM 1961, 4 .

(12) https://github.com/chiral-data/rust-canonical-numbering.

(13) Purr: Primitives for reading and writing the SMILES language in Rust. https://

github.com/rapodaca/purr.

25


