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Abstract 18 

Collision-induced dissociation (CID) is a common fragmentation strategy in mass spectrometry 19 

(MS) analysis. A conventional understanding is that fragment ions generated in low-energy CID 20 

should follow the even-electron rule. As such, (de)protonated precursor ions should predominately 21 

generate (de)protonated fragment ions with very few radical fragment ions (RFIs). However, the 22 

extent to which RFIs present in MS2 spectra has not been comprehensively investigated. This work 23 

uses the latest NIST 20 tandem mass spectral library to investigate of the occurrence of RFIs in 24 

CID MS2 experiments. In particular, RFIs were recognized using their integer double bond 25 

equivalent (DBE) values calculated from their annotated molecular formulas. Our study shows 26 

unexpected results as 65.4% and 68.8% of MS2 spectra contain at least 10% RFIs by ion-count 27 

(total number of ions) in positive and negative electrospray ionization (ESI) modes, respectively. 28 

Furthermore, we classified chemicals based on their compound classes and chemical substructures, 29 

and calculated the percentages of RFIs in each class. Results show that “Organic 1,3-dipolar 30 

compounds” and “Lignans, neolignans and related compounds” are the top 2 compound 31 

superclasses which tend to produce RFIs in their CID MS2 spectra. Moreover, aromatic, 32 

arylbromide, heteroaromatic, alkylarylether, phenol, and conjugated double bond-containing 33 

chemicals are more likely to produce RFIs. We also found four possible patterns of change in RFI 34 

percentages as a function of CID collision energy. Finally, we demonstrate that the inadequate 35 

consideration of RFIs in most conventional bioinformatic tools might cause problems during in 36 

silico fragmentation and de novo annotation of MS2 spectra. This work provides a further 37 

understanding of CID MS2 mechanism, and the unexpectedly large percentage of RFIs suggests a 38 

need for consideration in the development of bioinformatic software for MS2 interpretation. 39 

40 
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Introduction 41 

Collision-induced dissociation (CID) is a common ion activation technique used in mass 42 

spectrometry (MS) analysis to generate tandem MS (MS2) spectra for chemical structure 43 

determination.[1-5] The CID process generates fragment ions to obtain a fragment ion spectrum. 44 

During the CID event, heterolytic fragmentation generates (de)protonated fragment ions and 45 

homolytic fragmentation generates radical fragment ions (RFIs). The CID collision energy is a 46 

laboratory frame collision energy, and the center of mass energy slightly varies for different 47 

precursor ions depending on their masses. In low-energy CID (energy less than 100 eV) used in 48 

MS-based chemical and biochemical analyses, it is commonly believed that CID predominantly 49 

generates fragmentation of protonated or deprotonated species. In comparison, RFIs are 50 

energetically not favorable and thus are rare. Another common belief is that RFIs are generated 51 

because there is a radical cation or anion precursor as the consequence of applying a high voltage 52 

during electrospray ionization (ESI). Besides several reports on RFIs in some targeted chemical 53 

classes,[6] the global investigation on the percentage of RFIs in CID has not been systematically 54 

studied. 55 

 56 

With the development of high-resolution liquid chromatography-mass spectrometry (LC-MS) 57 

systems, it is now possible to achieve a comprehensive and untargeted coverage of chemical 58 

species in a biological or environmental sample. The application of CID then becomes critical to 59 

generate MS2 spectra for chemical annotation.[7-9] In particular, due to the large volume of 60 

chemical signals detected in experiments and a limited number of chemical standards in MS2 61 

spectral libraries, de novo interpretation and in silico prediction of MS2 spectra from chemical 62 

structures have become important.[10, 11] In the development of above-mentioned MS2 63 
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interpretation programs, it is important to have a clear understanding of fragmentation mechanisms 64 

in order to develop powerful and robust bioinformatic tools. Conventionally, it is thought that since 65 

ESI produces even-electron species and the fragmentation method is of relatively low energy, CID 66 

should generate even-electron species almost exclusively as well—the chance of generating RFIs 67 

is exceedingly rare. However, to the best of our knowledge, there is no comprehensive study of 68 

the types of fragment ions generated in CID MS2 at a global scale.   69 

 70 

In this work, we studied the existence of RFIs in CID MS2 spectra using the NIST 20 high-71 

resolution MS2 spectral library (https://www.nist.gov/srd/nist-special-database-20), hereafter 72 

referred to as NIST 20. The NIST 20 contains 1,026,717 MS2 spectra for 27,613 unique chemical 73 

compounds (positive ion mode: 765,385 spectra for 26,600 chemicals; negative ion mode: 261,332 74 

spectra for 11,675 chemicals). One important feature of NIST 20 is that fragment ions have been 75 

annotated with molecular formulas. Using the molecular formula information, we can calculate a 76 

double bond equivalent (DBE) value for each fragment ion. Since RFIs do not follow even-electron 77 

rules, their DBE values are integers. Using this information, we can determine whether an 78 

annotated fragment ion in NIST 20 is an RFI or not. The RFI information of all the chemicals in 79 

NIST 20 was then used for a comprehensive investigation, including (1) calculating the ion-count 80 

(total number of ions) and ion-intensity (total ion intensity) percentages of RFIs and plotting their 81 

distributions; (2) categorizing chemicals by their ontology classes and checking class-specific and 82 

substructure-specific RFI distributions; (3) investigating the relationship between RFIs and CID 83 

collision energy;  and (4) summarizing the potential problems of not including RFIs in in silico 84 

MS2 generation and de novo MS2 interpretation. This work represents a systematic and holistic 85 

https://www.nist.gov/srd/nist-special-database-20
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study of RFIs in CID MS2 spectra, providing guidance for the future development of bioinformatic 86 

tools for MS2 interpretation.  87 

88 
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Methods 89 

Pretreatment of NIST 20 Tandem MS Spectral Library. NIST 20 was purchased from NIST 90 

through Isomass Scientific Inc. NIST 20 contains a total of 1,026,717 low-energy CID MS2 spectra 91 

for 27,613 unique chemical compounds. It includes 765,385 spectra for 26,600 chemicals in 92 

positive ion mode and 261,332 spectra for 11,675 chemicals for negative ion mode. These high 93 

resolution MS2 spectra were collected from Thermo Orbitrap mass spectrometers. More than 99.5% 94 

of the MS2 spectra were obtained using nitrogen as the collision gas, while others used helium. 95 

Molecular formula annotation of all fragment ions was completed using MS Interpreter, a 96 

bioinformatic tool embedded in the NIST MS Search program. The detailed explanation of how 97 

NIST MS Search performs subformula annotation can be found in Text S1. 98 

 99 

To prepare NIST 20 for the study, we first removed MS2 spectra of uncommon precursor ions, 100 

such as the isotopic peak(s) of a precursor (e.g., M + 1, M + 2) and doubly and triply charged 101 

adducts (e.g., [M + Na + H]2+). We also discarded MS2 spectra with fewer than 5 annotated 102 

fragments. Furthermore, MS2 spectra with radical precursor ions (Figures S1 & S2) were removed 103 

to ensure that all RFIs were generated from (de)protonated (or even-electron) precursor ions. When 104 

multiple MS2 spectra were available for a given chemical compound, the MS2 spectrum with the 105 

most fragment ions was used for further interpretation. It is important to note that not all fragment 106 

ions in NIST 20 have molecular formula annotations. Overall, 88.4% and 87.0% of the fragment 107 

ions are annotated in positive and negative ion modes, respectively. For a fragment with multiple 108 

annotations, only the smallest mass error one was kept. 109 

 110 

Analysis of NIST 20. Data analysis was conducted using R language (version 4.0.3). The R 111 

package CHNOSZ (version 1.4.0) was used to parse and write molecular formulas. RFIs were 112 
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determined via the annotated subformula information. More specifically, double bond equivalent 113 

(DBE) values were calculated for given subformulas using the equation shown below. Letters 114 

represent the number of each chemical element in a molecular formula.  115 

𝐷𝐵𝐸 = 𝐶 + 𝑆𝑖 + 1 −
𝐻 + 𝐹 + 𝐶𝑙 + 𝐵𝑟 + 𝐼 + 𝑁𝑎 + 𝐾

2
+
𝑁 + 𝑃

2
 116 

Following the LEWIS rule that electrons in main group element-based molecules are shared such 117 

that s- and p-valence shells of all atoms are fully filled, fragment ions with non-integer DBE values 118 

are (de)protonated ions and fragment ions with integer DBE values are RFIs.  119 

 120 

To study the relationship between RFIs and compound classes, chemical compounds were first 121 

systematically classified using ClassyFire[12] (Tables S1 for positive ion mode results and S2 for 122 

negative ion mode results). In brief, the InChIKey, a textual identifier for chemical substances, of 123 

each chemical in NIST 20 was used as an input for the function “get_classification” from the 124 

classyfireR package (version 0.3.6). The “get_classification” function assigned hierarchical 125 

classification results for each chemical, and the class levels of “superclass”, “class”, and “subclass” 126 

defined in ClassyFire[13] were used for further analysis. Moreover, only superclasses containing 127 

more than 0.1% of the total compounds were kept. 128 

 129 

The relationship between chemical substructures and RFI percentages were investigated using the 130 

R package rcdk (version 3.5.0). The R package contains a total of 307 substructures from 131 

Chemistry Development Kit (CDK).[14] The entire CDK substructure list can be found in Table 132 

S3. To recognize chemical substructures, the InChIKey of each chemical compound was converted 133 

to a SMILES string using the PubChem Identifier Exchange Service platform 134 
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(https://pubchem.ncbi.nlm.nih.gov/idexchange). The SMILES string of a chemical is then used to 135 

get all possible fingerprint(s) in that structure using the function “get.fingerprint” from rcdk.  136 

 137 

To understand the patterns of how RFI count and intensity percentages change as a function of 138 

collision energy, an algorithm was created. We first prepared an RFI percentage vector sorted by 139 

collision energy in ascending order. Then, we split the vector into two halves. For each half, 140 

Spearman correlation is calculated between the order of collision energy and the RFI percentages 141 

(Xi). After both Cor1 (the first half) and Cor2 (the second half) were calculated, the RFI pattern 142 

(e.g., pattern I, II, III, or IV) was determined using the following decision table: 143 

Pattern Cor1 ≥ 0 Cor1 < 0 

Cor2 ≥ 0 I II 

Cor2 < 0 III IV 

 144 

Implications of RFIs in De Novo Annotation 145 

To demonstrate the limited capacity of annotating RFIs in state-of-the-art bioinformatics tools, we 146 

tested NIST 20 MS2 spectra using SIRIUS 4[15], one of the most commonly used MS2 147 

interpretation software. We randomly sampled 1000 RFI-containing MS2 spectra from NIST 20 148 

(500 per ionization mode) using their integer DBE values. These MS2 spectra were then imported 149 

into SIRIUS 4 and subjected to molecular formula prediction and fragmentation tree calculation 150 

(see Text S2 for the detailed SIRIUS 4 parameters). For all fragment ions interpreted by SIRIUS 151 

4, their molecular formulas were used to determine whether they were (de)protonated ions or RFIs. 152 

These SIRIUS annotation results were then compared to the NIST annotated subformulas to 153 

calculate RFI annotation sensitivity (i.e., the fraction of RFIs correctly annotated by SIRIUS 4). 154 

  155 

https://pubchem.ncbi.nlm.nih.gov/idexchange
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Results and Discussion 156 

Radical Fragment Ions in NIST 20 157 

A total of 765,385 spectra for 26,600 chemicals in positive ion mode and 261,332 spectra for 158 

11,675 chemicals for negative ion mode were collected from NIST 20. After removing disqualified 159 

MS2 spectra, including spectra with radical precursor ions, multiple-charged adducts, and fewer 160 

than 5 annotated fragments, a total of 470,841 MS2 spectra for 24,140 chemicals in positive ion 161 

mode and 137,308 MS2 spectra for 9,764 chemicals in negative ion mode were used for the 162 

following studies. It was interesting to find that 11.5 and 14.3% of the MS2 spectra in positive and 163 

negative ion modes contained radical precursor ions, respectively (Figure S2). In addition, over 164 

70% of the MS2 spectra had at least 5 annotated fragments. The distributions of annotated MS2 165 

spectra fragments are presented in Figure S3.  166 

 167 

Figure 1 illustrates the schematic workflow of investigating RFIs in NIST 20 MS2 spectra. We 168 

first calculated the percentages of RFIs and (de)protonated ions in each NIST 20 MS2 spectrum 169 

(Tables S4 & S5) and plotted their distributions. In particular, distributions of both ion-count and 170 

ion-intensity percentages were plotted throughout this work to gain a more comprehensive view 171 

of RFIs in MS2 spectra. Figures 2A and 2C show the results of NIST 20 MS2 spectra in positive 172 

and negative ion modes, respectively. Here we consider MS2 spectra with ≤ 10% RFIs as low-173 

RFI and > 10% RFIs as high-RFI MS2 spectra. In the positive ion mode MS2 spectra, 34.6% 174 

(162,746 out of 470,841) are low-RFI and 65.4% (308,095 out of 470,841) are high-RFI MS2 175 

spectra. Similar results were also found in the negative ion mode MS2 spectra, as 31.2% (42,798 176 

out of 137,308) are low-RFI and 68.8% (94,510 out of 137,308) are high-RFI MS2 spectra. The 177 
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results of these ion-count percentages were unanticipated, given the common belief that RFIs are 178 

very rare in low-energy CID MS2 spectra.  179 

 180 

Besides the ion-count percentages, we also studied the ion-intensity percentages of RFIs in both 181 

positive and negative ion modes (Tables S6 & S7). As shown in Figures 2B and 2D, for 74.2% 182 

(349,163 out of 470,841) of positive ion mode and 71.3% (97,930 out of 137,308) of negative ion 183 

mode MS2 spectra, RFIs only account for less than 20% of the total ion intensities. A comparison 184 

to ion-count percentages clearly shows that although an unexpectedly high number of RFIs are 185 

found in MS2 spectra, their ion intensities are relatively low. This might be related to their low 186 

chemical stability compared to (de)protonated ions. 187 

 188 

Radical Fragment Ions and Their Precursor Compound Classes 189 

To further understand which chemical compounds are more likely to generate RFIs in CID MS2 190 

experiments, we calculated both ion-count and ion-intensity percentages of RFIs and classified the 191 

corresponding chemical compounds using ClassyFire[13] on three class levels, including 192 

“superclass”, “class”, and “subclass”. At the superclass level, for all 22,756 compounds in positive 193 

ion mode and 8,764 compounds in negative ion mode, 17 superclasses were assigned. Figure 3A 194 

shows the RFI count percentage distributions of the superclasses by descending median values 195 

(superclasses containing more than 0.1% of the total compounds were plotted here, 13 superclasses 196 

for each ion mode). As we can see from Figure 3A, the overall median RFI count percentage is 197 

27.3% for positive ion mode and 21.2% for negative ion mode. Compound superclasses with RFI 198 

percentage medians larger than the overall median (“All” in the plot) were labelled in red and RFI 199 

percentage medians smaller than the overall median in blue. In both positive and negative ion 200 
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modes, “Organic 1,3-dipolar compounds” and “Lignans, neolignans and related compounds” are 201 

the top 2 compound superclasses and tend to produce RFIs in their CID MS2 spectra. This can be 202 

attributed to their abundant conjugated π-bond systems, which help to stabilize RFIs with 203 

delocalized electrons. On the other side, RFIs are rarely found in MS2 spectra of superclasses 204 

“Lipids and lipid-like molecules” and “Organic acids and derivatives”. This result agrees with our 205 

conventional understanding that compounds with long carbon chains are generally not preferable 206 

for RFIs compared to conjugated systems. Similar trends can be obtained using the distributions 207 

of RFI intensity percentages as shown in Figure S4. 208 

 209 

Next, we generated sunburst plots of RFI percentage distributions in terms of the three levels of 210 

compound classes in both polarity modes. Figure 3B illustrates the sunburst plot of RFI count 211 

percentage in positive ion mode. The RFI count percentages of all compound classes at different 212 

class levels can be found detailed in Table S8. As we can see in Figure 3B, slices from the inner 213 

layer to the outer layer represent compound class levels of “superclass”, “class”, and “subclass”. 214 

The median RFI count percentage in each class was calculated, and their corresponding class 215 

blocks in Figure 3A were distinguished by color, where dark red denotes RFI count percentage 216 

higher than median and dark blue denotes lower than median. Interestingly, various compound 217 

classes that belong to the same superclass can behave substantially different from each other. For 218 

instance, both “Fatty acyls” and “Steroids and steroid derivatives” have the superclass “Lipids and 219 

lipid-like molecules”, but the median RFI count percentage of “Fatty acyls” is only 1.2% and much 220 

smaller compared to the 17.9% of “Steroids and steroid derivatives”. The fused ring system of 221 

steroid molecules render them more inclined to RFIs during the CID process. Similarly, the 222 

“Naphthacenes” class (37.7%) has higher RFI count percentage than “Benzene and substituted 223 
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derivatives” (31.2%), even though they are of the same superclass “Benzenoids”. As 224 

“Naphthacenes” are four-ringed chemicals of polycyclic aromatic hydrocarbons, it is apparent that 225 

compounds with larger conjugated electron systems have higher RFI percentages. Similarly, the 226 

RFI count percentage in negative mode results are shown in Figure S5 and Table S9. Moreover, 227 

we also generated sunburst plots and result tables using the ion-intensity percentages of RFIs. 228 

Relevant results can be found in Figures S6-S7 and Tables S10-S11. These informative plots 229 

provide comprehensive knowledge of RFIs in the CID MS2 spectra of various chemical classes.  230 

 231 

Radical Fragment Ions and Chemical Substructures 232 

Furthermore, we investigated which chemical substructure is more likely to lead to RFI generation 233 

in CID MS2
 events. In this study, a CDK substructure system containing 307 chemical 234 

substructures (Table S3) was selected. In total, 23,478 unique chemicals in positive ion mode 235 

(Table S12) and 9,411 unique chemicals in negative ion mode (Table S13) were successfully 236 

assigned with at least one CDK substructure. For each chemical substructure, we categorized all 237 

the chemical compounds into two groups based on the compound containing or not containing that 238 

specific chemical substructure. We then performed Mann–Whitney U test, a nonparametric test to 239 

determine statistical significance, between the RFI percentages (both ion-count and ion-intensity) 240 

of the two classes. Statistical results of positive and negative ion modes are tabulated in Tables 241 

S14 and S15, respectively. Out of the 307 total substructures, 127 substructures have P values of 242 

less than 0.01 based on RFI count percentage in positive ion mode. Chemicals that contain any of 243 

these 127 substructures have significantly different RFI count percentages than those that do not. 244 

Of the 127 substructures, 65 have significantly higher RFI count percentages in the substructure-245 

containing chemicals, suggesting that chemicals containing these substructures are more likely to 246 
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generate RFIs. In Figure 4A, we showcase four representative substructures that have the highest 247 

statistical significance (P < 1e-3). It can be clearly seen that all of these chemical substructures 248 

have conjugated π-bond systems, which contributed to their significantly higher RFI count 249 

percentages.  250 

 251 

We also performed a similar analysis to all the compounds in negative ion mode. Negative ion 252 

mode analysis results show 94 substructures with P values of less than 0.01. Among them, 46 253 

substructures lead to more RFI generation when a chemical contains it. Four of the top-ranked 254 

substructures, including arylfluoride, arylchloride, arylbromide and aryliodide, are shown in 255 

Figure 4B. The detailed results can be found in Table S15. Overall, the aromatic substructure 256 

consistently leads to more RFIs in both positive and negative ion modes.  257 

 258 

Intensity of Radical Fragment Ions and CID Collision Energy 259 

Furthermore, we tried to understand how the change of CID collision energy affects the production 260 

of RFIs. Our conventional understanding is that higher CID collision energy is more likely to 261 

generate RFIs. In this work, we investigated the correlation between RFI intensities and CID 262 

collision energies using the chemicals in NIST 20. An important feature of NIST 20 is that it 263 

provides MS2 spectra collected from up to 24 different collision energies. We calculated RFI 264 

intensity percentages from MS2 spectra at each collision energy and checked the change as a 265 

function of collision energy. After manually checking dozens of chemicals, we summarized four 266 

possible patterns as shown in Figure 5A. Type I, in which the percentage of RFI intensities keeps 267 

increasing with the increase of collision energy, is the most common. Interestingly, there are three 268 
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other types of RFI intensity percentage change; Type II, decreases and then increases; Type III, 269 

increases and then decreases; and Type IV, keeps decreasing.  270 

 271 

We then automatically determined the type of RFI percentage for all 24,140 and 9,764 chemicals 272 

in positive and negative ionization modes, respectively, as MS2 spectra at multiple collision 273 

energies were available. As shown in Figure 5B, most chemical compounds generate RFI 274 

percentages of Type 1, which account for 61.0% in positive ion mode and 40.5% in negative ion 275 

mode. An interpretation for the chemicals belonging to Type I is that most of their RFIs are of 276 

small structural pieces at the bottom leaves of fragmentation trees[16], and thus they are inclined 277 

to be produced under higher collision energies. As an example, we manually interpreted a 278 

fragmentation pathway for the MS2 spectrum of lithocholic acid (Figure S9). All the RFIs of 279 

lithocholic acid are the end products of the fragmentation pathway. Therefore, their intensities 280 

keep increasing with the increased collision energies. Conversely, Type IV RFI intensity 281 

percentages, those that decrease with collision energy, usually happens when the RFIs show up at 282 

the root branches of fragmentation trees. Although not very common, Type IV RFIs account for 283 

9.8% in positive ion mode and 20.0% in negative ion mode. On the other side, Type II and Type 284 

III are more complicated. It is possible that in these two cases, RFIs show up at different positions 285 

in the fragmentation pathways.  286 

 287 

Apart from RFI intensity percentages, we also looked into the distribution and patterns of RFIs as 288 

a function of collision energy using RFI count percentage in both polarity modes (see Figure S8). 289 

Likewise, Type I is the most common, accounting for 57.6% and 30.6% in positive and negative 290 

ion modes, respectively. The results above show that instead of being positively correlated with 291 
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collision energy, the pattern of RFIs varies and depends on the position of the RFI in the 292 

fragmentation pathway.  293 

 294 

Potential Issues of Not Considering Radical Fragment Ions  295 

A clear understanding of MS2 spectra is critical to its interpretation in chemical annotation and 296 

unknown identification.[17] Currently, RFIs in MS2 spectra are usually ignored during the process 297 

of untargeted metabolomics data. This leads to incomplete in silico predicted fragment ions in MS2 298 

spectra as well as missing or incorrect annotations of true RFIs in experimental MS2 spectra. To 299 

understand this, we first summarized some well-established bioinformatic software that perform 300 

in silico fragmentation for unknown identification (Table 1). It can be clearly seen in the table that 301 

the majority of the software have not fully considered the existence of RFIs. To minimize the 302 

amount of false positive fragments as well as improve the computational speed, even-electron rules 303 

are usually applied while neglecting RFIs during the in silico prediction process. Given the 304 

considerable percentage of RFIs in our NIST 20 study, we believe that the incorporation of RFIs 305 

in the development of in silico MS2 generation can significantly boost their performance. 306 

 307 

Next, we demonstrated the limited RFI annotation of current bioinformatics tools using SIRIUS 308 

4[15], which is one of the commonly used MS2 interpretation software. By randomly sampling 309 

1000 NIST 20 MS2 spectra containing RFIs (500 per ionization mode) and comparing the 310 

annotated RFIs against NIST annotation, the distribution plots of RFI annotation sensitivity are 311 

shown in Figures 6A and 6C for positive and negative ion modes, respectively. In general, 47.4% 312 

of the positively ionized MS2 spectra and 57.8% of the negatively ionized MS2 spectra have lower 313 

than 10% RFI annotation sensitivity. This low annotation sensitivity suggests that most RFIs 314 
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remain poorly annotated by SIRIUS. However, considering that the intrinsic design of SIRIUS 4 315 

allows only a few common radical losses[18], this result can be expected. To further explore the 316 

relationship between RFI annotation sensitivity and MS2 RFI percentage, we split the sampled 317 

MS2 spectra into 5 groups according to their RFI count percentages. MS2 spectra with RFI count 318 

percentages over 40% were merged together to ensure that there were enough MS2 spectra for fair 319 

comparison. As seen in Figures 6B and 6D, RFI annotation sensitivity does not show general 320 

preference for RFI percentage. No statistical significance (P > 0.1, one-way ANOVA) was 321 

observed among the annotation sensitivities of different groups. These results further demonstrate 322 

that RFIs in MS2 spectra remain underestimated, and most RFIs in MS2 spectra cannot be correctly 323 

identified.  324 

325 
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Conclusion  326 

This work provides a comprehensive study of RFIs using large-scale, high-quality, and well-327 

annotated MS2 spectra data from the NIST 20 MS spectral library. Our results of ion-count and 328 

ion-intensity percentages of RFIs suggest that RFIs are common in the CID MS2 spectra of 329 

different classes of chemicals. The high occurrence of RFIs is well beyond our previous knowledge, 330 

which indicates a need for attention during the development of bioinformatic tools for in silico 331 

fragmentation as well as de novo MS2 spectra interpretation. More importantly, the in-depth 332 

interpretation of RFIs extends our current understanding of the CID fragmentation mechanism and 333 

fragmentation pathway. It will also guide the development of more precise bioinformatic tools for 334 

the interpretation of MS2 spectra, facilitating unknown chemical identification in MS-based 335 

chemical analysis.  336 

  337 
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 448 

Figure 1. Schematic workflow of mining NIST 20 to automatically explore RFIs. 449 

  450 



25 
 

 451 

Figure 2. Distribution plots of RFIs & (de)protonated ions in NIST 20 library. (A) & (C) Ion-452 

count distribution of RFIs and (de)protonated fragment ions. (B) & (D) Ion-intensity distribution 453 

of RFIs and (de)protonated fragment ions. 454 
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Figure 3. (A) RFI count percentages at the level of “Superclass” (median with interquartile range). 457 

The box plots were drew using median with interquartile. Compound superclasses containing more 458 

than 0.1% of the total compounds (13 superclasses in each ion mode) are shown. (B) The sunburst 459 

plot of RFI count percentage (medians) in positive ion mode. Slices from the inner layer to the 460 

outer layer represent class levels of “superclass”, “class” and “subclass”. 461 
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 464 

Figure 4. Representative chemical substructures that tend to produce RFIs when a chemical 465 

contains it in (A) positive ion mode and (B) negative ion mode. (*** on top of the box plot means 466 

p < 0.001, error bars indicate 95% confidence interval). 467 
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 470 

Figure 5. (A) Four patterns of how RFI percentage changes with collision energy. (B) 471 

Distributions of the four patterns in both positive and negative ion modes. (C) Representative 472 

examples of the four patterns. (NCE: normalized collision energy). APMSF: (4-473 

Carbamimidoylphenyl) methanesulfonyl fluoride.  474 
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 477 

Figure 6. RFI annotation results using SIRIUS 4. (A) Distributions of RFI annotation sensitivity 478 

in positive ion mode. (B) RFI annotation sensitivity in terms of different RFI count percentages in 479 

positive mode (mean with SD shown). (C) Distributions of RFI annotation sensitivity in negative 480 

ion mode. (D) RFI annotation sensitivity in terms of different RFI count percentages in negative 481 

ion mode (mean with SD shown). 482 

 483 

  484 



31 
 

Table 1. Summary of representative in silico fragmentation tools (in alphabetical order) and their 485 

RFI implementations.  486 

Tool name 
Core algorithm for in silico 

fragmentation 
RFI implementation 

CFM-ID 3.0[19] 

Models fragmentation as a 

stochastic, homogenous, Markov 

process involving state transitions 

between charged fragments. 

No. Even-electron rule is applied, 

and no RFI is considered. 

CSI:FingerID[20] 

Computes fragmentation trees of 

MS2 spectra. Predicts their 

fingerprints and compares them 

against the fingerprints of 

candidate compounds in the 

structure database. 

Partially. A few common radical 

losses are taken into 

consideration. 

MAGMa[21, 22] 

Assigns pre-generated 

substructures to the fragment ions 

of high-resolution multistage MSn 

data, and ranks the candidate 

molecules. 

No. The maximum number of 

protons by which the mass is 

allowed to differ is set to the 

number of broken bonds plus 

one. 

MetFrag[11] 

A hybrid rule-based combinatorial 

approach. Simulates the 

fragmentation via breaking 

molecular bonds. 

Partially. The matching function 

adds or removes a hydrogen to 

the fragment mass. A penalty is 

given in this case. 

MIDAS[23] 

A three-level fragmentation tree is 

constructed for each chemical 

structure. Three charged forms are 

considered. 

Yes. Fragments in forms of [F]+, 

[F + H]+, and [F + 2H]+ are 

considered. 

MS-FINDER[24] 

Hydrogen rearrangement during 

bond cleavage & even-electron rule 

for carbon and heteroatoms. 

Partially. Up to two hydrogens 

can be added or removed to 

recognize RFIs, and RFIs are 

considered as irregular behaviors 

(semiresolved).  

MycompoundID[25] 

Heteroatom-initiated bond 

chopping & splitable-bond 

chopping 

No. Only [M + H]+ and [M − H]− 

are considered. 
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