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ABSTRACT: 𝛼-tertiary amines are a common motif in pharma-
ceutically important molecules but are challenging to prepare 
using asymmetric catalysis. Here, we demonstrate engineered 
flavin-dependent ‘ene’-reductases (EREDs) can catalyze radi-
cal additions into oximes to prepare this motif. Two different 
EREDs were evolved into competent catalysts for this transfor-
mation with high levels of stereoselectivity. Mechanistic studies 
indicate that the oxime contributes to the enzyme templated CT-
complex formed between the substrate and cofactor. These 
products can be further derivatized to prepare a variety of mo-
tifs, highlighting the versatility of ERED photoenzymatic catal-
ysis for organic synthesis.  	

Chiral amines are privileged pharmacophores 
present in a wide variety of small molecule drugs.1-3 Ow-
ing to their unique pharmacological and agrochemical 
properties, catalytic methods for their asymmetric synthe-
sis have received considerable synthetic interest. Strate-
gies for preparing 𝛼-secondary amines are well developed 
with frequent application of  asymmetric reduction of 
imines and enamines, as well as biocatalytic transamina-
tion and reductive amination.4-5 In contrast, strategies for 
preparing enantioenriched 𝛼-tertiary amines remain un-
derdeveloped and desired for drug design and natural 
product synthesis.6-7 Stereoselective delivery of carbani-
ons or radicals to imines, oximes, and hydrazines derived 
from ketones is an attractive strategy for preparing 𝛼-ter-
tiary amines.8-10 Small molecule catalysts struggle to con-
trol facial delivery of reactive intermediates because of 
the small steric and electronic differences between the 
two substituents on the prochiral carbon. Enzymes are 
ideal for this challenge, however natural biocatalytic 
methods involving additions to imine congeners are 
rare.11-12 We hypothesized that substrate promiscuous en-
zymatic platforms are competent catalysts for non-natural 
reaction mechanisms that address this challenge.13 

Our group has pioneered the use a photoexcita-
tion as a strategy for expanding the synthetic capabilities 
of enzymes.14 We identified flavin dependent enzymes as 
an attractive class due to the wide variety of radical 

chemistry catalyzed by photoexcited flavin.15 We recently 
found that flavin-dependent ‘ene’-reductases (EREDs) 
can catalyze asymmetric hydroalkylations of olefins 
when irradiated with visible light.16-18 In these reactions, 
radical formation occurs via electron transfer from flavin 
hydroquinone (FMNhq) to the substrate via the intermedi-
acy of an enzyme templated charge-transfer (CT) com-
plex (Figure 1b). In these studies, presence of the alkene 
was essential for forming reactive charge-transfer com-
plexes, with aliphatic amides failing to provide the same 
absorption feature (Figure 1b). We hypothesize that a 
𝜋→𝜎*	interaction between the alkene and alkyl halide is 
responsible for the enhanced reactivity of these com-
plexes.19 Based on this observation, we question whether 
other types of coupling partners would be reactive. To-
ward our goal of synthesizing 𝛼-tertiary amines, we 

Figure 1. Preparing enantioenriched 𝛼-tertiary amines 
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specifically questioned whether oximes could function 
electron donors for CT complex formation.20-23 If effec-
tive, we imagined that EREDs could be used for enanti-
oenriched 𝛼-tertiary amine synthesis. 

We initiated our investigation by exploring the 
radical cyclization of 𝛼-chloroamide 1a bearing an O-
benzyloxime (Figure 2) and began by exploring a series 
of EREDs previously identified as catalysts for photoen-
zymatic reactions and irradiated the reaction with cyan 
LEDs. While many EREDs were able to facilitate the de-
sired reaction, none provided both high yield and enanti-
oselectivity. This is stark contrast to our previous studies 
where effective catalysts could be identified from existing 
enzyme collections. Seeking to generate selective and ef-
ficient catalysts from these less efficacious ones, we 
elected to conduct protein engineering on two enzymes 
promising for either yield or enantioselectivity. We se-
lected GluER-T36A, which provides products in 91% 
yield but with low enantioselectivity (66:34 er) and NCR, 
which forms product with good enantioselectivity (90:10 
er) but low yield (Figure 2).16, 24  

We began by engineering GluER-T36A for im-
proved enantioselectivity by mutating residues within the 
protein active site. We tested an existing collection of var-
iants containing active site mutations and found that 
GluER-G6 (T36A-K317M-Y343F), a variant possessing 
an active site mutation (Y343F), afforded product with 
80:20 er in 95% yield.19 Building on this catalyst, we con-
ducted site saturation mutagenesis on additional residues 
lining the protein active site (Y269, W66, Q232, and 
Y343) and found mutation of the phenylalanine at posi-
tion 269 to valine (GluER-T36A-K317M-Y343F-F269V) 
improved the enantioselectivity to 96:4 er, with the prod-
uct formed in 95% yield (Figure 2).  

 
Figure 2. Optimization of Radical Addition to Oximes 

Concurrently, NCR was engineered for im-
proved activity. Using a similar approach as was em-
ployed with GluER-T36A, we prepared site saturation 
mutagenesis libraries for residues lining the protein active 
site (N175, Y177, I231, Q232, R261, T268, F269, N292, 
Q293, D294, T296, S313, R316, P317, I319, D337, 
W342, and Y343).24 In the first-round, mutation of tyro-
sine 343 to tryptophan (Y343W) increased the yield to 
45% with an increase in enantioselectivity. Interestingly, 
this is the homologous position to that mutated in GluER. 
A second round of site-saturation mutagenesis revealed 
conversion of aspartic acid at position 294 to tryptophan 
(NCR-D294W-Y343W) doubled the activity, providing 
product in 95% yield with 99:1 er (Figure 2).  

 

 
Figure 3. Substrate Scope 

 
 With two selective and efficient catalysts in 
hand, we explored their scope and limitation of these cat-
alysts (Figure 3). We found that NCR-D294W-Y343W 
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was effective for a variety of substituents on the carbon 
of the oxime, with all tested examples forming product 
with outstanding levels of enantioselectivity. Yields de-
creased with increasing size, most notably with substitu-
tion at the a position of the R group as is the case in sub-
strates 6a, 7a, and 8a. This effect is presumably due to 
poor substrate binding. Interestingly, GluER-G6-F296V 
was ineffective for these substrates, affording product in 
low yield. Reexamining the GluER-G6 F269 library with 
more sterically demanding isopropyl substrate revealed 
GluER-G6-F269W to be a more reactive catalyst without 
loss in enantioselectivity. This catalyst was also effective 
for other substituted oximes, providing product in good 
yield and promising levels of enantioselectivity. Interest-
ingly, the aldehyde derived oxime 9a is highly reactive 
but less enantioselective. Benzylic and homobenzylic 
substituted oximes proved to be completely unreactive, 
presumably due to challenges associated with substrate 
binding. We suspected that this challenge could be ad-
dressed by modifying the oxygen substituent of the oxime 
from benzyl to methyl. We were delighted to find that this 
change in substrates 10a and 11a enhanced the reactivity 
of these substrates, providing product in promising yields 
and good selectivity.   

Next, we explored the ability to forge larger lac-
tam rings using oximes as coupling partners. We found 
that NCR-Y343W-D294W is an effective variant for 6-
exo-trig cyclizations. Interestingly, changing the substit-
uent on the oxime did not have a detrimental effect on the 
enantioselectivity of the transformation. Finally, we 
found that GluER-G6-F269W is capable of catalyzing a 
7-exo-trig cyclization on substrate 15a in low yield but 
with promising levels of enantioselectivity (Figure 3).  

A striking feature of these variants is their ability 
to control the stereochemical configuration of a fully sub-
stituted carbon center. Based on this observation, we 
questioned whether these catalysts would also be effec-
tive for setting quaternary stereocenters. We prepared tri-
substituted olefin 16a and found that the NCR catalyzed 
the desired reaction with low levels of enantioselectivity 
and modest yield. In contrast, NCR-Y343W-D294W 
forms product with significantly enhanced levels of enan-
tioselectivity and promising yield. While further engi-
neering is required to increase the reaction yield, these re-
sults highlight the opportunity to control challenging ste-
reocenters using catalytically promiscuous ‘ene’-reduc-
tases.  
 Next, we explored the synthetic utility of these 
hydroxylamine products. The N–O bond of the hydroxyl-
amine can be readily reduced using Pd/C under an atmos-
phere of hydrogen, cleanly providing the desired 𝛼-ter-
tiary amine in good yield. The product can be further re-
duced to the corresponding pyrrolidine using borane. Fi-
nally, the lactam can be hydrolyzed and N–O bond re-
duced under acidic conditions to afford the corresponding 
𝛽-amino acid in good yield.  

 
Figure 4. Product Derivatization 
 

Having established engineered EREDs as effec-
tive asymmetric catalysts for radical additions into ox-
imes and trisubstituted alkenes, we drew our attention to 
the biochemical basis for improved reactivity in the engi-
neered variants. Noting the robust improvement in yield 
and enantioselectivity for both NCR and GluER variants 
upon mutating the Y343 residue, we looked to the re-
ported crystal structure of NCR for insight into the role of 
this site.24 We noted that the Y343 hydroxyl residue forms 
a polar contact with nicotinamide. We hypothesize this 
interaction constitutes a binding contact with NADPH 
that facilitates flavin turnover. However, since EREDs 
operate under a ping-pong mechanism in which NADPH 
and substrate alternatively bind,25 if NADPH binds much 
more tightly to the enzyme than substrate the nicotina-
mide cofactor could act as a competitive inhibitor. To 
evaluate this possibility, we measured the binding con-
stants for NADPH across the evolutionary trajectory of 
NCR and GluER. We found that wild type NCR has a 
tight binding constant for NADPH with KD ≤ 25 µM. The 
Y343W mutation has a remarkable impact on NADPH 
binding, with KD = 702 µM. Addition of the D294W on 
top of the Y343W mutation seems to improve NADPH 
binding but not as tightly as the level of wild type enzyme, 
as the NCR-D294W-Y343W variant has a KD of 53 µM. 
While less pronounced, the GluER variants follow the 
same trend (Figure S11) supporting the role of the ob-
served mutations to ameliorate the inhibitory effect of 
strong NADPH contacts with the enzyme while still ena-
bling tight enough binding for flavin reduction. 

A key mechanistic feature of the coupling with 
alkenes is formation of a charge transfer (CT) complex 
between the flavin hydroquinone, 𝛼-chloroamide, and al-
kene. We questioned whether this type of complex was 
also responsible for coupling with oximes. UV-vis exper-
iments were conducted with reduced GluER-G6-F269V. 
When substrate is added, a complex with a maximum ab-
sorption around 500 nm is formed, indicating the for-
mation of the CT complex. Interestingly, when a structur-
ally related alkane or ketone are tested, which lack the 
electron rich 𝜋-system, no CT complexes are observed. 
These results suggest that the oxime is required for CT 
complex formation. We hypothesize that the electron rich 
nature of oximes helps facilitate the hyperconjugative 
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interactions between the 𝜋-system and 𝜎*C–Cl required for 
the complex formation. 
 

    
Figure 5. Mechanistic Experiments 
 

In conclusion, we demonstrated that oximes are 
reactive coupling partners for ERED catalyzed cycliza-
tions enabling the synthesis of enantioenriched 𝛼-tertiary 
amines. While wild-type enzymes were insufficiently se-
lective or reactive, protein engineering was effective in 
increasing the activity and selectivity of these enzymes. 
The reaction is found to utilize a similar reaction mecha-
nism to couplings involving alkenes and that protein en-
gineering alters binding of the NADPH cofactor. These 
engineered catalysts are also effective for reactions to set 
quaternary stereocenters. Overall, this study highlights 
the opportunity of novel biocatalytic reaction mecha-
nisms coupled with directed evolution to solve long-
standing challenges in chemical synthesis. 
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