An Efficient Synthesis of \([n]\)Cycloparaphenylenes (\(n = 9, 12, 15\)) via the Self-Assembly into Macroyclic Gold(I)-Oligophenylenylene Complexes Based on Dynamic Au–C \(\sigma\)-Bonds

Yusuke Yoshigoe,*† Yohei Tanji,† Kohtaro Osakada,§ Shinich Saito,† Yoshitaka Tsuchido,*† and Hidetoshi Kawai*†

†Department of Chemistry, Faculty of Science, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
§Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

KEYWORDS. Cycloparaphenylenes, Au(I) Complex, Au(I)-C \(\sigma\)-Bonds, Kinetics, Self-Assembly.

ABSTRACT: The transmetalation of the digold(I) complex \([\text{AuCl}_2(\text{Cy}_2\text{PCH}_3\text{PCy}_2)]\) with oligophenylenylene diboronic acids gave the triangular macrocyclic complexes \([\text{Au}([\text{C}_6\text{H}_5]_3(\text{Cy}_2\text{PCH}_3\text{PCy}_2)])_\text{L}\) \((x = 3, 4, 5)\) with yields of over 70%. A series of \([n]\)cycloparaphenylenes \((n = 9, 12, 15)\) was isolated in 78–88% yield via the oxidative chlorination of the macrocyclic gold complexes. A kinetics study employing two acyclic dinuclear gold(I) complexes, \([\text{Au}([\text{C}_6\text{H}_5]_3(\text{Cy}_2\text{PCH}_3\text{PCy}_2)])(\text{R} = \text{Ph and/or CsH}_4\text{–4–F})\), revealed that an intermolecular Au(I)–C \(\sigma\)-bond-exchange reaction proceeded. These results indicate that the triangular complexes were obtained selectively via reversible intermolecular Au(I)–C \(\sigma\)-bond exchanges. By reacting two different oligophenylenylene diboronic acids with the digold(I) complex, a mixture of macrocyclic complexes incorporating different oligophenylenylene linkers was formed. The oxidative chlorination of this mixture gave \([n]\)cycloparaphenylenes with various numbers of phenylene units.

INTRODUCTION

Cyclo[n]paraphenylenes \((\{n\}\text{CPPs}, \text{where} \ n \ \text{is the number of phenylene groups})\) are organic macrocycles that consist of 1,4-linked phenylene units.\(^{[1]}\) Owing to their bent π-conjugated structure, \(\{n\}\text{CPPs}\) exhibit characteristic photo- and electrochemical properties that differ from those of linear oligophenylenes and that depend on the ring size.\(^{[2]}\) CPPs have been widely applied in the construction of unique molecular architectures,\(^{[3]}\) such as supramolecular host–guest molecules,\(^{[4]}\) mechanically interlocked molecules (MIMs),\(^{[5]}\) and building blocks for tubular nanostructures,\(^{[6]}\) as well as in a variety of research fields, such as circularly polarized luminescent (CPL) materials,\(^{[7]}\) biological fluorophores,\(^{[8]}\) gas-adsorption materials,\(^{[9]}\) and electron-transport materials.\(^{[10]}\) The synthesis of \(\{n\}\)CPPs with a targeted ring size in high overall yield would thus be important for future applications.\(^{[11]}\) Size-selective and shotgun syntheses of \(\{n\}\)CPPs \((n = 5–16, 18)\) have been achieved by different synthetic strategies developed by Bertozzi/Jasti,\(^{[12]}\) Itami,\(^{[13]}\) Yamago,\(^{[14]}\) and Osakada/Tsuchido.\(^{[15]}\) These methods employ less-strained macrocyclic molecules or transition-metal complexes as precursors for \(\{n\}\)CPPs (Figure 1a).

In 2020, some of the authors of this paper reported the synthesis of \(\{6\}\)CPP from a macrocyclic Au complex (Figure 1b).\(^{[16]}\) The reaction of 4,4′-diphenylene diboronic acid (L2) with \([\text{AuCl}_3(\text{dcpm})]\) \((\text{dcpm} = \text{bis}(\text{dicyclopentadienylphosphino})\text{methane})\) produced the triangular hexagonal(I) complex \([\text{Au}([\text{C}_6\text{H}_5]_3(\text{dcpm})])_2(\text{Au}-2)\) in 77% yield. The oxidative chlorination\(^{[16]}\) of \(\text{Au}-2\) by PhCl\(_2\) afforded \(\{6\}\)CPP in a total yield of 59% (over two steps from \(\text{I}\)). Thus, our synthetic method has the advantage of allowing cycloparaphenylenes and related nanohoops to be synthesized from three areylene units in a highly efficient manner.\(^{[17]}\) However, the scope of this synthetic method using other oligophenylenylene derivatives, as well as the mechanism of the efficient formation of the triangular Au complexes, remain to be examined. Herein, we report the synthesis of a series of \(\{3x\}\)CPPs \((x = 3, 4, 5)\) in high overall yield and in a size-selective manner from macrocyclic Au complexes with oligophenylenylene linkers. We have also investigated the reversible ligand exchange in acyclic aryldigold(I) complexes as a model reaction for the formation of macrocyclic metal complexes. Kinetics studies of the reaction are discussed to elucidate the relevance of the dynamic behavior of the Au(I)–C bonds of the complexes to the selective and non-size-dependent formation of the macrocycles through a self-assembly process.
RESULTS AND DISCUSSION

Synthesis and Characterization of Au Complexes and [3x]CPPs. The transmetalation of [AuCl3(dcpm)] (1) with an equimolar amount of 4,4′-terphenylene diboronic acid pinacol ester (L3) was conducted in the presence of Cs2CO3 in toluene/ethanol/water at 50 °C. After stirring overnight, the resulting white solid was collected by filtration and characterized as the triangular macrocyclic complex [Au(phen)]2(dcpm)] (Au-3) (Scheme 1a, reaction i). By employing oligoparaphenylene diboronic acid pinacol ester with a quaterphenylene group (L4) or a quinquephenylene group (L5) under otherwise identical reaction conditions, the corresponding Au complexes (x = 4 from Au-4, 5 from Au-5) were obtained in 55 and 63% yield, respectively (Scheme 1b, c, reaction i).

Single crystals of Au-3 (Figure 2a) and Au-4 (Figure 2b, S42) suitable for X-ray crystallography were obtained via the vapor diffusion of CH3CN into (CH3)2 solutions of each complex. Both molecules adopt a triangular molecular structure similar to that of Au-2,[15] consisting of three oligophenylene linkers and three Au(dcpm) units. The complex with the terphenylene linker, Au-3, adopts a pseudo-C2-symmetrical structure with MPP- or PPM-helical Au2P:C groups at the three corners. Au-4 gave polymorphic crystals with a D3-symmetrical structure and PPP or MMM helicity (Figure 2b) along with the C2-symmetrical structure (Figure S42).[18] These triangular molecular structures were stabilized by aurophilic interactions[19] between the two Au(I) centers in each corner. In the C2-symmetrical structure of Au-3 (Figure 2a), the distance between the two neighboring gold atoms in one helical corner (3.297(1) Å) is longer than that of the other two corners (3.142(8), 3.118(1) Å). The same phenomenon was observed in the X-ray structures of Au-2[15] and Au-4 (Figure S42) with C2-symmetry. On the other hand, the X-ray structure of Au-4 with D3-symmetry (Figure 2b) exhibits Au-Au distances of 3.091(1) Å, which are shorter than those of the C2 isomer. These results indicate stronger aurophilic interactions in the D3 isomer compared to those in the C2 isomer. Additionally, the phenylene linkers adopt a bent conformation in the D3 symmetry, which would be difficult to form with short oligophenylene linkers.

![Figure 1.](image)

Figure 1. (a) Synthetic routes to [n]cycloparaphenlenes reported by Bertozzi/Jasti, Itami, Yamago, and Osakada/Tsuchido. (b) Synthesis of [6]CPP by a gold(I)-templated method (our previous study).[15]

![Scheme 1.](image)

Scheme 1. Synthesis of [3x]CPP by the Au-template method. (a) [9]CPP (x = 3), (b) [12]CPP (x = 4), and (c) [15]CPP (x = 5). Reagents and conditions: (i) [AuCl3(dcpm)] (1) (1.0 equiv.), Cs2CO3 (6.0 equiv.), toluene/ethanol/water (4:1:1), 50 °C, overnight; (ii) PhICl (3.0 equiv.), DMF, −60 °C, 0.5 h, then r.t., overnight. Linker lengths were determined from the molecular structures of oligophenylene simulated using MMFF force-field calculations.

![Figure 2.](image)

Figure 2. Molecular structures of (a) Au-3 and (b) Au-4 with thermal ellipsoids at 30% probability. Hydrogen atoms and solvent molecules are omitted for clarity.
The oxidative chlorination\cite{16} of Au-3 occurs upon the addition of three equivalents of PhICl in DMF at -60 °C. The C–C bond formation between two phenylene linkers via reductive elimination gave [9]CPP when the reaction temperature was raised to 25 °C (Scheme 1a, reaction ii). The 1H NMR spectrum of the crude product showed only one singlet aromatic signal at 7.52 ppm (CDC13, 25 °C), which was assigned to [9]CPP based on the literature.\cite{2} Purification of the reaction mixture using column chromatography on silica gel afforded the desired product in good yield (78%), along with the Au complex 1, which was also obtained in 78% yield. [3]CPPs (x = 4 for Au-4, 5 for Au-5) were obtained from the corresponding Au complexes in 78% and 88% yield, respectively (Scheme 1b, c, reactions ii). Based on our strategy, [3]CPPs (x = 3, 4, 5) were obtained in two steps from oligophenylene diboronic acids L3–5. The overall yields using our methods are better than those reported by other groups (cf. Tables S1-S3).\cite{28} The selective and efficient formation of the triangular complexes, which were isolated in pure form by filtration, is critical for the efficient synthesis of the CPPs, even though macrocyclization is usually a low-yield reaction. Interestingly, the macrocyclic Au complex can be selectively formed not only for the short biphenylene linker,\cite{15} but also for the long quinquenaphenylene linker, for which the distance between ipso carbon atoms at the terminal phenylene groups is up to 20.2 Å.

Kinetics Studies of Au–C σ-Bond Exchange Reaction. Highly efficient macrocyclizations have been achieved using Pd(II) or Pt(II) complexes bound to N-coordinating aromatic ligands.\cite{21} The success of these reactions has been attributed to the rapid and reversible dissociation of the linker ligands from and their re-coordination to the metal center (Scheme S2a). On the other hands, metal complexes with M-C σ-bonds such as the one used in this study hardly undergo such reversible bond-cleavage and -formation processes. However, organic transition-metal complexes, especially complexes of Pd(II) and Pt(II) with organic ligands,\cite{22,23,24} can replace their organic ligands via reversible homonuclear transmetallation processes (Scheme S2b). We assumed that the exchange of the aryl ligands between Au(I) complexes should lead to the formation of the Au complexes Au-3, Au-4, and Au-5. Nevertheless, homonuclear transmetallations between two arylgold(I) complexes to exchange their aryl ligands have not been reported to date, although heteronuclear transmetalations of Au(I)–C σ bonds with Pd(II) or Rh(I)–C σ bonds have been reported.\cite{25,26,28} Accordingly, we examined the dynamic bond-exchange reaction of two acyclic gold complexes to elucidate the mechanism of the efficient formation of the macrocyclic gold complexes.

We studied the aryl-group-exchange reaction between two acyclic dinuclear gold(I) complexes with different aryl groups (Figure 3a). The formation of the unsymmetrical arylgold(I) complex [Au2Ph2(C6H4–4–F)(dcpm)] (Au-OF) was observed upon mixing equimolar amounts (1.7 mM each) of [Au2Ph2(dcpm)] (Au-3) and [Au2(C6H4–4–F)(dcpm)] (Au-FF) in CDC13 at 25 °C. The 19F NMR spectroscopic analysis indicated that the reaction reached equilibrium after 30 min (Figure 3b).\cite{29} To our surprise, rapid bond exchange of the Au–C σ-bonds was clearly observed even at or below room temperature. The kinetic constants of the comproportionation (k1) and disproportionation (k-1) employing a mixture of Au-3 and Au-FF at -20 °C were determined to be k1 = (6.9 ± 0.64) × 10^-2 M^-1·s^-1 and k-1 = (1.4 ± 0.080) × 10^-2 M^-1·s^-1 (Figure 3c). The values are in good agreement with the reversible second-order reaction model.\cite{30} In order to understand the effect of the ancillary ligand on this surprisingly fast bond-exchange behavior, a comparative reaction was carried out with Au complexes in which the dcpm ligand was replaced by dppm (bis(diphenylphosphino) methane), Au-HH, and Au-FF (Figure 3a). As expected, the comproportionation did not occur, not even after 1 h at room temperature, suggesting that the cyclohexyl groups on the phosphines of the dcpm ligands are essential for the progress of the reaction.

The different dynamic behavior of the arylgold(I) complexes with dcpm and dppm can be explained by comparing their crystal structures and molecular orbitals. X-ray crystallography of Au-FF and Au-P revealed their solid-state structures (Figure 4a). The lengths of the two Au–C ipso bonds of Au-FF (2.072(4) and 2.092(5) Å) are slightly longer than those of Au-FF (2.062(5) Å), which suggests that the Au(I)-C σ-bonds in Au-FF are weaker than those in Au-FF. In addition, the shorter Au–P bonds of Au-FF (2.2903(17) and 2.2938(16) Å) compared to those of Au-FF (2.3013(13) Å) indicate inferior back-donation from Au to Cipso in Au-FF due to the electron-donating cyclohexyl groups. Theoretical calculations demonstrated that the lowest unoccupied molecular orbital (LUMO) of Au-HH is localized at the apical position of the gold atom (E = -0.737 eV), while it is delocalized to the ancillary ligand in the case of Au-HH (Figure 4b). The localization of the unoccupied orbital of Au-HH on the gold atom was observed at the LUMO+10 level (E = 0.113 eV). These results support the idea that the electrophilic gold atom of the Au complex with dcpm ligands could react with the aryl ligand.
The activation parameters for the comproportionation between Au–HH and Au–FF were determined to be $\Delta G^\ddagger = 17$ kcal mol$^{-1}$, $\Delta H^\ddagger = 9.5$ kcal mol$^{-1}$, and $\Delta S^\ddagger = -26$ cal mol$^{-1}$ K$^{-1}$ (at 25 °C) based on the Eyring plot (Figure 3c, inset). The negative value of ΔS^\ddagger implies that the bond-exchange process proceeds via an associative mechanism.$^{[22,23]}$ We assumed that the bond exchange or metathesis between the metal centers and organic ligands should proceed via the formation of a four-membered C$_{\text{aryl}}$–Au–C$_{\text{aryl}}$–Au ring with an auxiliary Au–Au interaction$^{[26,28]}$ followed by Au–C$_{\text{aryl}}$ bond exchange to yield Au–HF (Figure 4c). Similar intermediates with bridging organic ligands have been proposed in kinetic studies in which arylcopper(I) and arylgold(I) complexes caused trans–cis isomerization of Pd(II) complexes$^{[25]}$ and exchange of their aryl and alkynyl ligands bound to Pd(II) and Rh(I) complexes.$^{[26–28]}$

We have previously reported the similar comproportionation of [PtPh$_2$(cod)] and [Pt(C$_5$H$_4$-4-F)$_2$(cod)] to yield the organo-ligand-exchanged complex [PtPh(C$_5$H$_4$-4-F)(cod)].$^{[24b]}$ These arylplatinum(II) complexes are configured as 16-electron systems, similar to the dinuclear arylgold(I) complex in this study.$^{[23]}$ Due to the similar reactivity of the two metal–aryl bonds as well as the shared electronic nature of the metal in the above complexes, the kinetic and thermodynamic parameters of the reaction of [PtPh$_2$(cod)] were compared to that of [Au$_2$PtPh(dcpm)]. In the case of [PtPh$_2$(cod)] and [Pt(C$_5$H$_4$-4-F)$_2$(cod)], the comproportionation proceeds at 50 °C with rate constants of $k_1 = (6.4 \pm 0.6) \times 10^{-6}$ and $k_2 = (2.0 \pm 0.2) \times 10^{-6}$ M$^{-1}$ s$^{-1}$, which indicates slower aryl ligand exchange than in the Au system in this study. The thermodynamic parameters for the above Pt system are $\Delta G^\ddagger = 27 \text{ kcal mol}^{-1}$, $\Delta H^\ddagger = 23 \text{ kcal mol}^{-1}$, and $\Delta S^\ddagger = -11 \text{ cal mol}^{-1}$ K$^{-1}$. The ΔH^\ddagger for the Pt system is larger than that for the Au$_2$ system, suggesting that the Au–C bond dissociation via the formation of the association complex can be expected to occur more easily (Figure 4c).

These results imply that the highly efficient macrocyclization in this study should be attributed to reversible intermolecular exchanges of Au(I)–C σ-bonds (Figure 5). In the early stage of the reaction between 1 and L3, the formation of a mixture of acyclic and cyclic oligomers would initially proceed. The triangular complex must become the major product via the dynamic bond-exchange reaction between these species. The high thermodynamic stability and/or the poor solubility of the triangular complex could account for the isolation of the triangular complex as the sole product.

Figure 5. Illustration of a plausible mechanism for the formation of the triangular Au(I) complex Au-3 via a self-assembly process between 1 and L3.

Synthesis of CPPs from two different oligophenylene linkers. To explore the scope of the potential applications of the present synthetic method, the transmetalation of [AuCl$_2$(dcpm)] (1) was conducted with a 1:1 mixture of two different oligophenylene diboronic acids (L3/L4 or L4/L5) (Figure 6a).$^{[33]}$ The products gave complicated 1H and 13P 1H NMR spectra, which suggested the formation of mixtures of the macrocyclic gold(I) complexes with different ring sizes. Oxidation of the product by PhICl afforded a mixture of CPPs with different ring sizes, which were characterized by comparison of their NMR spectra.

Figure 4. (a) ORTEPs of Au–FF and Au–HH with thermal ellipsoids at 50% probability; hydrogen atoms are omitted for clarity. Selected bond distances (Å) are summarized in the inset table. (b) Energy levels of the frontier orbitals of Au–HH and Au–HH and a depiction of their LUMOs (M06/6-31G for C, H, P, LANL2TZ(f) for Au, iso value = 0.025); hydrogen atoms are omitted for clarity. (c) Proposed mechanism of the aryl-ligand-exchange reaction of the Au complex via an associative intermediate.

- **Figure 4**: ORTEPs of Au–FF and Au–HH with thermal ellipsoids at 50% probability; hydrogen atoms are omitted for clarity. Selected bond distances (Å) are summarized in the inset table. (b) Energy levels of the frontier orbitals of Au–HH and Au–HH and a depiction of their LUMOs (M06/6-31G for C, H, P, LANL2TZ(f) for Au, iso value = 0.025); hydrogen atoms are omitted for clarity. (c) Proposed mechanism of the aryl-ligand-exchange reaction of the Au complex via an associative intermediate.

- **Figure 5**: Illustration of a plausible mechanism for the formation of the triangular Au(I) complex Au-3 via a self-assembly process between 1 and L3.

- **Synthesis of CPPs from two different oligophenylene linkers**: To explore the scope of the potential applications of the present synthetic method, the transmetalation of [AuCl$_2$(dcpm)] (1) was conducted with a 1:1 mixture of two different oligophenylene diboronic acids (L3/L4 or L4/L5) (Figure 6a). The products gave complicated 1H and 13P 1H NMR spectra, which suggested the formation of mixtures of the macrocyclic gold(I) complexes with different ring sizes. Oxidation of the product by PhICl afforded a mixture of CPPs with different ring sizes, which were characterized by comparison of their NMR spectra.
The 1H NMR spectrum of the products obtained using an equimolar mixture of L3 and L4 (Figure 6b, top) contained four singlet signals that were assigned to [9], [10], [11], and [12]CPPs in a statistical ratio. The formation of the [10] and [11]CPPs as the major products indicates the formation of triangular macrocyclic complexes that incorporate two different oligophenylene linkers. No signals corresponding to other [n]CPPs were observed, suggesting the exclusive formation of macrocyclic hexagold(I) complexes with three linker ligands. The NMR yields of [10]CPP (1.7%) and [11]CPP (2.5%), which are CPPs derived from Au complexes with differing linkers, were slightly higher than those of [9]CPP (1.1%) and [12]CPP (1.0%), which are CPPs derived from Au complexes with identical linkers (Figure 6c). In contrast, in the L4/L5 system, the yields of [12]CPP (12%) and [15]CPP (7.9%) were significantly higher than those of [13]CPP (1.0%) and [14]CPP (1.5%). This result implies that a self-sorting process occurs in the L4/L5 system.

These results indicate that the Au-templated CPP synthesis outlined in this study allows the synthesis of [n]CPPs with numbers of phenylene units other than multiples of three via mixing two different oligophenylene linkers. The fact that the differences in the ratios of the CPP products depends on the linker length should be attributed to the thermodynamically stability of the corresponding precursor complexes. Our crystallographic study (Figure 2) revealed that macrocyclic complexes with long oligophenylene linkers can form D$_3$-isomers with strong auropilic interactions, to which the self-sorting in the L4/L5 system could be attributed.

Figure 6. (a) Synthesis of [2+1+y] and [x+2+y]CPPs by reacting mixtures of two different oligophenylene diboronic acids, Lx and Ly (x = 3, y = 4 or x = 4, y = 5; pin = pinacol) with [AuCl$_3$(dcpm)] (I), followed by oxidative chlorination of the resulting complex. Reagents and conditions: (i) Cs$_2$CO$_3$ (6.0 equiv.), toluene/ethanol/water (4:1:1), 50 °C, overnight; (ii) PhCl$_2$ (3.0 equiv.), DMF, −60 °C, 0.5 h, then r.t., overnight. (b) 1H NMR spectra of the reaction mixtures after treatment with PhCl$_2$ (400 MHz, CDCl$_3$, 25 °C). The signals were assigned with reference to reports in the literature. The asterisk indicates the residual solvent signal. (c) List of NMR yields of the CPPs over 2 steps. The NMR yields were determined from the 1H signal intensities relative to an internal standard (1,2,4,5-tetrabromobenzene).

CONCLUSIONS

We have demonstrated the highly efficient self-assembly of triangular macrocyclic Au complexes, [Au$_2$(Cy$_3$PCH$_2$PCy$_3$)$_3$] (x = 3, 4, 5), which were obtained from the transmetallation of [Au$_2$Cl$_3$(Cy$_3$PCH$_2$PCy$_3$)] with oligophenylene diboronic acids. The chemical oxidation of the complexes produced the corresponding [3x]cyclopaphenylene ([3x]CPPs) (x = 3, 4, 5) in good yields. Kinetics studies of the acyclic Au complexes [AuR$_2$(Cy$_3$PCH$_2$PCy$_3$)] (R = Ph and/or CyH-4-F) revealed that the intermolecular transmetallation of the aryl ligands proceeds with low activation energy, which would explain the high efficiency of the macrocyclization via the thermodynamically controlled self-assembly process. We have also demonstrated that the reaction of two different oligophenylene diboronic acids with the digold(I) complex resulted in the formation of a mixture of triangular macrocyclic complexes that incorporate different oligophenylene linkers, which produced [2+x+y] and [x+2+y]CPPs together with [3x] and [3y]CPPs (x = 3, y = 4 or x = 4, y = 5). The concise synthetic strategy outlined in this study allows facile access to a variety of [n]CPPs in high overall yield. Our method thus provides a new pathway for the synthesis of a variety of functionalized CPPs and related nanohoops.[35] The synthesis of [3x]CPPs (x > 5) from macrocyclic Au(I) complexes with oligophenylene linkers longer than those in this study is currently in progress.

ASSOCIATED CONTENT

The Supporting Information is available free of charge at https://pubs.acs.org/doi/xxxxxx.

Experimental procedures, NMR spectra, theoretical studies, and X-ray crystallography data (PDF, CIF)

Accession Codes

CCDC 2108728 (Au-3), 2108731 (Au-4 D$_3$), 2108730 (Au-4 C$_2$), 2108732 (Au-c-FF), 2108733 (Au-c-FF), and 2108729 (Au-c-HH) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

Yusuke Yoshigoe - Department of Chemistry, Faculty of Science, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo 162–8601, Japan; http://orcid.org/0000-0003-0869-9509; Email: yoshigoe.yusuke@rs.tus.ac.jp

Yoshitaka Tsuchido - Department of Chemistry, Faculty of Science, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo 162–8601, Japan; http://orcid.org/0000-0001-8860-0745; Email: tsuchido@rs.tus.ac.jp

Hidetoshi Kawai - Department of Chemistry, Faculty of Science, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo 162–8601, Japan; http://orcid.org/0000-0001-8860-0745; Email: tsuchido@rs.tus.ac.jp
The authors gratefully acknowledge a Grant-in-Aid for 2018 Kanto Chemical Award in Synthetic Organic Chemistry, Japan. We thank Mr. Takeru Misawa for the kinetic studies related to Auc-HH.

ACKNOWLEDGMENTS

This work was financially supported by JSPS KAKENHI grant JP19K15533/21K05093. The authors thank the “Dynamic Alliance for Open Innovation Bridging” from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). Yoshitaka T. gratefully acknowledges a Grant-in-Aid for 2018 Kanto Chemical Award in Synthetic Organic Chemistry, Japan. We thank Mr. Takeru Misawa for the kinetic studies related to Auc-HH.

REFERENCES

anism of the Uncatalyzed Dissociative Cis−Trans Isomerization of 1997
[27] For a arylcopper(I)-palladium ligand transfer, i.e., the analogous reaction of a Pd(II) complex and an arylcopper(I) complex, which have group-11 metals in common and the same electronic configuration as arylgold(II) complexes, see: Pérez-Iglesias, M.; Lozano-Lavilla, O.; Casares, J. A. [Cu(C6Cl6F3)(tht)]: An Extremely Efficient Catalyst for the Aryl Scrambling between Palladium Complexes. Organometallics 2019, 38, 739–742.
[29] The concentrations of the Au complexes were determined based on a comparison of the 19F and 1H NMR peak areas of these complexes with that of the internal standard 1,3,5-tris(trifluoromethyl)benzene (19F NMR: δ = 63.5; 1H NMR: δ = 6.5); for further details, see the Supporting Information.
[31] Carbon-bridged bimetalllic complexes were isolated and these are known as a key intermediate of transmetalation reactions; for details, see also references listed in ref. 22.
[32] [Pd2(CO)2] is a 16-electron complex of platinum(II) with a d8 electronic configuration, which contains two Pt=C (σ-bond and two Pt=C=C) π-coordination bonds. [Au2Pb(dppe)] is a 16-electron complex of two gold(I) atoms, in which both gold atoms have a d10 electronic configuration and contain an Au−Au σ-bond, an Au−P coordination bond, and an Au−Au interaction.