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Abstract

Here we explore the impact of different graph traversal algorithms on molecular

graph generation. We do this by training a graph-based deep molecular generative

model to build structures using a node order determined via either a breadth- or depth-

first search algorithm. What we observe is that using a breadth-first traversal leads

to better coverage of training data features compared to a depth-first traversal. We

have quantified these differences using a variety of metrics on a dataset of natural

products. These metrics include: percent validity, molecular coverage, and molecular

shape. We also observe that using either a breadth- or depth-first traversal it is possible

to over-train the generative models, at which point the results with the graph traversal

algorithm are identical.
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Introduction

Deep molecular generative models have gained a lot of attention recently for their promise

to efficiently traverse the chemical space in search of molecules with desired properties.1

These models harness tools from machine learning, such as deep neural networks and rein-

forcement learning, for the generation of new molecules which satisfy a set of desired criteria

(e.g. activity against a known protein target, novelty, low toxicity, etc). As molecular de-

sign is a highly complex multi-objective optimization problem, where many inter-related

properties need to be simultaneously optimized, the hypothesis is that deep learning meth-

ods are better equipped for identifying optimal molecules out of the vast chemical space

than traditional molecular discovery paradigms, both in terms of speed and the quality of

the solutions proposed. A wide range of deep molecular generative models have thus been

proposed since 2016, including string-based2–5 and graph-based models,6–10 conformer gener-

ation methods,11–14 and molecular generation approaches which take into account molecular

synthesizability.15–17

Nonetheless, there have been limited studies on whether the order in which atoms are

presented to a model during training/generation plays a role in the performance of these

deep molecular generative models.18,19 Here, we set out to answer whether a breadth- or a

depth-first search would lead to better performance in graph-based deep molecular genera-

tion, as breadth- and depth-first search are two common graph traversal algorithms which

are used to determine the artificial node order in molecular representations. We measure

better performance via the generation of more desirable molecules, where ‘desirability’ is

determined by comparing 1) the percentage of valid/unique molecules sampled, 2) chemi-

cal space coverage (including ring systems), and 3) the shape distributions of the sampled

molecules. Molecular shape here is estimated from principle moment of inertia ratios.
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Related Work

Graph traversal algorithms

Graph traversal algorithms (GTAs) determine the order in which nodes and edges are

visited in a graph.20 In cheminformatics, the most popular GTAs are breadth-first search

(BFS), depth-first search (DFS), random search, and variations thereof.21 Here, we focus on

BFS and DFS, two algorithms which can be used to traverse a graph in opposing ways.

A BFS proceeds as follows: first all nearest neighbors of the pre-determined ‘starting

node’ are sampled, followed by the nearest neighbors of those, and so on, until all nodes

have been visited. Here, the term ‘nearest neighbors’ refers to the nodes directly connected

to a given node via an edge. On the other hand, in a DFS, first a single branch stemming

from the starting node is traversed entirely, followed by the next branch, and so on, until

all branches have been explored. Whenever a new branching point is reached within each

branch, the algorithm is repeated for each sub-branch, treating the branching node as the

new ‘starting node.’ We illustrate the first few graph traversal steps using each of these

algorithms in Figure 1 for Gilvsin D, a natural product randomly sampled from the dataset

used in this work.

In both of these algorithms, ties between equivalent nodes can be broken by assigning

a value to each node before/during the graph traversal and choosing, e.g., the node with

the highest value when two otherwise equivalent nodes are reached. In this work, we use

the canonical node order assigned by RDKit22 for tie-breaking, to avoid re-implementing

a separate tie-breaking algorithm. Additionally, we use slightly modified BFS and DFS

algorithms when creating the training data; these modifications ensure that no disconnected

fragments are generated during data preprocessing.23 This was important due to the MPNN-

component in our generative model, where having no disconnected fragments ensures that

all nodes can pass ‘messages’ during the training and generation processes.
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Figure 1: Illustration of the BFS and DFS node traversal for the first 7 nodes visited in Gilvsin
D, a natural product found in the COCONUT dataset.24 The red highlighted atoms indicate the
atoms visited thus far in that step. During sampling, molecules will be generated via the sequential
addition of nodes in the order in which they were traversed during training.

Graph-based molecular generation with GraphINVENT

In this work, we use GraphINVENT23,25 as the baseline graph generative model for the

GTA comparison. GraphINVENT is an auto-regressive, graph-based, molecular generative

model which generates molecules one atom/bond at a time. GraphINVENT uses graph neu-

ral networks (GNNs) and a tiered deep neural network architecture to generate new molecular

graphs sequentially by learning their action probability distributions (e.g. valid chemical ac-

tions) without any hard-coded chemical rules or masks. Models are trained by minimizing

the Kullback-Leibler divergence between the ‘true’ and predicted action probability distri-

butions for constructing a batch of graphs, where the action probability distributions are

multi-dimensional tensors which encode all possible actions for growing (or terminating) a

graph. GraphINVENT models can construct molecular graphs starting from either empty

or incomplete graphs.

Contributions

In this work, we have analyzed the effect of using a breadth-first versus a depth-first node

order when generating molecular graphs using GraphINVENT, an auto-regressive, GNN-

based, deep molecular generative model. We find that using a breadth-first search leads
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to better validity and chemical space coverage in molecules sampled from suitably trained

models, and that models using breadth-first traversal are better at learning to generate

‘rounder’ molecules. Finally, we find that models using either GTA are able to over-train on

the data, at which point their performance is nearly identical.

Methods

Molecular graph generation with GraphINVENT

Here we summarize the general structure of GraphINVENT models, and the algorithm

for molecular graph generation, which is discussed in detail in a previous publication.23

Model structure

The generative models in GraphINVENT are deep neural networks, each consisting of

two blocks: (1) a GNN block, and (2) a global readout block.

The GNN block takes as input the graph representation of a molecule (adjacency tensor,

E, and node features matrix, X) and outputs the transformed node feature vectors, HL,

and the graph embedding, g. The global readout block then predicts an action probability

distribution (APD) for each graph from the learned embeddings HL and g. The APD is a

vector property containing probabilities for all possible actions for growing a given graph;

sampling it tells the model how to grow a graph.

Sampling

GraphINVENT models receive graphs as input and output APDs, from which possible

actions can be sampled and applied to the graphs. The three possible actions are (1) adding

a new node to the graph, (2) connecting the last appended node to another node in the

graph, and (3) terminating the graph construction.
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During sampling, new molecular graphs are created by inputing an empty graph into the

model, and letting the model predict what action to sample next by outputing an APD (in

the case of an empty graph, the only viable action is adding a new node). After an action is

sampled from the resulting APD, it is applied to the input graph, and the resulting graph is

fed back into the model to predict a new APD. This process of (1) generating an APD, (2)

sampling and action, and (3) applying the action to the input graph, is repeated until the

“terminate” action is sampled, or until an invalid action is sampled.

Datasets

The primary datasets used in this work were subsets from the COCONUT natural prod-

uct database.24 We explored natural products as they generally contain more complex ring

systems and larger structures than typical drug-like datasets, which we believed would em-

phasize any differences between the two GTAs explored in this work. To narrow down the

sets of molecules for this study, we filtered the full COCONUT by removing compounds

with > 60 heavy atoms and the following atom types: {K, Na, Fe, As}. From the remaining

structures, we then created 4 training sets, each with the same number of structures in the

test set (10K or 5K) and 1K structures in the validation set:

• 10K randomly sampled molecules, referred to as the ‘mixed’ set herein,

• 10K randomly sampled ‘long’ molecules,

• 10K randomly sampled ‘circular’ molecules,

• 5K randomly sampled ‘spherical’ molecules.

We separated the molecules from the filtered COCONUT dataset into three separate

classes (‘long’, ‘circular’, and ‘spherical’) based on their shape. To do this, a single conformer

was generated for each molecule using RDKit’s ‘AllChem.EmbedMolecule()’ method,26 and

the resulting conformers were classified according to their normalized principle moment ratios

(NPRs) as follows:
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• a conformer is classified as ‘long’ if it has NPR1 < 0.5 and NPR2 > 0.75,

• a conformer is classified as ‘spherical’ if it has NPR1 > 0.5 and NPR2 > 0.75,

• a conformer is classified as ‘circular’ if it has NPR2 < 0.75.

Here, we define NPR1 = I1/I3 and NPR2 = I2/I3, where I1 is the first (smallest) principal

moment of inertia (PMI), I2 is the second PMI, and I3 is the third (largest) PMI.27 Most

molecules in COCONUT are classified as ‘long’ under the above scheme, so we randomly

sampled from within each class to get a similar number of molecules in each subset. However,

not many molecules satisfy the ‘spherical’ criteria in the COCONUT subset (only ∼11K after

applying our filters, which was fewer than for the other two shape classes) and that is why this

subset is a bit smaller. The NPR distributions for each of the above subsets are illustrated

using PMI plots in SI Figure 6.

In the SI we discuss two additional datasets, including a drug-like dataset.

Training GraphINVENT models

To train the generative models, we used the GGNN-based GraphINVENT implementa-

tion using default hyperparameters, with exceptions only for the following:

• atom types : B, C, N, O, F, Si, P, S, Cl, Se, Br, and I

• formal charges : -1, 0, 1, 2, and 3

• max nodes : 60

• decoding route: BFS or DFS.

All models were trained for 100 epochs, with sampling every 5 epochs.

Evaluation metrics

To evaluate the models, we considered the following metrics:

• Percent validity and uniqueness of sampled structuresa

aValidity evaluated for 1M samples, while uniqueness and coverage evaluated only for the valid samples.
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• Training and validation losses

• Chemical space coverage:28,a

– Fraction molecules reproduced from reference set

– Fraction ring systems reproduced from reference set

– Fraction functional groups reproduced from reference set

• Shape analysis:27,29,b

– NPR1 and NPR2 distributions (aka ‘PMI plots’)

Above, the term reference set refers to the combined training, testing, and validation sets

for each COCONUT subset.

Sub-structure identification For the identification of ring systems and functional groups,

we used an algorithm implemented in RDKit which is based on iterative marching through

each molecule’s atoms.30

Conformer generation For the shape analysis, we generated one low-energy conformer

for each sampled molecular graph using RDKit’s ‘AllChem.EmbedMolecule()’ method.26

The method uses distance geometry, which requires a small amount of empirical information

(e.g. ideal bond lengths, ideal bond angles, and ideal torsional angles) to generate conformers

without the need for energy minimization using force fields. Experimental torsion angles are

stored in a list and matched to specific sub-structures using SMARTS patterns during cre-

ation of an initial distance bounds matrix, from which a random distance matrix can be sam-

pled and further refined. With this conformer generation algorithm, termed ‘Experimental-

Torsion Knowledge Distance Geometry’ (ETKDG), the authors showed that 84% of a set

of 1290 small-molecule crystal structures from the Cambridge Structural Database could be

reproduced within an RMSD of 1.0 Å in the original work.26 Then, the NPRs were used to
bShape evaluated for 10K random, valid samples out of the 1M generated set.

8



quantify the shape of each generated conformer as in previous work.27,29 New conformers

were generated whenever we needed to compute a molecule’s NPRs (we did not store the

3D conformers generated), and as there is an element of randomness in ETKDG, the con-

formers may be slightly different between runs. Nonetheless, the slight differences between

conformers do not impact the results, as 10K structures are analyzed per PMI plot, and we

verified that indeed PMI plots generated by different runs are statistically identical.

Evaluation The models were each evaluated at two epochs:

• Eopt: the epoch which minimizes the validation loss,

• Emax: the epoch which minimizes the training loss and maximizes the validation loss

(i.e. the final training epoch).

For evaluation, 1M molecules were sampled from each trained model at the aforemen-

tioned epochs. No validity filters were used during sampling, meaning that if only 60% of the

sampled molecules were ‘valid’, only 600K molecules would be written to disk after sampling.

Computational details

All the above models were trained using GraphINVENT 2.0 on an NVIDIA RTX-2080

Ti card using CUDA 10.1 and driver version 460.67.

Results

Analyzing the generation process

We can evaluate the generation process by looking at how structures are generated during

sampling. In Figure 2, we illustrate the intermediates for two randomly sampled structures

from the generated set. As expected, we see that using BFS, the generated molecule is built in

a more ‘circular’ fashion and with ring formation occurring early on during generation, while
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using the DFS leads to longer chains being built initially in the structure and ring closures

coming later. Notably, the illustrated example was not ‘cherry picked;’ the differences are

this striking for almost any randomly selected set of structures.

Figure 2: Example of two randomly selected molecules with an equal number of nodes being
generated via a BFS (top) and DFS (bottom). These molecules were sampled from models trained
on the ‘mixed’ COCONUT subset at Eopt.

File size and compute time

File size Interestingly, the HDF files created for the various training sets during pre-

processing were 3-5% smaller for the DFS-processed data when compared to the BFS-

processed data. During preprocessing, GraphINVENT combines identical subgraphs within

mini-batches before saving processed graphs to disk.23 This suggests that graphs processed

using a DFS algorithm share more subgraphs in common than those processed using a BFS

algorithm, as a greater overlap in subgraphs would mean fewer graphs are needed to represent

the training data and thus lead to smaller files.
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Compute time Sampling 1M molecules from each trained model took c.a. 2 hours per

model on a single GPU. Training took a similar amount of time (a few hours per model).

Loss

For all the aforementioned COCONUT subsets, we found that Eopt = 20 and trained

such that Emax = 100. For all models, we found that at Eopt, using a DFS led to both a

lower training and validation loss for all datasets. At Emax, all models reached the same

training loss, irrespective of GTA, while the BFS-trained model reached a higher validation

loss. This suggests that using a BFS, over-fitting happens more quickly, likely due to the

slightly greater number of subgraphs in the training data (see File size subsection above).

By over-fitting here, we mean that the difference between the validation and training losses

is large, implying the model is “over-fit” to the training set. This is often due to the training

loss decreasing while the validation loss is increasing. Indeed, when we analyze the loss

curves, we see that the validation loss increases much more rapidly when using a BFS than

when using a DFS. Example loss curves for the COCONUT 10K subset (‘mixed’) are shown

in the SI and were similar for all datasets.

Percent validity and uniqueness

Percent validity The first observation we made was that using the BFS algorithm led to

a greater fraction of valid molecules for models trained using all except the ‘circular’ and

‘spherical’ datasets at Eopt (Table 1). The differences were small but significant (generally

5-10% higher validity using BFS). For the ‘circular’ and ‘spherical’ datasets, the percent

validities were within one standard deviation for both algorithms at Eopt.

At the overfitting epoch Emax, the models performed equally in percent validity regardless

of GTA.
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Table 1: Comparison of the percent validity of sampled structures for models trained on each
COCONUT subset and evaluated at both Eopt and Emax. Error bars are the standard deviation
from 3 different runs.

Eopt Emax

BFS DFS BFS DFS

‘mixed’ 62.67 ± 2.49 49.33 ± 2.62 96.67 ± 0.94 96.67 ± 0.94

‘long’ 53.33 ± 3.68 47.33 ± 3.30 96.00 ± 0.00 95.67 ± 0.47

‘circular’ 54.33 ± 4.78 50.67 ± 4.78 96.00 ± 0.00 96.00 ± 0.00

‘spherical’ 49.33 ± 3.30 52.67 ± 6.85 94.00 ± 0.00 95.00 ± 0.00

Percent uniqueness In general, the percent uniqueness was quite high across all models

(>95%), and models performed equally on this metric for all datasets at the respective

epochs analyzed. There was no observable difference between using BFS or DFS in the

percent uniqueness. The only exception was the ‘spherical’ dataset, for which the BFS

algorithm led to a lot more unique structures at Eopt. Results are shown in SI Figure 4.

Percent uniqueness is high across the board for these models because the action space is

very large. Interestingly, all models showed a greater percent uniqueness at Emax compared

to Eopt. The reason for this is that the percent uniqueness was evaluated only for the valid

generated structures (out of 1M), and models generate a lot more valid structures at Emax

(see Table 1).

No mode collapse was observed for any of these models.

Chemical space coverage analysis

Here we analyze the results for the chemical space coverage, breaking down results into

1) overall molecular coverage, 2) ring system coverage, and 3) functional group coverage.

Molecular coverage For all datasets, the molecular coverage, or the number of molecules

reproduced from the reference set, was higher at Eopt for models using a BFS compared to

models using a DFS. However, the opposite trend was observed at Emax, due to the BFS-
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based models overfitting much more quickly to the training set and thus being less able to

generate molecules from the testing and validation sets which also make up the reference set.

In many cases, the differences between BFS and DFS models are often within a standard

deviation of each other (Table 2).

Table 2: Comparison of the molecular coverage for models trained on each COCONUT subset and
evaluated at both Eopt and Emax. The molecular coverage is the number of molecules (out of 1M
samples) which are reproduced from the reference set (larger values mean better coverage). Each
reference set consists of 21K molecules, except the ‘spherical’ reference set which consists of 11K
molecules. Error bars are the standard deviation from 3 different runs.

Eopt Emax

BFS DFS BFS DFS

‘mixed’ 71,547 ± 7059 51,192 ± 1594 879,640 ± 25,490 894,985 ± 25,084

‘long’ 58,523 ± 9672 44,741 ± 13,107 862,415 ± 1069 882,897 ± 5110

‘circular’ 53,867 ± 16,901 43,022 ± 3412 864,376 ± 1669 882,996 ± 1908

‘spherical’ 73,220 ± 21,632 67,269 ± 26,412 826,315 ± 3111 869,103 ± 888

Ring system coverage The number of ring systems found in sampled structures was

generally slightly larger for models using a BFS (at both Eopt and Emax), although in many

cases these results were also within one standard deviation of each other (SI Figure 5, top).

However, when normalizing by the number of valid structures generated by each model, we

find that there are no major differences between the number of ring systems using either

algorithm at Eopt (at Emax, BFS still has a slight advantage).

Nonetheless, evaluating the models only in terms of the number of ring systems repro-

duced from each respective reference set, we find that at each respective epoch, and for each

dataset, models trained on either GTA learn to reproduce the same number of ring systems

from the reference set (not illustrated). We emphasize that this observation is true only

when comparing BFS and DFS within each respective epoch, as at Emax the models indeed

reproduce more ring systems from the reference set than at Eopt.
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Functional group coverage Generally speaking, using a BFS led to greater number of

identifiable functional groups in the generated sets at both Eopt and Emax (SI Figure 5,

bottom). However, normalizing by the number of valid structures generated by each model

at each respective epoch, we find that the functional group coverage was the same regardless

of GTA, just as in the case of ring system coverage. In other words, there are simply more

functional groups generated because there are a lot more valid, unique structures generated

when using a BFS.

Molecular shape analysis

To visualize the differences in shape between the different sets of generated structures,

we generated conformers from the sampled molecular graphs and computed their PMI ratios

(NPR1 and NPR2) using RDKit. In Figure 3, we visualize these results using PMI plots,

which visualize the NPRs on an upside-down triangle. Molecules with NPRs towards the

top-left corner are considered more ‘long’, molecules with NPRs towards the top-right corner

are considered more ‘spherical’, and molecules with NPRs towards the bottom corner are

more ‘circular.’29

At Eopt, there are clear differences in the shapes of the structures generated depending

on the GTA used (Figure 3). Generally, what we observe is that structures generated using

a BFS tend to be more circular/spherical, whereas structures generated using a DFS tend

to be more long. The distributions in NPRs are also much sharper when using a DFS than

when using a BFS, meaning that using a BFS leads to molecules which sample the NPR

space more broadly. At Emax, the NPRs for the different sets of BFS- or DFS-generated

structures are indistinguishable (SI Figure 7).

Other datasets

Larger dataset To investigate the effect of training set size, we repeated all calculations

done on the 10K dataset on a larger 50K subset of COCONUT. Similar observations were
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Figure 3: PMI plots for generated molecules for models trained on each COCONUT subset at Eopt

(top: BFS, bottom: DFS). Although 1M molecules were sampled from each model, results are only
plotted for 10K random samples in each case. The contours are plotted over the hexbin histogram,
where a hexagon is present if at least one structure was generated in that regime; otherwise the
colorbar indicates the number of structures in each bin (out of 10K random samples). Contours are
generated from kernel density estimates on the data.

made for the 50K subset as for the 10K subset (see the SI), underlining that the training set

size had little to no effect on the GTA comparison.

Drug-like molecules We also repeated the calculations and analysis on a dataset of 4311

dopamine receptor type 2 (DRD2) active molecules. Similar but more subtle observations

were made as for the COCONUT subsets discussed above (see the SI), verifying that our

results hold for drug-like molecules.

Discussion

The shape a molecule has plays an important role in medicinal chemistry. Although

molecules are better described as ensembles of conformations rather than as rigid objects, a

molecule’s general shape can, for instance, affect whether a molecule is able to access and bind
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to a specific protein binding pocket. As such, it can be important to select the appropriate

GTA when generating molecules, and we have demonstrated that the GTA used can bias the

types of structures generated by a molecular generative model. However, many molecular

generation methods use packages (like RDKit) which by default assign a canonical node

order that is based on a DFS. As such, we believe that the performance of deep molecular

generative models could be improved by simply switching to a canonical node order based

on a BFS, rather than a DFS, for molecular generation.

To support this claim, below we summarize our key findings:

• Using a BFS algorithm for molecular graph generation overall leads to higher percent

validity in sampled structures than using a DFS (5-10% higher in most cases).

• Using a BFS leads to a larger number of molecules reproduced from the training set

in the sampled structures (greater chemical space coverage).

• Using a BFS leads to molecules having more ‘circular’ or ‘spherical’ shapes (based on

their PMI ratios), on average, whereas using a DFS leads to a bias in ‘long’ structures.

Additionally, we made the following observations:

• Ring system and functional group coverage does not depend on graph traversal algo-

rithm.

• The findings above are for Eopt, or the epoch which minimizes the validation loss.

At Emax, when models are over-trained, there are no discernible differences between

models trained using either algorithm.

It is interesting that ring system and functional group coverage does not depend on the

GTA used. We initially expected a greater ring system coverage using BFS, as it leads to

ring formation earlier on in the molecular generation process. However, after normalizing

for the greater percentage of valid structures generated using a BFS, there were no observ-

able differences, and both algorithms were able to generate the same percentage of ring

systems/functional groups from the reference set. In other words, while using a BFS does
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lead to a greater number of sampled ring systems and functional groups in the generated

structures than when using a DFS, this is a direct result of the greater number of valid and

unique structures generated when using a BFS.

We note once again that for the purposes of training with GraphINVENT, we used slightly

modified BFS and DFS algorithms which ensure that no disconnected fragments are formed

during data preprocessing (due to the message passing neural network in the framework). It

would be interesting to see if, in models which can afford to use ‘pure’ BFS/DFS algorithms,

the choice of graph traversal algorithm would lead to even larger differences in the properties

of the sampled structures at Eopt.

Finally, we emphasize that GraphINVENT uses a single decoding route for each molecular

graph seen during training (i.e. BFS/DFS is used once per graph to return a node order). As

such, it is unclear whether these observations would still hold for models which use significant

amounts of data augmentation via augmenting the number of construction paths (and by

extension, node orders) seen by the model for each training example.

Conclusion

In this work we examined what effect the two most common graph traversal algorithms

have when used in molecular graph generation. By investigating the differences in sampled

molecules from models trained using either a) a breadth-first or b) a depth-first node traversal

algorithm, we found that a BFS algorithm demonstrates advantages to DFS for molecular

generation when a model is not over-fit. In the limit of large epochs, both BFS- and DFS-

based models are able to over-fit to the data and perform identically. We recommend for all

future auto-regressive molecular graph generation tools to use a BFS when training, as we

found it leads to an increase in the percent validity of the generated structures and better

sampling of the reference set properties.
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Code availability

The original GraphINVENT code has been updated to include a DFS option for graph

traversal in preprocessing. This code is available at https://www.github.com/MolecularAI/

GraphINVENT. The analysis scripts, dataset, models, and code necessary to reproduce the re-

sults presented in this work are available on Zenodo at https://doi.org/10.5281/zenodo.

5018415.
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Supporting Information Available

Abbreviations

• BFS : breadth-first search

• DFS : depth-first search

• GNN : graph neural network

• GTA : graph traversal algorithm

• MPNN : message-passing neural network

• NPR : normalized principle moment of inertia ratio

• PMI : principle moment of inertia
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Additional COCONUT subset results

In this section we show some additional results for the aforementioned COCONUT sub-

sets: percent uniqueness (Figure 4), and ring system and functional group coverage (Figure

5).

Figure 4: Comparison of the percent uniqueness of generated molecules for models trained on each
COCONUT subset and evaluated at both Eopt and Emax. Error bars are the standard deviation
from 3 different runs.
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Figure 5: Comparison of the number of ring systems (top) and functional groups (bottom) found
in the generated molecules for models trained on each COCONUT subset and evaluated at both
Eopt and Emax. Error bars are the standard deviation from 3 different runs. Note the different
y-axis scales.
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Additionally, we show some analyses regarding the shape of the aforementioned CO-

CONUT subsets (Figure 6) and the shape of the molecules generated by models trained on

theses subsets after over-training (Figure 7). Note how, indeed, upon over-training models

on each dataset using either a BFS or DFS (Figure 7), the PMI plots of generated molecules

are almost identical to those of the reference datasets (Figure 6).

Figure 6: PMI plots for training set molecules for each COCONUT subset. Note that the differ-
entiation between the different regimes isn’t perfect as the NPRs depend on the specific conformers
that were used to compute the PMIs, and as there is an element of randomness in the conformer
generation algorithm, slightly different conformers may have been generated when creating the plot
than were used for creating the different molecule classes (conformers were not saved). The con-
tours are plotted over the hexbin histogram, where a hexagon is present if at least one structure
was sampled in that regime; otherwise the colorbar indicates the number of structures in each bin
(out of 10K random samples). Contours are generated from kernel density estimates on the data.

Finally, breaking down the molecules generated by molecular complexity led to some

interesting results. As a measure of molecular complexity, we used the BertzCT.31 In Figure

8, we show histograms of the BertzCT indices for the sampled and reference molecules when

using the COCONUT 10K ‘mixed’ subset. What we find is that, at Eopt (left), the molecular

complexity of sampled molecules using either BFS or DFS is much lower on average than the

molecular complexity of the reference (i.e. training) set. However, at Emax, we find that the

molecular complexity of the three distributions match. We found this general trend to hold

for the ‘spherical,’ ‘long,’ and ‘circular’ 10K datasets. On average, the average complexity

of the sampled structures was greater when using a BFS instead of a DFS, and only in the

case of the ‘circular’ dataset was it the other way around.

25



Figure 7: PMI plots for generated molecules for models trained on each COCONUT subset at Emax

(top: BFS, bottom: DFS). Although 1M molecules were sampled from each model, results are only
plotted for 10K random samples in each case. The contours are plotted over the hexbin histogram,
where a hexagon is present if at least one structure was generated in that regime; otherwise the
colorbar indicates the number of structures in each bin (out of 10K random samples). Contours are
generated from kernel density estimates on the data.

Figure 8: Histograms of the calculated molecular complexity, as approximated by BertzCT, for
10K sampled molecules using models trained on the COCONUT 10K ‘mixed’ subset at Eopt (left)
and Emax (right). ‘ref’ refers to the training set.
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Example loss curves

Example loss curves for the COCONUT 10K subset (‘mixed’) are shown in Figure 9. We

generally observed that:

1. models over-train much more quickly when trained using a BFS than a DFS,

2. models reach the same final training loss whether using a BFS or a DFS,

3. and both the training and validation losses at Eopt are greater for models trained using

a BFS than a DFS.

It is interesting that the BFS-based models perform better despite having a ‘worse’ loss

curve for all datasets. However, when comparing BFS and DFS, the underlying data used for

each model is not exactly the same due to the different molecular decoding routes generated

by each GTA, and as such, it is not entirely meaningful to compare the absolute values of

the loss achieved by models trained using different GTAs. For brevity, we do not show loss

curves for the other datasets, as they all displayed the same trends.

Figure 9: Loss curves for the ‘mixed’ COCONUT subset. The error bars are shown in gray for
each curve and are the standard deviation from 3 different runs.
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Larger dataset results: COCONUT 50K

In order to verify that our observations held for larger dataset, we re-ran the same

experiments done on the 10K COCONUT subset on a larger subset. This larger subset

consisted of 50K randomly sampled COCONUT molecules in the training set, 10K in the

test set, and 1K in the validation set (sampled after applying the same filters as before). For

this 50K subset, we found Eopt = 15 and Emax = 50.

Here we show the percent validity and molecular coverage (Figure 10), the ring system

and functional group coverage (Figure 11), and the shape analysis (Figure 12). While not

visualized, the percent uniqueness of 1M generated samples for all models trained on the

COCONUT 50K subset was 99%, irrespective of evaluation epoch or GTA.

We note that in Figure 12, the differences between the two GTAs at Eopt (top two figures)

are subtle; to draw the reader’s attention to these differences, we highlight that in the PMI

plots, we see a broader distribution of NPRs (less peaked) for the BFS-generated molecules

(left) than the DFS-generated molecules (right). Additionally, the BFS-generated molecules

cover more of the PMI space and have a slightly greater bias towards circular and spherical

structures, which can be verified by seeing the greater density of hexbins in the top-right

corner and right-most edge of the PMI plot.
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Figure 10: Comparison of the percent validity (left) and molecular coverage (right) of 1M generated
molecules for models trained on the COCONUT 50K subset and evaluated at both Eopt and Emax.
Error bars are the standard deviation from 3 different runs.
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Figure 11: Comparison of the ring system and functional group coverage of generated molecules
for models trained on the COCONUT 50K subset and evaluated at both Eopt and Emax. (top)
Count of total number of ring systems and functional groups found in sampled structures at each
epoch. (bottom) Count of total number of ring systems and functional groups in the generated
structures which are also found in the reference (train + test + valid) set, hence why we refer to
these as the ‘IN’ sets and the y-scale is much smaller than in the top figure. Error bars are the
standard deviation from 3 different runs.
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Figure 12: PMI plots for models trained on the COCONUT 50K subset at Eopt (top) and Emax

(bottom), with (left) BFS results and (right) DFS results. Although 1M molecules were sampled
from each model, results are only plotted for 10K random samples in each case. The contours are
plotted over the hexbin histogram, where a hexagon is present if at least one structure was generated
in that regime; otherwise the colorbar indicates the number of structures in each bin (out of 10K
random samples). Contours are generated from kernel density estimates on the data.

31



Drug-like dataset results: DRD2 actives

In order to verify that our observations held for a drug-like dataset, we re-ran the same

experiments done on the COCONUT subsets for a set of DRD2 actives.32,33 This dataset

consists of 4311 known DRD2 active molecules, split into 3448 molecules in the training set,

432 in the test set, and 431 in the validation set. For this dataset, we found Eopt = 30 and

Emax = 100.

Molecules in this dataset consist of the following:

• atom types : C, N, O, F, S, Cl, and Br

• formal charges : -1, 0, and 1

• max nodes : 72.

Here we show the percent validity and molecular coverage (Figure 13), the ring system

and functional group coverage (Figure 14), and the shape analysis (Figure 15).

As in Figure 12, we note that in Figure 15, the differences between the two GTAs at Eopt

(top two figures) are subtle; to draw the reader’s attention to these differences, we highlight

that in the PMI plots, we see a slightly broader distribution of NPRs (less peaked) for

the BFS-generated molecules (left) than the DFS-generated molecules (right). Additionally,

the BFS-generated molecules cover more of the PMI space and have a slightly greater bias

towards circular and spherical structures, which can be verified by seeing the greater density

of hexbins in the top-right corner and right-most edge of the PMI plot.
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Figure 13: Comparison of the percent validity (left) and molecular coverage (right) of 1M generated
molecules for models trained on the COCONUT 50K subset and evaluated at both Eopt and Emax.
Error bars are the standard deviation from 3 different runs.
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Figure 14: Comparison of the ring system and functional group coverage of generated molecules
for models trained on the DRD2 actives dataset and evaluated at both Eopt and Emax. (top) Count
of total number of ring systems and functional groups found in sampled structures at each epoch.
(bottom) Count of total number of ring systems and functional groups in the generated structures
which are also found in the reference (train + test + valid) set, hence why we refer to these as
the ‘IN’ sets and the y-scale is much smaller than in the top figure. Error bars are the standard
deviation from 3 different runs.
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Figure 15: PMI plots for models trained on the DRD2 actives dataset at Eopt (top) and Emax

(bottom), with (left) BFS results and (right) DFS results. Although 1M molecules were sampled
from each model, results are only plotted for 10K random samples in each case. The contours are
plotted over the hexbin histogram, where a hexagon is present if at least one structure was generated
in that regime; otherwise the colorbar indicates the number of structures in each bin (out of 10K
random samples). Contours are generated from kernel density estimates on the data.
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Example molecules

Examples of randomly sampled molecules from the various COCONUT subsets are shown

in Figure 16. Examples of molecules sampled from the models trained on the ‘mixed’ CO-

CONUT subset using either (a) BFS or DFS, at (b) Eopt or Emax, are shown in 17. Note

that as the structures are randomly sampled, that there can be ‘ugly’ yet chemically valid

molecules in the mix, particularly in the case of Eopt in Figure 17.

Figure 16: Randomly sampled molecules found in each COCONUT subset used for training. (top
left) ‘mixed’ dataset; (top right) ‘long’ dataset; (bottom left) ‘circular’ dataset; (bottom right)
‘spherical’ dataset.
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Figure 17: Randomly sampled molecules generated by models trained on the ‘mixed’ COCONUT
10K dataset using (top left) BFS @ Eopt; (top right) DFS @ Eopt; (bottom left) BFS @ Emax;
(bottom right) using DFS @ Emax.
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