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Abstract 30 

 31 

EnzymeML is an XML–based data exchange format that supports the comprehensive 32 

documentation of enzymatic data by describing reaction conditions, time courses of substrate 33 

and product concentrations, the kinetic model, and the estimated kinetic constants. EnzymeML 34 

is based on the Systems Biology Markup Language, which was extended by implementing the 35 

STRENDA Guidelines. An EnzymeML document serves as a container to transfer data between 36 

experimental platforms, modelling tools, and databases. EnzymeML supports the scientific 37 

community by introducing a standardised data exchange format to make enzymatic data 38 

findable, accessible, interoperable, and reusable according to the FAIR data principles. An 39 

Application Programming Interface in Python and Java supports the integration of applications. 40 

The feasibility of a seamless data flow using EnzymeML is demonstrated by creating an 41 

EnzymeML document from a structured spreadsheet or from a STRENDA DB database entry, 42 

by kinetic modelling using the modelling platform COPASI, and by uploading to the enzymatic 43 

reaction kinetics database SABIO-RK.  44 

  45 
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1. Introduction 46 

Enzyme catalysis and enzymology provide a powerful toolbox for sustainable synthesis routes 47 

and innovative solutions for bio-based chemistry. A better understanding of cellular 48 

biochemistry and the comprehensive biochemical characterization of the desired enzyme-49 

catalyzed reaction enable novel approaches in  enzyme engineering and process development.1 50 

Standardization of reporting of enzymatic data and metadata is considered to be pivotal to 51 

accelerating bioprocess development and reducing costs2, facilitating sharing, analysis, and 52 

reuse of data and thus enabling quality control and reproducibility of experiments3. Therefore, 53 

a major challenge for enzymology and biocatalysis lies in the current practices of dealing with 54 

experimental data in academic laboratories4. In most academic research groups, data 55 

acquisition, curation, and documentation are performed manually without a universally 56 

accepted standard across laboratories. Data and metadata are typically stored in ad hoc 57 

repositories, such as paper lab notebooks, spreadsheets in different formats, and semi-structured 58 

text files containing custom annotations. Experimental or computational data is often poorly 59 

annotated, lacking a complete description of the acquisition and analysis procedures, or 60 

associated metadata. Despite previous efforts to address these issues5, raw data are rarely 61 

available in machine-readable, even less in machine-actable format, preventing their further 62 

analysis and third-party validation. As it stands, the process of data acquisition, data analysis, 63 

and documentation is time consuming and error-prone, as is the recovery and interpretation of 64 

legacy data in most academic laboratories. Consequently, both the quality and the completeness 65 

of data and metadata solely relies on the experimenter's expertise and care.  66 

 67 

Meta-research studies suggest the lack of standardization to report and share experimental 68 

protocols, results and data as one of the causes of the reproducibility crisis in the biomedical 69 

sciences6,7. This is also true for enzymology and biocatalysis. An empirical analysis of 70 

published papers investigating enzyme function illustrates how critical information for the 71 

reproducibility of experimental finding is missing in the literature8; the missing information 72 

includes the concentration of enzyme and/or substrates, the composition of the entire buffer 73 

systems including the identity of counter-ions, pH values and assay temperatures.  74 

 75 

The incompleteness of metadata prevents the interpretation of inconsistent data arising from 76 

different studies. An example of such variability is demonstrated in a large global benchmark 77 

study9, in which the variability of a dissociation constant for a protein-protein interaction 78 

determined by 150 participants using a general protocol exceeded its average value. When 79 
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investigators were given detailed fixed protocols, the dissociation constants still varied up to 80 

20%10,11. This kind of irreproducibility is commonplace in enzymology and has an essential 81 

impact on subsequent research. 82 

 83 

In response to the reproducibility crisis, the scientific community is developing and adopting 84 

new guidelines for reporting experimental protocols and statistical analysis. Scientific journals 85 

are responding accordingly12, and there has been a recommendation to modify the academic 86 

reward system by recognising scientists who aligned with best practices for reproducible 87 

research13. Initiatives such as the German National Research Data Infrastructure develop an 88 

infrastructure for standardised research data exchange14, the Standards in Laboratory 89 

Automation consortium (SiLA) provide a framework for the exchange, integration, sharing, and 90 

retrieval of electronic laboratory information (https://sila2.gitlab.io/sila_base/), and data 91 

repositories such as Zenodo and Dataverse enable data sharing15 .  Efforts in standardization 92 

and data reproducibility have been long established in other ‘omics fields, with standard 93 

exchange formats for transcriptomics16, proteomics17, and metabolomics18 data becoming 94 

increasingly developed and adopted over the last twenty years. However, in biocatalysis and 95 

enzymology exchange standards or software support to aid data analysis, management, and 96 

sharing is still absent, and raw experimental data such as the time dependency of substrate or 97 

product concentration, derived data such as kinetic parameters, and metadata such as reaction 98 

conditions or the kinetic model are typically reported in plain text, figures, or tables19. 99 

Currently, kinetic parameters and corresponding information about the reactions, enzymes, and 100 

experimental conditions are extracted and annotated manually from scientific publications and 101 

inserted into databases such as SABIO-RK20 or BRENDA21 to structure and standardise the 102 

data. Missing information such as unambiguous external identifiers is added manually by 103 

database curators. As a first step for the standardised reporting of enzyme function data, the 104 

enzymology and biocatalysis community has established the Standards for Reporting 105 

Enzymology Data (STRENDA) Guidelines, which provide the minimum information necessary 106 

to describe assay conditions and enzyme activity data22,23. Currently, more than 55 international 107 

biochemistry journals have included adherence to the STRENDA Guidelines in their 108 

instructions for authors reporting enzymology data. STRENDA DB has been established as a 109 

public database to support authors checking the completeness of their data upon submission of 110 

their manuscript and to provide public access to data on reaction conditions and kinetic 111 

parameters of an experiment24. However, the upload of data is performed manually via a 112 

graphical user interface, and the process from data acquisition to kinetic modelling and 113 



5  
 

publication is still time consuming and error prone. Most importantly, original data such as the 114 

measured time course of substrate and product concentrations is not reported or has to be 115 

extracted from figures, thus preventing the reuse of original data for kinetic modelling. Not only 116 

is published data incomplete and inaccessible, but also unpublished research data and metadata 117 

are stored by research group members with insufficient documentation and annotation. In 118 

addition, the current data management prevents researchers from upscaling their experimental 119 

designs to high-throughput biocatalytic approaches by using pipetting robots25 or flow 120 

reactors26, and hinders the comprehensive study of the multidimensional parameter space of 121 

biocatalytic reactions.  122 

 123 

Here, we introduce EnzymeML, a data exchange format for biocatalysis and enzymology, 124 

which makes enzyme data findable, accessible, interoperable, and reusable in accordance to the 125 

FAIR data principles27. An application programming interface (API) provides Python and Java 126 

libraries to integrate applications and databases and to enable a seamless data flow from the 127 

bench to kinetic modelling tools and publication platforms. The machine-actable EnzymeML 128 

document on data and metadata of an enzymatic reaction could serve as a micropublication, 129 

supplementing the respective scientific paper. 130 

 131 

 132 

2. Principles of EnzymeML  133 

EnzymeML has been designed to support data acquisition, data analysis, and sharing of data by 134 

providing a standardised exchange format for enzymatic data (Fig. 1). EnzymeML is written in 135 

eXtensible Markup Language (XML) and comprises the most relevant data and metadata from 136 

measurement and modelling. Given the ubiquity of XML, vast amounts of software are 137 

available that read, write, manipulate, and process XML documents. More importantly, XML 138 

allows for the specification of a machine-actable schema which ensures interoperability. The 139 

central core of EnzymeML is the Systems Biology Markup Language (SBML), an established 140 

data format in systems biology for sharing, evaluating, and developing models of biochemical 141 

reaction networks28. Interoperability with existing software tools and databases is achieved by 142 

applying a common terminology and vocabulary that allow the integration of data from various 143 

sources for subsequent processing, because many of the concepts supported by SBML – educts, 144 

products, reactions, modifiers, reaction rates – are common to enzymology and biocatalysis. 145 

However, EnzymeML goes beyond SBML, because it serves to describe the effect of enzyme 146 

sequence and reaction medium to an enzymatic reaction. 147 
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 148 

EnzymeML implements the STRENDA Guidelines: For the complete machine-actable 149 

description of an enzymatic experiment, the STRENDA Guidelines were incorporated. In 150 

addition, metadata on the experiments and the kinetic model were included, resulting in a 151 

comprehensive data exchange format that comprises 71 attributes (Tab. S1). The current 152 

version of EnzymeML includes all STRENDA fields with a controlled vocabulary or values 153 

and excludes fields with plain text such as experiment methodology, in order to make 154 

EnzymeML structured and machine actable. 155 

 156 

EnzymeML was built within the framework of several internationally recognised standards: 157 

SBML is a widely used XML-based markup language and describes almost 50% of the 158 

attributes (Tab. S1). MathML was applied to describe the equation of the kinetic model,28 and 159 

the guidelines on Minimal Information Required in the Annotation of Models (MIRIAM)29 160 

were applied for the consistent annotation of components such as reactants, products, and 161 

enzymes, using terms from external data repositories such as ChEBI30 and Uniprot31. A 162 

controlled, relational vocabulary of terms, the Systems Biology Ontology (SBO)32, was used to 163 

define reactants, inhibitors, activators, parameters, and the kinetic model. All files are combined 164 

into a single document using the OMEX format33. Furthermore, EnzymeML uses the 165 

Distributions package for SBML Level 3 166 

(http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/distrib) to support the 167 

specification of ranges of initial concentrations. 168 

 169 

EnzymeML is extensible: EnzymeML-specific attributes are added to SBML using the 170 

"annotation" element, which supports metadata specific to enzymology to be added to the XML 171 

document whilst maintaining compatibility with SBML. EnzymeML documents are valid 172 

SBML files and can therefore be used and manipulated by many software tools that support the 173 

SBML format. 174 

 175 

EnzymeML is platform independent: XML has been designed to store and transfer data, and is 176 

fully agnostic to the operating system and supported by different programming languages. 177 

Comma-Separated Values (CSV) is a platform-independent text file format, which was 178 

designed for storing and transporting data structured in tables. CSV-formatted files can be read 179 

by the modelling platform COPASI34 and by spreadsheet editors such as Excel. All components 180 
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of EnzymeML are self-descriptive (SBML, MathML, OMEX), which makes EnzymeML 181 

human readable and machine actable.  182 

 183 

EnzymeML is modular: EnzymeML was developed as a container for experimental and 184 

modelling data, supporting a seamless data flow between different applications (Fig. 2). Data 185 

obtained from an experiment and metadata on experimental conditions can be stored by the 186 

experimentalist in a spreadsheet, which is convertible into EnzymeML using the API. Longer 187 

term, it is hoped that electronic lab notebooks, laboratory information management systems, 188 

and enzymology software will support the format. The EnzymeML document contains 189 

sufficient experimental data to allow for the estimation of the kinetic parameters by modelling 190 

platforms such as COPASI34, BioCatNet35, or Matlab™. Kinetic parameters can then be 191 

included in the EnzymeML document. As a consequence, enzyme assay data may be easily 192 

reanalyzed and checked with a range of data fitting algorithms, increasing reusability and 193 

confidence in both the experimental data and reported kinetic parameters. 194 

 195 

EnzymeML enables data publication in compliance with FAIR principles: An EnzymeML 196 

document stores comprehensive information about data and metadata of an enzymatic 197 

experiment: the experimental conditions, the time course of substrate and product 198 

concentration, the kinetic model, and the estimated kinetic parameters, thus making the 199 

experiment and its analysis reproducible. Upon publication, it is recommended to use 200 

EnzymeML documents as supplementary material. By depositing EnzymeML documents on 201 

platforms such as FAIRDOMHub36 or Dataverse37 using a digital object identifier, EnzymeML 202 

documents are findable and accessible. EnzymeML documents also include references to the 203 

scientific publications from which they arose, providing contextual information. 204 

 205 

 206 

3. Structure of EnzymeML documents 207 

An EnzymeML document is a ZIP container in the widely used OMEX format.33 It consists of 208 

three file types: a file using SBML to describe the experimental reaction conditions, the kinetic 209 

model, and the kinetic parameters, CSV (comma-separated values)-formatted files to store the 210 

time courses of substrate and product concentrations, and a manifest file  lists the content of the 211 

ZIP container (Figure 1). 212 

 213 
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The experimental conditions are reported according to the STRENDA recommendations, the 214 

kinetic model is described by using MathML and SBML in the experiment file. This file also 215 

describes the format of the CSV-formatted file which contains the raw time course data. Instead 216 

of using headers to describe columns, the complete CSV-formatted file description is done 217 

within the SBML file. This approach has the advantage of enabling a comprehensive description 218 

of each column, such as measured species, units and data types, instead of a single header. The 219 

SBML file uses two elements, notes and annotation. A notes tag contains human-readable 220 

information as plain text, whereas an annotation tag contains structured, machine-actable 221 

information. Notes and annotation tags are used to add information which is required by the 222 

STRENDA Guidelines, but not included in SBML, such as protein sequence, pH, or 223 

temperature. Thus, this file is a valid SBML document, which contains additional information 224 

on enzyme-catalyzed reactions. An extensive description of the EnzymeML document structure 225 

is available in the Supporting Information. 226 

 227 

 228 

4. EnzymeML application programming interface (API)  229 

Although EnzymeML is semi-human-readable, the user is not expected to read or write 230 

EnzymeML documents directly, but to use software to generate EnzymeML documents, which 231 

can then be used as a standardised exchange format to transfer data between applications 232 

(Figure 2). APIs to read, write, edit, and visualise EnzymeML have therefore been developed, 233 

using the popular programming languages Python and Java, to support the development of such 234 

software tools. The library PyEnzyme was built based on its respective SBML counterpart 235 

libSBML. To simplify the implementation of the libraries for enzyme-catalyzed reactions, the 236 

terminology of enzymology and biocatalysis is used, hiding the more systems biology focused 237 

SBML terms, while maintaining full compatibility with the SBML format.  238 

 239 

The adaption of the API to an application is enabled by an additional thin layer, which maps 240 

the objects of the API to the equivalent objects defined within the respective application. Thus, 241 

by editing a template, the functionality of reading and writing of EnzymeML can be easily 242 

incorporated into an application without the need to modify the API. For five applications 243 

(COPASI import/export, STRENDA-DB export, BioCatNet export, SABIO-RK import, 244 

simulation of time course data), application-specific thin API layers are provided 245 

(TL_COPASI, TL_STRENDAML and TL_BioCatNet, respectively). Because the API enables 246 

batch processing, management of enzymatic data is scalable, and high throughput strategies of 247 
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experimentation and data analysis become feasible. By data export in formats such as Pandas 248 

DataFrame, large datasets could be analyzed by novel analysis methods based on machine 249 

learning.  250 

 251 

Upon reading, writing, and visualization of EnzymeML documents, the API controls data 252 

completeness and consistency, such as checking the definition of reactants and proteins upon 253 

reading or writing of a reaction, or by checking that scalar properties such as pH are within the 254 

necessary range. A specific validation tool guarantees compatibility with SBML. Further 255 

application-specific validation tools have been added, such as a STRENDA DB validator to 256 

check for compatibility with the STRENDA Guidelines. For more details, readers can find a 257 

description of API below and the Supporting Information. 258 

 259 

5. Application of EnzymeML 260 

To illustrate the power of EnzymeML, we illustrate selected applications for experimental 261 

enzymologists, system biology modelers, and software developers. 262 

 263 

5.1 Creating EnzymeML documents from structured spreadsheets 264 

In the absence of a standard format, experimentalists typically store their experimental time 265 

course data in a spreadsheet following an ad hoc structure. Recently, a CSV-formatted 266 

spreadsheet, the BioCatNet template35, was proposed to store and report experimental data on 267 

enzyme-catalyzed reactions according to the STRENDA Guidelines. The API was used to 268 

convert the BioCatNet spreadsheet, containing time course data on substrate and product 269 

concentration and comprehensive information as the reaction conditions, to EnzymeML. 270 

Initially, each field of the respective spreadsheet template was extracted via a thin API layer 271 

(TL_BioCatNet) and further processed by the API to an object layer. Finally, the objects were 272 

written to an EnzymeML document (see SI 3.1). 273 

 274 

5.2 Creating EnzymeML documents from STRENDA DB entries 275 

STRENDA DB is a database on enzyme-catalyzed reactions, which covers the most important 276 

information on reaction conditions and kinetic parameters.24 The API was used to create an 277 

EnzymeML document from a STRENDA DB entry via a STRENDA DB-specific thin API 278 

layer (TL_STRENDA) to the object layer using the PyEnzyme library. The resulting 279 

EnzymeML document was then created by the API (see SI 3.2). 280 

 281 
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5.3 Upload of EnzymeML documents to SABIO-RK 282 

SABIO-RK is a curated database that contains information about biochemical reactions, their 283 

kinetic rate equations with parameters, and experimental conditions. 20 An already existing 284 

SBML parser for the upload of SBML models in SABIO-RK was extended to read the 285 

additional annotations in EnzymeML to allow the import of EnzymeML documents and to 286 

create a new SABIO-RK entry in the internal curation interface (see SI 3.3). SABIO-RK 287 

curators check the new SABIO-RK entries for consistency and completeness according to the 288 

SABIO-RK requirements before they are finally submitted to the public SABIO-RK database. 289 

 290 

5.4 Editing of EnzymeML: simulation of time course data from kinetic parameters  291 

STRENDA-DB entries provide for an enzyme-catalyzed reaction the kinetic parameters KM 292 

and kcat assuming a Michaelis-Menten model and the concentration range of the substrate. 293 

However, they are lacking information on the product and on the time course of substrate or 294 

product concentrations.  PyEnzyme was used to add the product and time course data to the 295 

EnzymeML document (see SI 3.4). By a single function in the API, the time course of substrate 296 

concentrations was simulated from the kinetic parameters for initial concentrations from 0 to 297 

0.5 mM for a time interval of 200 seconds to visualise kinetic behavior and study the effect of 298 

kinetic parameters  299 

 300 

5.5 Kinetic modelling of EnzymeML data by COPASI 301 

COPASI is a modelling and simulation environment, which supports the OMEX format.34 302 

Using the PyEnzyme library and a COPASI-specific thin API layer (TL_COPASI), the time 303 

course data (measured concentrations of substrate or product) are loaded into COPASI. Within 304 

COPASI, different kinetic laws are applied, kinetic parameters are estimated, and plots are 305 

generated to assess the result. The selected kinetic model and the estimated kinetic parameters 306 

are then added to the EnzymeML document (see SI 3.5). 307 

 308 

 309 

6. Outlook 310 

For many years, researchers worldwide from various disciplines have recognised that data 311 

published in the literature is not reliable unless the full set of information required is provided23. 312 

Therefore, the FAIR principles were introduced to encourage the comprehensive 313 

documentation of structured metadata in all stages of their life cycle in order to guarantee 314 

reproducibility of experiments and to enable reuse of results. A discipline-specific standard data 315 
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exchange format such as EnzymeML therefore provides three functionalities to optimise 316 

research in biocatalysis and enzymology: it allows the experimentalist to collect data and 317 

metadata in a structured format for data analysis; it allows project partners to transfer data and 318 

metadata between different sites and different applications; and it enables findable and reusable 319 

publication and archiving of data and metadata38.  320 

 321 

Currently, data flow from laboratory to publication is a challenging and complex process 322 

involving diverse processing stages, and numerous steps of data reformatting and manual input. 323 

Such manual approaches are becoming increasingly unsustainable, especially in light of recent 324 

advances in miniaturization and robotics which have enabled the intensive, high-throughput 325 

screening of enzymes and process conditions.39 Such technological advances foster the 326 

discovery of novel enzymatic systems and the (retro-)synthetic design of enzyme-catalyzed 327 

reaction cascades through integration of systematic data acquisition, data analysis, and 328 

simulation.40 329 

 330 

In a fully digitalised biocatalytic laboratory, an electronic lab notebook supports researchers at 331 

the bench to plan experiments and to collect experimental data and metadata,41,42 all laboratory 332 

devices are connected by a common standard,43 various modelling and data analysis tools are 333 

combined to analyze the data34,35,44, ,and the results are uploaded to searchable repositories 334 

without manual intervention24,20.  335 

With the integration of EnzymeML the interoperability and compatibility of the tools and 336 

databases will be improved, and possible current limitations and inconsistencies in the data 337 

models of the repositories will be resolved. In the future, EnzymeML will be combined with 338 

other standards to enrich the data model and to connect disciplines that are relevant to 339 

enzymology.  Incorporating AniML43 or SiLA enables access to laboratory devices, and 340 

ThermoML42 offers a comprehensive description of the reaction medium. 341 

The introduction of EnzymeML as a uniform transport container for experimental data and 342 

metadata, will encourage the development of software infrastructure built on this standardised 343 

format to greatly simplify the process of analyzing and publishing enzymology data, supporting 344 

the increasing experimental throughput, and ultimately promoting the digitalization of the fields 345 

of enzymology and biocatalysis14. 346 

 347 

 348 

7. Code availability 349 



12  
 

The XML Schema, the API, templates of the thin API layer, and all files mentioned in the 350 

Application section are available at https://github.com/EnzymeML and 351 

https://zenodo.org/record/5021263#.YNQPtS223BI. 352 

 353 

 354 

Acknowledgements 355 

The authors acknowledge Michael Hucka (California Institute of Technology) for inspiring 356 

discussions and constructive comments during the meetings of the EnzymeML Development 357 

Team and Patrick Buchholz (University of Stuttgart) for his support with BioCatNet. JP 358 

acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG, grants EXC310 and 359 

EXC2075). NS acknowledges funding from the Biotechnology and Biological Sciences 360 

Research Council (BBSRC) under grant “GeneORator: a novel and high-throughput method 361 

for the synthetic biology-based improvement of any enzyme” (BB/S004955/1) and from the 362 

University of Liverpool. AW and UW acknowledge funding from the Klaus Tschira Foundation 363 

and the German Federal Ministry of Education and Research within de.NBI (031A540). FTB 364 

acknowledges funding from the German Federal Ministry of Education and Research within 365 

de.NBI (031L0104A). We are grateful for the support of Beilstein-Institut zur Förderung der 366 

Chemischen Wissenschaften by supporting discussions through its Beilstein Enzymology 367 

Symposia and STRENDA Commission Meetings. 368 

 369 

References 370 

1 A. Pellis, S. Cantone, C. Ebert and L. Gardossi, N. Biotechnol., 2018, 40, 154–169. 371 

2 T. Decoene, B. De Paepe, J. Maertens, P. Coussement, G. Peters, S. L. De Maeseneire 372 

and M. De Mey, Crit. Rev. Biotechnol., 2018, 38, 647–656. 373 

3 V. Lapatas, M. Stefanidakis, R. C. Jimenez, A. Via and M. V. Schneider, J. Biol. Res., 374 

2015, 22, 1–16. 375 

4 C. Kettner and A. Cornish-Bowden, Perspect. Sci., 2014, 1, 1–6. 376 

5 N. Swainston, M. Golebiewski, H. L. Messiha, N. Malys, R. Kania, S. Kengne, O. Krebs, 377 

S. Mir, H. Sauer-Danzwith, K. Smallbone, A. Weidemann, U. Wittig, D. B. Kell, P. 378 

Mendes, W. Müller, N. W. Paton and I. Rojas, FEBS J., 2010, 277, 3769–3779. 379 

6 P. B. Stark, Nature, 2018, 557, 613. 380 

7 M. Baker and D. Penny, Nature, 2016, 533, 452–454. 381 

8 P. Halling, P. F. Fitzpatrick, F. M. Raushel, J. Rohwer, S. Schnell, U. Wittig, R. 382 



13  
 

Wohlgemuth and C. Kettner, Biophys. Chem., 2018, 242, 22–27. 383 

9 R. L. Rich, G. A. Papalia, P. J. Flynn, J. Furneisen, J. Quinn, J. S. Klein, P. S. Katsamba, 384 

M. B. Waddell, M. Scott, J. Thompson, J. Berlier, S. Corry, M. Baltzinger, G. Zeder-385 

Lutz, A. Schoenemann, A. Clabbers, S. Wieckowski, M. M. Murphy, P. Page, T. E. 386 

Ryan, J. Duffner, T. Ganguly, J. Corbin, S. Gautam, G. Anderluh, A. Bavdek, D. 387 

Reichmann, S. P. Yadav, E. Hommema, E. Pol, A. Drake, S. Klakamp, T. Chapman, D. 388 

Kernaghan, K. Miller, J. Schuman, K. Lindquist, K. Herlihy, M. B. Murphy, R. 389 

Bohnsack, B. Andrien, P. Brandani, D. Terwey, R. Millican, R. J. Darling, L. Wang, Q. 390 

Carter, J. Dotzlaf, J. Lopez-Sagaseta, I. Campbell, P. Torreri, S. Hoos, P. England, Y. 391 

Liu, Y. Abdiche, D. Malashock, A. Pinkerton, M. Wong, E. Lafer, C. Hinck, K. 392 

Thompson, C. Di Primo, A. Joyce, J. Brooks, F. Torta, A. B. Bagge Hagel, J. Krarup, J. 393 

Pass, M. Ferreira, S. Shikov, M. Mikolajczyk, Y. Abe, G. Barbato, A. M. Giannetti, G. 394 

Krishnamoorthy, B. Beusink, D. Satpaev, T. Tsang, E. Fang, J. Partridge, S. Brohawn, 395 

J. Horn, O. Pritsch, G. Obal, S. Nilapwar, B. Busby, G. Gutierrez-Sanchez, R. Das Gupta, 396 

S. Canepa, K. Witte, Z. Nikolovska-Coleska, Y. H. Cho, R. D’Agata, K. Schlick, R. 397 

Calvert, E. M. Munoz, M. J. Hernaiz, T. Bravman, M. Dines, M.-H. Yang, A. Puskas, E. 398 

Boni, J. Li, M. Wear, A. Grinberg, J. Baardsnes, O. Dolezal, M. Gainey, H. Anderson, 399 

J. Peng, M. Lewis, P. Spies, Q. Trinh, S. Bibikov, J. Raymond, M. Yousef, V. 400 

Chandrasekaran, Y. Feng, A. Emerick, S. Mundodo, R. Guimaraes, K. McGirr, Y.-J. Li, 401 

H. Hughes, H. Mantz, R. Skrabana, M. Witmer, J. Ballard, L. Martin, P. Skladal, G. 402 

Korza, I. Laird-Offringa, C. S. Lee, A. Khadir, F. Podlaski, P. Neuner, J. Rothacker, A. 403 

Rafique, N. Dankbar, P. Kainz, E. Gedig, M. Vuyisich, C. Boozer, N. Ly, M. Toews, A. 404 

Uren, O. Kalyuzhniy, K. Lewis, E. Chomey, B. J. Pak and D. G. Myszka, Anal. Biochem., 405 

2009, 386, 194–216. 406 

10 M. J. Cannon, G. A. Papalia, I. Navratilova, R. J. Fisher, L. R. Roberts, K. M. Worthy, 407 

A. G. Stephen, G. R. Marchesini, E. J. Collins, D. Casper, H. Qiu, D. Satpaev, S. F. 408 

Liparoto, D. A. Rice, I. I. Gorshkova, R. J. Darling, D. B. Bennett, M. Sekar, E. 409 

Hommema, A. M. Liang, E. S. Day, J. Inman, S. M. Karlicek, S. J. Ullrich, D. Hodges, 410 

T. Chu, E. Sullivan, J. Simpson, A. Rafique, B. Luginbühl, S. N. Westin, M. Bynum, P. 411 

Cachia, Y.-J. Li, D. Kao, A. Neurauter, M. Wong, M. Swanson and D. G. Myszka, Anal. 412 

Biochem., 2004, 330, 98–113. 413 

11 D. G. Myszka, Y. N. Abdiche, F. Arisaka, O. Byron, E. Eisenstein, P. Hensley, J. A. 414 

Thomson, C. R. Lombardo, F. Schwarz, W. Stafford and M. L. Doyle, J. Biomol. Tech., 415 

2003, 14, 247–69. 416 



14  
 

12 M. McNutt, Science, 2014, 346, 679. 417 

13 J. P. A. Ioannidis, PLoS Med., 2014, 11, e1001747. 418 

14 C. Wulf, M. Beller, T. Boenisch, O. Deutschmann, S. Hanf, N. Kockmann, R. Kraehnert, 419 

M. Oezaslan, S. Palkovits, S. Schimmler, S. A. Schunk, K. Wagemann and D. Linke, 420 

ChemCatChem, , DOI:10.1002/cctc.202001974. 421 

15 M. D. Wilkinson, R. Verborgh, L. O. B. da Silva Santos, T. Clark, M. A. Swertz, F. D. 422 

L. Kelpin, A. J. G. Gray, E. A. Schultes, E. M. van Mulligen, P. Ciccarese, A. Kuzniar, 423 

A. Gavai, M. Thompson, R. Kaliyaperumal, J. T. Bolleman and M. Dumontier, PeerJ 424 

Comput. Sci., 2017, 2017, e110. 425 

16 P. T. Spellman, M. Miller, J. Stewart, C. Troup, U. Sarkans, S. Chervitz, D. Bernhart, G. 426 

Sherlock, C. Ball, M. Lepage, M. Swiatek, W. L. Marks, J. Goncalves, S. Markel, D. 427 

Iordan, M. Shojatalab, A. Pizarro, J. White, R. Hubley, E. Deutsch, M. Senger, B. J. 428 

Aronow, A. Robinson, D. Bassett, C. J. Stoeckert, A. Brazma and A. Brazma, Genome 429 

Biol., 2002, 3, RESEARCH0046. 430 

17 P. G. A. Pedrioli, J. K. Eng, R. Hubley, M. Vogelzang, E. W. Deutsch, B. Raught, B. 431 

Pratt, E. Nilsson, R. H. Angeletti, R. Apweiler, K. Cheung, C. E. Costello, H. Hermjakob, 432 

S. Huang, R. K. Julian, E. Kapp, M. E. McComb, S. G. Oliver, G. Omenn, N. W. Paton, 433 

R. Simpson, R. Smith, C. F. Taylor, W. Zhu and R. Aebersold, Nat. Biotechnol., 2004, 434 

22, 1459–1466. 435 

18 M. Larralde, T. N. Lawson, R. J. M. Weber, P. Moreno, K. Haug, P. Rocca-Serra, M. R. 436 

Viant, C. Steinbeck and R. M. Salek, Bioinformatics, 2017, 33, 2598–2600. 437 

19 U. Wittig, R. Kania, M. Bittkowski, E. Wetsch, L. Shi, L. Jong, M. Golebiewski, M. Rey, 438 

A. Weidemann, I. Rojas and W. Müller, Perspect. Sci., 2014, 1, 33–40. 439 

20 U. Wittig, R. Kania, M. Golebiewski, M. Rey, L. Shi, L. Jong, E. Algaa, A. Weidemann, 440 

H. Sauer-Danzwith, S. Mir, O. Krebs, M. Bittkowski, E. Wetsch, I. Rojas and W. 441 

M??ller, Nucleic Acids Res., 2011, 40, D790–D796. 442 

21 I. Schomburg, A. Chang and D. Schomburg, Nucleic Acids Res., 2002, 30, 47–49. 443 

22 R. Apweiler, R. Armstrong, A. Bairoch, A. Cornish-Bowden, P. J. Halling, J.-H. S. 444 

Hofmeyr, C. Kettner, T. S. Leyh, J. Rohwer, D. Schomburg, C. Steinbeck and K. Tipton, 445 

Nat. Chem. Biol., 2010, 6, 785. 446 

23 K. F. Tipton, R. N. Armstrong, B. M. Bakker, A. Bairoch, A. Cornish-Bowden, P. J. 447 

Halling, J.-H. Hofmeyr, T. S. Leyh, C. Kettner, F. M. Raushel, J. Rohwer and D. 448 

Schomburg, Perspect. Sci., 2014, 1, 131–137. 449 

24 N. Swainston, A. Baici, B. M. Bakker, A. Cornish-Bowden, P. F. Fitzpatrick, P. Halling, 450 



15  
 

T. S. Leyh, C. O’Donovan, F. M. Raushel, U. Reschel, J. M. Rohwer, S. Schnell, D. 451 

Schomburg, K. F. Tipton, M.-D. Tsai, H. V. Westerhoff, U. Wittig, R. Wohlgemuth and 452 

C. Kettner, FEBS J., 2018, 285, 2193–2204. 453 

25 M. Dörr, M. P. C. Fibinger, D. Last, S. Schmidt, J. Santos-Aberturas, D. Böttcher, A. 454 

Hummel, C. Vickers, M. Voss and U. T. Bornscheuer, Biotechnol. Bioeng., 2016, 113, 455 

1421–1432. 456 

26 R. H. Ringborg, A. Toftgaard Pedersen and J. M. Woodley, ChemCatChem, 2017, 9, 457 

3285–3288. 458 

27 M. D. Wilkinson, M. Dumontier, Ij. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. 459 

Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, J. Bouwman, A. J. Brookes, 460 

T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers, A. 461 

Gonzalez-Beltran, A. J. G. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. . ’t 462 

Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E. Martone, A. Mons, A. L. 463 

Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes, 464 

T. Sengstag, T. Slater, G. Strawn, M. a. Swertz, M. Thompson, J. van der Lei, E. van 465 

Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao and B. 466 

Mons, Sci. Data, 2016, 3, 160018. 467 

28 M. Hucka, F. T. Bergmann, A. Dräger, S. Hoops, S. M. Keating, N. Le Novère, C. J. 468 

Myers, B. G. Olivier, S. Sahle, J. C. Schaff, L. P. Smith, D. Waltemath and D. J. 469 

Wilkinson, J. Integr. Bioinform., , DOI:10.1515/jib-2017-0081. 470 

29 N. Le Novère, A. Finney, M. Hucka, U. S. Bhalla, F. Campagne, J. Collado-Vides, E. J. 471 

Crampin, M. Halstead, E. Klipp, P. Mendes, P. Nielsen, H. Sauro, B. Shapiro, J. L. 472 

Snoep, H. D. Spence and B. L. Wanner, Nat. Biotechnol., 2005, 23, 1509–1515. 473 

30 J. Hastings, G. Owen, A. Dekker, M. Ennis, N. Kale, V. Muthukrishnan, S. Turner, N. 474 

Swainston, P. Mendes and C. Steinbeck, Nucleic Acids Res., 2016, 44, D1214-9. 475 

31 T. UniProt Consortium, Nucleic Acids Res., 2018, 46, 2699. 476 

32 M. Courtot, N. Juty, C. Knüpfer, D. Waltemath, A. Zhukova, A. Dräger, M. Dumontier, 477 

A. Finney, M. Golebiewski, J. Hastings, S. Hoops, S. Keating, D. B. Kell, S. Kerrien, J. 478 

Lawson, A. Lister, J. Lu, R. Machne, P. Mendes, M. Pocock, N. Rodriguez, A. Villeger, 479 

D. J. Wilkinson, S. Wimalaratne, C. Laibe, M. Hucka and N. Le Novère, Mol. Syst. Biol., 480 

2011, 7, 543. 481 

33 F. T. Bergmann, R. Adams, S. Moodie, J. Cooper, M. Glont, M. Golebiewski, M. Hucka, 482 

C. Laibe, A. K. Miller, D. P. Nickerson, B. G. Olivier, N. Rodriguez, H. M. Sauro, M. 483 

Scharm, S. Soiland-Reyes, D. Waltemath, F. Yvon and N. Le Novère, BMC 484 



16  
 

Bioinformatics, 2014, 15, 369. 485 

34 S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes 486 

and U. Kummer, Bioinformatics, 2006, 22, 3067–3074. 487 

35 P. C. F. Buchholz, R. Ohs, A. C. Spiess and J. Pleiss, Biotechnol. J., 2019, 14, 1–8. 488 

36 K. Wolstencroft, O. Krebs, J. L. Snoep, N. J. Stanford, F. Bacall, M. Golebiewski, R. 489 

Kuzyakiv, Q. Nguyen, S. Owen, S. Soiland-Reyes, J. Straszewski, D. D. Van Niekerk, 490 

A. R. Williams, L. Malmström, B. Rinn, W. Müller and C. Goble, Nucleic Acids Res., 491 

2017, 45, D404–D407. 492 

37 M. Crosas, D-Lib Mag., , DOI:10.1045/january2011-crosas. 493 

38 J. Pleiss, ChemCatChem, , DOI:10.1002/CCTC.202100822. 494 

39 P. Fernandes, Int. J. Mol. Sci., 2010, 11, 858–879. 495 

40 K. S. Rabe, J. Müller, M. Skoupi and C. M. Niemeyer, Angew. Chemie - Int. Ed., 2017, 496 

56, 13574–13589. 497 

41 C. Barillari, D. S. M. Ottoz, J. M. Fuentes-Serna, C. Ramakrishnan, B. Rinn and F. 498 

Rudolf, Bioinformatics, 2016, 32, 638–40. 499 

42 P. Tremouilhac, A. Nguyen, Y.-C. Huang, S. Kotov, D. S. Lütjohann, F. Hübsch, N. Jung 500 

and S. Bräse, J. Cheminform., 2017, 9, 54. 501 

43 H. Bär, R. Hochstrasser and B. Papenfuß, J. Lab. Autom., 2012, 17, 86–95. 502 

44 C. D. Christensen, J. H. S. Hofmeyr and J. M. Rohwer, Bioinformatics, 2018, 34, 124–503 

125. 504 

 505 

  506 



17  
 

Figures 507 

 508 

 509 

 510 

 511 

 512 

Fig. 1: Structure of an EnzymeML document. An EnzymeML document is a ZIP container 513 

in OMEX format and contains the experiment file (SBML) with the metadata of the experiment, 514 

the kinetic model, and the estimated kinetic parameters, and the measurement files (CSV) with 515 

the time courses of substrate and product concentrations. The manifest file (XML) lists the 516 

content of the ZIP container.  517 

 518 
  519 



18  
 

 520 
 521 
 522 
 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 
 537 
Fig. 2: Integration of applications. The EnzymeML document serves as a container to transfer 538 

data between applications such as experimental platforms, modelling tools, and databases for 539 

publication of enzymatic experiments. The EnzymeML API consists of a Python library 540 

PyEnzyme and provides read and write functionalities to the applications. The API is adapted 541 

to each application by an application-specific thin API layer.   542 
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