
 

Transition metal-free photodecarboxylative amination of redox-
active esters with diazirines 
Vishala Maharaj,1 Preeti P. Chandrachud,2 Wen Che,2 Lukasz Wojtas,1 Justin M. Lopchuk1,2,3* 
1Department of Chemistry, University of South Florida, Tampa, FL 33620, USA  

2Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 
33612, USA. 
3Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL 33612, USA. 

ABSTRACT: Due to the prevalence of nitrogen-containing compounds in medicine, materials, and related fields, the search for 
general, mild methods for electrophilic amination remains an area of intense research. Diazirines have been recently demonstrated 
to serve as electrophilic amination reagents that afford diaziridines, versatile heterocycles that are readily transformed into amines, 
hydrazines, and a variety of nitrogen-containing heterocycles. Here we report the phosphine-mediated, photodecarboxylative ami-
nation of redox-active esters with diazirines. This method is transition metal-free, uses inexpensive photoactivators under mild con-
ditions, and offers a significantly enhanced scope and yields for primary redox-active esters. Furthermore, the stability of diazirines 
to blue light (456 nm) is demonstrated, paving the way for further research into other photochemical amination methods with these 
unique heterocycles. 

 Nitrogen-containing compounds are ubiquitous in pharma-
ceuticals, agrochemicals, catalysts/ligands, materials, and 
more.1 As a result, the development of methods for C–N bond 
formation continues unabated. Despite their popularity and 
obvious utility in a variety of areas,2 the use of redox-active 
esters (1, RAEs) for C–N bond formation has been relatively 
underexplored. Of these few reports, all have used a transition 
metal/organophotoredox approach that was combined with 
copper catalysis (Figure 1A). The method developed by Peters 
and Fu recaptures the phthalimide after cleavage of the prima-
ry or secondary RAE to afford protected amines as the final 
products.3 Over the last several years, Hu has disclosed three 
methods that convert alkyl RAEs to aminated products. The 
first of these uses a ruthenium catalyst with an oxoacetic acid-
based ligand and copper halide that yields anilines with prima-
ry or secondary RAEs.4 This was followed by an iridium-and 
copper-catalyzed method that uses an electron-deficient bis-
arylated imine with primary, secondary, and tertiary RAEs5 
and, finally, an organophoto- and copper-catalytic method that 
can furnish either anilines or imines depending on the nitrogen 
source used.6 Recently we reported the use of diazirines and an 
iron- or nickel-catalyzed system that reacts with RAEs to af-
ford diaziridines.7 

While historically neglected by synthetic chemists, diaziri-
dines 3 have now been demonstrated to be highly useful in-
termediates in the synthesis of amines, hydrazines, and nu-
merous nitrogen-containing heterocycles, such as pyrazoles, 
pyrroles, triazoles, pyridazinones, and others (Figure 1B).7,8 
Perfluorinated diazirines have also been shown to be effective 
in combination with fluorous phase synthesis.7 The main limi-
tation in our previously reported work was low reactivity of 
primary RAEs with diazirine 4 (Figure 1C). This was partially 
alleviated by the use of a perfluorinated diazirine instead of 4,  

Figure 1. A. Previously reported methods for the amination of 
redox-active esters. B. Diazirines as masked amines and 
hydrazines. C. Comparison of the decarboxylative amination of 
redox-active esters with diazirines under iron-catalyzed conditions 
to photoredox conditions (this work).  
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which showed sufficient reactivity to deliver the desired prod-
ucts in synthetically useful yields. However, diazirine 4 is not 
only commercially available, but also more economical and 
able to be prepared in fewer steps. Therefore, we elected to 
develop a complementary approach that allowed for the use of 
diazirine 4 in the decarboxylative amination of redox-active 
esters. 

To overcome the limitation of the amination of primary 
RAEs with diazirine 4, we sought alternative activation modes 
for 1. In 2019, Shang and Fu reported the tri-
phenylphosphine/sodium iodide-mediated photocatalytic de-
carboxylative alkylation of redox-active ester 5 with silyl enol 
ether 6 (Figure 2A).9 This approach was particularly appealing 
since it uses inexpensive, readily available photoactivators that 
form electron donor-acceptor (EDA) complexes in the pres-
ence of blue light,10 avoiding expensive transition metal cata-
lysts or exotic organocatalysts.11 More recently this transfor-
mation has been achieved with a simple ammonium iodide 
catalyst in an amide solvent, which proceeds through an anion-
p interaction in a solvent cage (Figure 2A).12 

Initial attempts to directly translate the published catalytic 
conditions to the reaction of redox-ester 8 with diazirine 4 led 
to the desired diaziridine 9 in 19% yield (Figure 2B, entry 1, 
see SI for full details). Repeated attempts to optimize the cata-
lytic reaction with respect to phosphine (entries 3 and 6), sol-
vent, LED type/placement, and temperature were unsuccess-
ful. Instead, using 1.5 equivalents of both triphenylphosphine 
and sodium iodide led to 9 in 76% yield. A screen of phos-
phines (entries 2, 4, 5, and 7-10) revealed several (10, 12, 14) 
that worked in moderate to good yields (52-70%), but none as 
economically as PPh3. Both acetone (entry 11) and DMA (en-
try 12) afforded the desired product with some diminishment 
in yield but could be considered in cases where substrates are 
poorly soluble in acetonitrile. The temperature of the reactions 
proved critical (entries 13-15), with 26-28 ºC providing opti-
mal yields of diaziridine 9. Reactions below 18 ºC were slug-
gish in addition to giving lower yields; in reactions above 38 
ºC only traces of product were observed. Finally, the use of 
1.5 equivalents of tetrabutylammonium iodide (TBAI) fur-
nished diaziridine 9 in 54% yield and could represent an alter-
native set of conditions for this transformation.  

Given that diazirines are typically photoactivated to form 
the corresponding carbenes,13 it was somewhat surprising to 
observe the near complete stability to blue LEDS over several 
days. Diazirine 4 ( lmax = 353 nm)14 is stable to blue LEDs 
(456 nm, 2 lamps, each 3 cm from reaction vial) as a solution 
in cyclohexane for at least 48 hours. Small amounts of degra-
dation are observed in acetonitrile at 16 hours, though most of 
diazirine 4 is still present at 48 hours (see SI for details). 
However, when exposed to a 500 W halogen lamp, diazirine 4 
decomposes completely within six hours in either cyclohexane 
or acetonitrile (4 has been reported to have a half-life of 25 
seconds with a 450 W mercury lamp placed 4 inches away).14 
After 24 hours of ambient light exposure, a solution of diazir-
ine 4 in acetonitrile shows small amounts of degradation. Al-
ternatively, the exposure of 4 to ambient light as a neat com-
pound begins to show degradation after 6 days (which demon-
strates 4’s ease of handling as a reagent, see SI for details). In 
order to probe the stability of 4 to blue LEDs further, competi-
tion experiments were run with the optimized reaction condi-
tions where RAE 8, diazirine 4 and cyclohexane (17, 1 equiv.  

Figure 2. A. Phosphine/iodide-mediated decarboxylative 
amination of redox-active esters with silyl enol ethers. B. 
Optimization of the photodecarboxylative amination of redox-
active esters with diazirines. C. Competition experiment of 
diazirine 4 and cyclohexane (17) with blue LEDs. 

and 20 equiv.) were exposed to blue LEDs for 40 h (Figure 
2C). The target diaziridine 9 was isolated in 67% yield (1 
equiv. 17) and 63% yield (20 equiv. 17) after full consumption 
of RAE 8. In contrast, when the reaction was set up with a 500 
W halogen lamp, only traces of diaziridine 9 were detected 
with nearly all of diazirine 4 decomposed within 90 minutes. 

With optimized conditions in hand, the scope was evaluated, 
starting with primary redox-active esters (Figure 3). Gratify-
ingly, treatment of the redox-active ester derived from 4-
phenylbutanoic acid with diazirine 4 afforded diaziridine 19 in 
60% yield, significantly improved over the previous iron-
catalyzed conditions (variable 9-31% yield).7 Several more 
direct comparisons with primary redox-active esters were 
made including: alkyl chloride 20 (71% vs. 36% with Fe), 
alkyne 21 (57% vs. 17% with Fe), ester 22 (74% vs. 30% with 
Fe), and dehydrocholic acid derivative 40 (84% vs. traces with 
Fe). Numerous natural products and pharmaceuticals bearing 
primary carboxylic acids were amenable to the amination pro-
cess including linoleic acid (24, 53%), mycophenolic acid (29, 
50%), glutamic acid (30-33, 45-50%), 2,4-D (35, 56%), 
fenbufen (36, 50%), gabapentin (39, 44%), dehydrocholic acid 
(40, 84%), and atorvastatin (41, 45%). The treatment of the 
redox-active ester of 3-phenylbutanoic acid under the diaziri-
dine-forming conditions led to “amphetamine diaziridine” 37  
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Figure 3. Scope of the photodecarboxylative amination of primary redox-active esters with diazirines. General reaction conditions: RAE (1 
equiv.), diazirine (2 equiv.), PPh3 (1.5 equiv.), NaI (1.5 equiv.), MeCN (0.1 M), blue LEDs (2 lamps, 3 cm from reaction vial), 26-28 ºC, 
24-48 h. a3 equiv. of diazirine were used. 

in 73% yield. While the mono-aza amphetamine class of 
compounds are well studied,15 this approach also provides 
rapid access to the hydrazinyl versions. These di-aza deriva-
tives have been reported to possess a wide variety of activi-
ties including antihypertensive,16 analeptic,17 antidepres-
sive,18 and antibacterial,19 while acting as MAO17 and D-
amino acid oxidase inhibitors,20 and have even been explored 
as amphetamine prodrugs.21 

Glutamic acids 30-33 are notable due to the straightfor-
ward and economical access to the corresponding hydrazine 
derivatives without epimerization. The hydrazines, particu-
larly methylated versions related to 33, have previously been 
used in the synthesis of vancomycin aglycon analogs.22 Their 
literature preparation comes from expensive homoserine 
derivatives (compared to inexpensive, readily available glu-
tamic acid) in a fairly low-yielding process over 5-6 steps.22  

As anticipated from the success with the primary RAEs, 
both secondary and tertiary RAEs worked well, furnishing 
the desired diaziridines in moderate to high yields. In addi-

tion to commonly used building blocks for medicinal chem-
istry (e.g. 9, 47-50), menthyl formic acid (45), gemfibrozil 
(52), and oleanolic acid (55) were successfully aminated. 
Interestingly, there were several examples where the photo-
redox method outperformed the iron-catalyzed approach: 
tetrahydrofuran derivative 42 (92% vs. 38% with Fe), ketone 
49 (85% vs. 42% with Fe), and difluoro 47 (88% vs. 53% 
with Fe). Fluorous phase diaziridines 56 and 57 were also 
prepared in good yields, which allows the photoredox amina-
tion to be coupled with a high throughput library synthesis 
for the rapid preparation and purification of diverse nitrogen-
containing compounds.7,23 

Overall, the structural diversity of the primary, secondary, 
and tertiary RAEs was vast with a broad functional group 
tolerance including alkyl halides (20), alkynes (21), esters 
(22, 30-33, 56), ethers (23, 27, 29, 34, 35, 52), olefins (24, 
26, 29, 55), heterocycles, (9, 28, 41, 42, 46, 51, 54, 57), hy-
droxy/phenols (29, 48, 55), lactones (29), ketones (36, 38, 
40, 49), acetals (41), sulfones (46), and silyl ethers (50). 
Compatible amine protecting groups include Ac (30), Fmoc  
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Figure 4 Scope of the photodecarboxylative amination of 
secondary and tertiary redox-active esters with diazirines. 
General reaction conditions: RAE (1 equiv.), diazirine (2 
equiv.), PPh3 (1.5 equiv.), NaI (1.5 equiv.), MeCN (0.1 M), blue 
LEDs (2 lamps, 3 cm from reaction vial), 26-28 ºC, 24-48 h. a3 
equiv. of diazirine were used. 

(31), Cbz (32, 33, 39), and Ts (9, 51, 57). In addition to the 
tertiary RAEs (51-55), other sterically hindered examples 
include diaziridines 39 and 45. The reactions were scaled to 
1 mmol with similar yields to the rest of the scope (22, 25-
27). 

In conclusion, we have reported a transition metal-free 
photodecarboxylative amination of redox-active esters with 
diazirines that proceeds under mild conditions with inexpen-
sive, readily available triphenylphosphine and sodium iodide 
photoactivators.24 The scope and yields of primary RAEs (24 
examples) are significantly improved over our previously 
reported method. Some functional group tolerance, especial-
ly with ketones, has also been improved. While the reasons 
for the observed differences in reactivity between the iron-
catalyzed and photoredox methods are not fully understood, 
experiments are ongoing and the results will be reported in 
due course. As has been previously demonstrated, the dia-
ziridines obtained from this reaction are easily converted to 
amines, hydrazines, and nitrogen-containing heterocycles. 
The demonstration of the exceptional compatibility of blue 

LEDs and diazirines that allows for the formation of amina-
tion products is expected to facilitate the exploration of re-
lated new methods; efforts toward this end are ongoing in 
our laboratory. 
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