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ABSTRACT: We describe a palladium catalyzed non-directed late-stage deuteration of arenes. Key aspects include the use of 
D2O as a convenient and easily available deuterium source and the discovery of highly active N,N-bidentate ligands containing 
an N-acyl sulfonamide group. The reported protocol enables high degrees of deuterium incorporation via a reversible C−H 
activation step and features an extraordinary functional group tolerance, allowing for the deuteration of complex substrates. 
This is exemplified by the late-stage isotopic labelling of various pharmaceutically relevant motifs and related scaffolds. We 
expect that this method, amongst other applications, will prove useful as a tool in drug development processes and for 
mechanistic studies.

Over the last decades the incorporation of hydrogen atom 
isotopes into organic molecules has received considerable 
attention and remains a key research goal in both academic 
and industrial research.1 Isotopically labelled compounds 
feature a broad range of applications, starting from their use 
in the elucidation of reaction mechanisms2 or as internal 
standards in mass-spectrometry studies.3 Isotopically 
labelled analogs of bioactive molecules play a critical role in 
the drug discovery processes, for example in absorption, 
distribution, metabolism, and excretion (ADME) studies to 
gain knowledge of their metabolic profile and toxicity.4 In 
an increasing number of cases deuterated molecules are 
marketed as new pharmaceuticals5 often characterized by 
improved pharmacokinetic and pharmacodynamic 
properties. These diverse applications have spurred a 
continued interest in the development of convenient and 
robust synthetic methods to incorporate deuterium into 
complex aromatic scaffolds, which occur in many bioactive 
molecules and related compounds.1d,e 

Methods such as the de novo synthesis of complex 
deuterated analogs or the introduction of D/T in pre-
functionalized positions often prove to be time consuming 
and cost-intensive.6 Efforts have thus been made to 
establish methods for the direct hydrogen isotope exchange 
(HIE) of aromatic C–H bonds, that could in principle enable 
an efficient post-synthetic incorporation of hydrogen 
isotopes into bioactive molecules.1d,e,7 

Traditional methods for the direct H/D-exchange of arenes 
include pH-dependent methods (Scheme 1A), where the 
incorporation of deuterium is achieved by the use of 
Brønsted/Lewis-acids mostly via an SEAr-type mechanism.8 
Examples of base-mediated HIE reactions of arenes are also 
known.9 Owing to the typically harsh reaction conditions 
these methods are usually employed for simple arenes. 
Heterogenous methods for the HIE of arenes are well 

developed and high activity could be achieved with many 
transition metals.3e,10 This approach offers technical 
advantages like simple purification,11 but faces challenges 
such as undesired side reactions.12  

Scheme 1. Approaches towards the Deuteration of 
Arenes 

 



 

The potential to achieve high selectivities for the HIE under 
comparably mild conditions and thus enabling a broader 
functional group tolerance, has spurred research towards 
homogeneously catalyzed methods.1b,1d,1e,13 In this context, 
the use of directing groups (DGs) has proven highly useful.14 
Methods based on various transition metals have been 
established and feature high efficiencies and broad 
functional group tolerances (Scheme 1B).15 While DGs 
usually lead to a selective deuteration in the ortho position, 
specialized DGs to achieve meta deuteration have also been 
described.16  

Recent studies have focused on the use of native functional 
groups rather than designed DG to enable directed late-
stage C–H deuteration.17  

These directed protocols are complemented by non-
directed approaches,18 which offer the potential to address 
unbiased C–H bonds without requiring a DG on the 
substrate, thus potentially enabling the H/D exchange on a 
substantially broader range of substrates. Non-directed 
methods for the deuteration of simple arenes are well 
established,19 but catalysts that enable the non-directed HIE 
of drug molecules and other similarly complex scaffolds 
have only recently been described (Scheme 1C).20 Chirik 
and co-workers introduced an iron catalyst capable of 
inducing HIE with a variety of pharmaceuticals using D2 as 
deuterium source.20a The same group later described a Ni-
based catalyst, which delivered deuterated and tritiated 
drug molecules efficiently using D2 and T2 as deuterium 
source.20c Recently, de Ruiter et al. described a Fe-PCP-
pincer complex that proves highly active for the non-
directed H/D-exchange of arenes using C6D6 as deuterium 
source and tolerates a considerable range of functional 
groups.20e These catalysts provided substantial progress 
towards the mild and efficient HIE of complex molecules 
and raised interest in the development of complementary 
methods.1e,20f 

Our group has recently developed Pd-catalysts for the non-
directed late-stage functionalization of complex 
(hetero)arenes.21,22 An extensive mechanistic investigation 
of our dual ligand-based catalyst system23 showed that the  
C–H activation step is reversible (Scheme 1D). We 
envisioned that a highly active catalyst for the reversible  
C–H activation of arenes using our dual ligand design could 
enable a homogenous non-directed method for the Pd-
catalyzed late-stage HIE with the potential to complement 
existing methods based on 3d-metals with regard to the 
substrate scope and/or deuterium source used. 

Based on these considerations, we engaged in detailed 
optimization studies.24 Table 1 shows the deuteration of 
model substrate 1 using different bidentate ligands in d1-
HFIP. Acetyl glycine (L1) as ligand resulted in a moderate 
H/D-exchange (Entry 1). Building upon our recent finding 
that bulky aryl amides as CMD promoting group in 
ethylenediamine ligands show superior activity in HIE,24 we 
synthesized the analogous glycine derivates L2 and L3 
(Entries 2 and 3). These α-amino acid derived ligands lead 
to a significant improvement in deuterium incorporation. 
An extensive search for novel ligand classes with improved 
properties regarding activity and regioselectivity led us to 
discover N,N-bidentate ligands which feature N-acyl 
sulfonamide groups. Interestingly, introducing this motif 

instead of the carboxylic acid moiety offers additional 
potential for ligand diversification by introducing further 
variable positions. Using mesityl-substituted ligand L4 gave 
similar results as acetyl glycine, albeit with less deuteration 
in the ortho-position, whereas L5 lead to decreased values 
(Entries 4 and 5). A significant improvement resulted when 
the two structural variations were combined in L6 and L7 
(Entries 6 and 7).  

Table 1. Optimization of the Ligand Structure.a, b 

 

Entry Ligand 
Yield 
(%) 

D-content (%, NMR) Total D-
content 

(MS) 
Ortho Meta  Para 

1 L1 99 11 50 23 1.66 

2 L2 95 22 73 41 2.42 

3 L3 97 24.5 79 47 2.65 

4 L4 98 4 46 23 1.27 

5 L5 98 7 35 21 1.05 

6 L6 97 5 72 46 2.08 

7 L7 97 17 90 74 2.87 

8c L7 95 39 95 84 3.51 

9c,d L7 99 34 60 32 2.15 

10c No L7 98 0 0 0 0 

11c,e L7 94 62 95 95 4.05 

a Reactions were performed on a 0.1 mmol scale. b Yields and 
degrees of deuteration were determined by 1H-NMR 
spectroscopy using mesitylene as internal standard. The total 
deuterium content was determined by mass spectrometry. c 
Reaction performed with D2O:HFIP (7:3) as solvent. Note: since 
D2O is used as part of the solvent system, this corresponds to 
an excess of approx. 390 equivalents. d No 3-trifluoromethyl 
quinoline. e Reaction performed with 48 h reaction time.  

An investigation of alternative, more convenient deuterium 
sources showed that improved results are obtained with a 
mixture of D2O:HFIP (7:3) as solvent (Entry 8). This is 
particularly attractive since d1-HFIP, which is comparably 
costly or needs to be synthesized, can be replaced by a 
cheap and convenient deuterium source. Control 
experiments at this stage revealed that both ligands are 
indeed required to obtain optimal results (Entries 9 and 
10). Finally, nearly complete deuteration of the meta and 
para positions was observed when using L7 with an 
increased reaction time (Entry 11). 

 



 

Scheme 2. Reaction Scope.a,b 

 
a Reactions were performed on a 0.2 mmol scale. b Positions with less than 10% D incorporation are typically not depicted  
explicitly but reflected in the DTotal value (For experimental details: see the SI). c Reaction performed at 40 °C for 72 h. d Determined 
by 1H-NMR spectroscopy. 



 

Interestingly, the seemingly sterically most hindered ligand 
enables the highest deuteration in the ortho-position. This 
can be explained by two factors. Firstly, the steric bulk does 
not point towards the substrate in the key C–H activation 
step,23 and secondly, the ligand enables the highest overall 
activities, such that even the least reactive site on the 
substrate is deuterated, although still substantially slower 
than the other positions (Entries 8 and 11). Since the 
conditions developed in Table 1 (Conditions B in Scheme 2) 
were found using a particularly challenging electron-poor 
substrate, we hypothesized that more electron-rich 
substrates might be deuterated under milder conditions. A 
re-optimization (see the SI for details) delivered a second 
set of reaction conditions using L3 and AgF as an additive at 
lower temperatures (Conditions A in Scheme 2) 

Having established two sets of conditions we evaluated the 
scope (Scheme 2). We initiated our investigation by using 
simple arenes to assess the general functional group 
tolerance when applying our catalyst systems. The yields of 
the re-isolated substrates were in general good to excellent. 
The use of alkylated arene 2 under very mild conditions 
resulted in high H/D-exchange in the arene moiety 
(DTotal=4.22). Excellent degrees of deuteration were also 
observed for the anisole derivative 3. Notably, our protocol 
tolerates ketones (4), a functional group that is challenging 
for many literature methods. This observation is of 
particular importance due to the presence of this 
functionality in a wide range of bioactive molecules. Using 
Conditions B, in addition to the deuteration on the arene 
core, butyrophenone 4 underwent little but measurable 
isotope exchange in the relatively acidic α-position, 
presumably via an acid-base mechanism. The electron-poor 
arenes 1, 5, and 6 were likewise subjected to Conditions B, 
leading to very high degrees of deuteration, especially in the 
meta and para positions. Di-alkyl substituted substrate 7 
smoothly underwent H/D exchange in the arene moiety. 
Interestingly, halogenated arene 8 was well tolerated under 
Conditions A giving the re-isolated substrate in good yield 
and with a high overall degree of deuteration. Further di-
substituted arenes containing ester-, amide-, ether-, and 
free hydroxy groups (9-12) gave high levels of deuterium 
incorporation (up to DTotal=3.97). Aniline-derivatives (14), 
aldehydes and extended p-systems (15) are likewise 
tolerated under the reaction conditions. Finally, we probed 
whether our protocol can be used for heterocycles. The 
comparably electron-rich heteroarenes pyrrole 16, oxazole 
17, and thiazole 18 could be deuterated in moderate to 
good yields and with appreciable levels of deuterium 
incorporation. The deuteration of pyridine-derivative 19 
confirmed that this substrate class is in principle amenable 
if the N-atom is sufficiently shielded to avoid catalyst 
poisoning. 

We proceeded to evaluate the suitability of our method for 
the late-stage deuteration of bioactive molecules and 
related scaffolds. Subjecting estrone derivative 20 to 
Conditions A delivered the deuterated compound [D]20 in 
very good yield and a high degree of deuteration on the 
arene moiety. Interestingly, the sterically most congested 
position underwent H/D-exchange to a reduced extent. 
Similarly, with tyrosine derivative 21 the deuterium 
incorporation into the sterically more hindered position 

was lower than ortho to the methoxy-group. Furthermore, 
nateglinide methyl ester 22, the Evans-type reagent 23, 
guaifenesin derivative 24, watermelon ketone (25), and 
carbofuran (26) were subjected to Conditions A, leading to 
almost complete deuterium incorporation into the 
respective arene moieties, thereby demonstrating a 
functional group tolerance towards amides, esters, ethers, 
and carbamates.  

Representatives of the fibrate class such as cipofibrate 
methyl ester (27), clofibrate (28), benzafibrate methyl 
ester (29), and fenofibrate (30) were efficiently deuterated. 
Due to the presence of an electron-poor and a rather 
electron-rich arene moiety, substrates 29 and 30 were 
subjected to both Conditions A and B. With the milder 
reaction Conditions A, a good degree of deuteration on the 
electron-rich arene was observed, while with Conditions B 
both arene moieties were efficiently deuterated. 

The fluorescein-derivative 31 was also subjected to both 
catalyst systems. With Conditions A, the electron-rich 
positions underwent efficient H/D-exchange (DTotal=2.49) 
exclusively, whereas Conditions B lead to a substantially 
increased overall deuterium incorporation (DTotal=4.57). 
Nearly complete deuteration of the arene moieties occurred 
using the sonidegib precursor 32. The etodolac methyl ester 
(33), which contains an indole substructure, likewise 
underwent an efficient H/D-exchange using Conditions A.  

Methyl ester derivatives of naproxen (34), ketoprofen (35), 
and flurbiprofen (36), as representatives of the profen class 
of medications were almost completely deuterated at the 
arene position (up to DTotal=7.57). The fenbufen derivative 
37 could likewise be deuterated. It should be noted that 
besides the aromatic core, the α-keto position underwent 
almost complete deuteration presumably due to an 
acid/base-type mechanism.  

Derivatives of diflunisal (38) and isoxepac (39) gave high 
degrees of deuteration using Conditions B. (–)-Menthol 
esters of 3-thiophenecarboxylic acid (40) and benzoic acid 
(41) could both be deuterated efficiently. Finally, subjecting 
benalaxyl (42), the palonosetron precursor 43, 
praziquantel (44), and camphor-derivative 45 to our 
catalyst led to nearly complete deuterium incorporation in 
the arene moieties, as well as the olefinic position of 45. 

Finally, Scheme 2 depicts a number of substrates that could 
not be deuterated using our method either due to substrate 
decomposition (46-50) or due to an absence of reactivity 
that presumably originates from catalyst poisoning by the 
substrate or its insolubility in the reaction medium (51-53).  

As evidenced by the above scope studies, we have 
developed a broadly applicable protocol for the non-
directed late-stage deuteration of arenes using dual ligand-
based palladium catalysts. Enabled by the development of a 
novel ligand class, a wide variety of bioactive molecules and 
related structures could be isotopically labelled using D2O 
as a cheap and convenient deuterium source. This method 
is applicable to both electron-rich and electron-poor arenes 
and tolerates a wide range of functional groups, rendering 
it complementary to established protocols. We expect that 
our catalysts will prove useful for isotopic labelling in a 
variety of fields, with potential applications ranging from 
mechanistic studies to drug development. 
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