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ABSTRACT

Elucidating the structure of a chemical compound is a fundamental task in chemistry with application
in multiple domains including the emerging field of metabolomics, with promising applications in
drug discovery, precision medicine, and biomarker discovery. The common practice for elucidating
the structure of a chemical compound is to obtain a mass spectrum and subsequently retrieve its
structure from spectral databases. However, database retrieval methods fail to identify novel molecules
that are not present in the reference database. In this work, we propose Spec2Mol, a deep learning
architecture for molecular structure recommendation given mass spectra alone. Spec2Mol is inspired
by the Speech2Text deep learning architectures for translating audio signals into text. Our approach
is based on an encoder-decoder architecture. The encoder learns the spectra embeddings, while the
decoder, pre-trained on a massive dataset of chemical structures for translating between different
molecular representations, reconstructs SMILES sequences of the recommended chemical structures.
We have evaluated Spec2Mol by assessing the molecular similarity between the recommended
structures and the original structure. Our analysis showed that Spec2Mol is able to identify the
presence of key substructures in the molecule from its mass spectrum, and shows on par performance,
when compared to existing fragmentation tree based methods, in recommending molecules for a
given mass spectrum.

1 Introduction

The identification of the chemical compounds that are present in a sample of chemical matter is a fundamental task in
chemical analysis with applications in multiple domains. The field of metabolomics, for example, seeks to identify the
chemical molecules that are present in a biological sample. In humans, the metabolome, that is the set of all chemical
molecules that can be found in human tissues, is a great source for biomarker discovery as it reflects changes at a
genetic, proteomic or environmental level [1]. Additionally, mapping the human metabolome will lead to a better
understanding of human physiology and disease etiology and pathology which is essential for the identification of new
therapeutic targets for developing new treatments. There increasing interest in mapping the metabolome extends to
other organisms as well, such as plants which have been a great source of bioactive compounds for multiple products
including drugs and supplements [2]. The identification of chemical compounds is also critical in product development
such as in the production of pharmaceuticals and agrochemicals. Structure elucidation practices are being used for
quality control and detection of impurities as well as in safety studies for identifying potential metabolites that can be
formed in the human body. Finally, structure elucidation practices are being employed in forensics analysis.

The identification of the structure of a chemical compound is perceived as one of the most time consuming and laborious
task in chemical analysis. This is often performed through analytical techniques such as mass spectroscopy (MS) and
nuclear magnetic resonance (NMR) [3, 4, 5] with MS being used more often due to its higher sensitivity and specificity
[3]. In MS, the molecules that are present in a biological sample are first separated using a chromatographic technique,
such as liquid chromatography (LC) and gas chromatography (GC), with the latter being used more commonly [1, 6].
After the separation, the molecule is fragmented into positive or negative charged ions using an ionization source such
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as electron ionization (EI), chemical ionization (CI) and electrospray ionization source (ESI) [1, 6]. What the instrument
records is the mass-to-charge (m/z) ratios of the generated fragment ions. The information that is collected from this
process is presented in the mass spectrum which is a graph with the m/z of each recorded fragment in the horizontal
axis and the relative abundance in the vertical axis. In order to obtain more detailed information on the query structure,
a sequential fragmentation process is often used called tandem mass spectrometry [5]. Once the molecule has been
fragmented into ions, a set of them, called precursor ions, is selected and further fragmented to generate MS2 (also
called MS/MS) spectra. These second-level ions can be fragmented even further giving MS3 spectra and so on. The
peaks and their intensity in the resulting spectrum depend not only on the structure of the chemical molecule that is
being fragmented but also on the experimental conditions, that is the instrument used, the collision energy, the selected
precursor ion and the ionization mode, as it is illustrated in Figure 1.

Once the mass spectrum is obtained, it is matched against the content of spectral databases of reference compounds
in order to retrieve its structure. Various chemical databases provide spectra data of metabolites [7] such as Human
Metabolome Database, METLIN, MassBank and mzCloud [7]. Certain databases are focused on the metabolites of
specific organisms, such as the Human Metabolome Database, or on specific molecular classes, such as the LIPID
MAPS Structure Database, while others have greater coverage such as METLIN. However, despite the intense ongoing
efforts to map the metabolome of various organisms, existing databases cover only a small percentage of the actual
metabolites that occur in organisms. Particularly for humans, it is estimated that less than 10% of metabolites have
experimental reference mass spectra [8] which means that a large percentage of the current practice cannot identify
a large percentage of the molecules that are found in human tissues. It is estimated that in untargeted metabolomics
studies less than 2% of the detected spectral features are identified [8].

An approach that has been developed to address the problem of limited amount of experimental spectra data is in silico
fragmentation which essentially attempts to solve the inverse problem. This approach aims at enhancing the content of
existing spectra databases with computed spectra of known molecular structures which have no available experimental
spectra. Essentially this approach seeks to close the gap between spectral and structural databases. In silico fragmentation
tools predict the fragmentation process either relying on fragmentation rules or using combinatorial/optimization-based
approaches or employing machine learning methodologies [6, 9, 10]. Fragment prediction methods have been especially
successful for predicting spectra of peptides, however, fragmentation of small molecules into ions is a more stochastic
process that is especially challenging to predict [6].

A more direct approach to the structure elucidation problem would be to reconstruct the underlying chemical structures
given spectra features. Such an undertaking though is computationally challenging as it requires the generation of a
molecular structure. Indeed, this approach is performed as a two step process to circumvent the need for generating
molecular structures: A machine learning model is used to map the spectrum to an intermediate vector representation
such as a molecular fingerprint. Once the fingerprint is obtained then it is matched against the content of structural
databases in order to identify candidate molecular structures with similar fingerprints [11, 12]. This method though will
also fail for molecules that are not present in the structural database and especially for novel molecules. A more direct
association of spectra features with molecular structures through a rule-based approach has also been explored [13].
More specifically, this approach extracts rules, that associate spectra features with substructures, from spectra databases
aiming at a partial structure identification.

An additional concept that has been introduced to facilitate the interpretation of mass spectra, and subsequently structure
identification, is that of fragmentation trees [6, 14]. A fragmentation tree is derived computationally from tandem
mass spectra using optimization algorithms such that its nodes correspond to fragments or precursor ions and the
edges correspond to fragmentation reactions. Fragmentation trees have various uses such as identifying the molecular
formula and clustering molecules by aligning fragmentation trees [15]. They have also been used for the prediction of
molecular fingerprints that are subsequently used to search structural databases [16, 17]. The information in a mass
spectrum is thought to be insufficient to explain the fragmentation process by itself while the fragmantation tree provides
complementary information by elucidating the dependencies between the mass peaks [6]. However, fragmentation trees
are expensive to compute and often approximations are preferred for practical applications.

A more thorough review of existing methodologies for metabolite identification, including in silico fragmentation
tools, fingerprint prediction and fragmentation trees, was recently presented by Nguyen et al. with a focus on machine
learning (ML) approaches [6]. It should be noted here that early ML-based approaches were built on shallow ML
models, such as Support Vector Machines (SVMs) and Random Forests (RFs), applied either on features extracted from
the mass spectra or the fragmentation trees, and also kernel-based methods to judge similarity between either spectra or
fragmentation trees. However, lately there is a growing interest in exploring Deep Learning (DL) architectures for the
development of computation tools to support structure elucidation. There have been efforts to learn spectra embeddings
that can be subsequently used to assess spectral similarity when searching in spectral databases [18, 12]. Additionally,
there are DL-based methodologies for clustering spectra, either for identifying the compound class [19, 12] or for
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Figure 1: MS/MS spectra obtained through different experimental conditions (precursor ion, normalized collision energy (NCE),
fragmentation method) from the same molecule. Spectra sourced from the NIST library.



medical diagnosis differentiating between healthy and cancerous tissues [20]. Most DL-based methodologies that
operate directly on spectra data are based on Convolutional Neural Networks (CNNs) representing the spectrum as a
vector that indicates the intensities of each fragment mass [20, 21, 22]. The CNN attempts to automatically identify
spectra features replacing the need for manual featurization. Architectures that have adopted concepts from Natural
Language Processing (NLP) have also emerged representing the mass spectrum as text and the mass peaks as words
[18]. Due to the limited amount of mass spectra data different workarounds have been investigated including hybrid
approaches [19], combining statistical ML models and DL architectures, and approaches based on transfer learning
[20].

It should be noted that in parallel DL-based approaches are being investigated for identifying protein sequences
from mass spectra in proteomics studies [23, 21, 22]. A noteworthy effort, DeepNovo, consists of an end-to-end
DL architecture for de novo peptide sequencing from mass spectra [22], that is a direct reconstruction of the peptide
sequence from the mass spectra data. Structure elucidation of small molecules though is perceived as a more challenging
problem due to the stochastic nature of the fragmentation process. On top of that, the structure of small molecules has a
graph-like representation as opposed to the linear nature of a peptide sequence. Existing approaches essentially attempt
to retrieve molecules from structure databases that have a spectrum similar to the query spectrum. This method though
cannot identify novel molecules, that is molecules whose structure currently remains unknown and therefore they do
not exist in chemical databases.

In this paper, we present Spec2Mol, an end-to-end DL architecture for translating MS/MS spectra to molecular
structures. Spec2Mol is intended for recommending molecular structures that can explain observed MS/MS spectra.
We represent molecular structures as sequences using the SMILES notation [24] and MS/MS spectra as vectors of
fragment intensities. Spec2Mol consists of an encoder, that learns an embedding for the MS/MS spectrum, and a
decoder that generates the SMILES sequences of the recommended chemical molecules. Due to the limited amount of
available spectra data our approach is based on unsupervised pre-training on a large dataset of unlabeled molecules. In
particular, we pre-trained the decoder as part of an auto-encoder (AE) architecture which is trained to reconstruct a
molecule through its SMILES sequence. The encoder is subsequently trained such that the spectra embeddings match
the embeddings that the AE has learnt. The data used to develop and evaluate the model, the architecture of Spec2Mol,
as well as, the evaluation of the model are described in the following sections.

The main contributions of this work are as follows:

* To our knowledge this is the first approach for generating potential molecular structures from mass spectrometry
data that is not based solely on database retrieval.

* Our method can facilitate database retrieval and additionally de novo molecular structure recommendation.
* Our approach takes advantage of large datasets of unlabeled molecules using unsupervised pre-training.

* We introduce metrics to assess the similarity of the generated molecules with the reference ones and we
perform a comparative evaluation with a widely accepted method that makes use of additional information,
that is fragmentation trees.

2 Datasets and data pre-processing

Spec2Mol consists of an encoder that learns spectra embeddings and a pre-trained decoder, which has been trained as
part of an autoencoder architecture. The autoencoder has been trained on a large set of molecules (molecule dataset
discussed in section 2.2) while the encoder has been trained on a set of molecules for which MS/MS data are available
(spectral dataset discussed in 2.1).

2.1 Spectral dataset

The mass spectra data for training the encoder has been derived from the NIST Tandem Mass Spectral Library
2020 which is a commercial dataset of more than 1M spectra obtained from more than 30K compounds [25, 26].
The largest percentage of the NIST dataset (60%) corresponds to metabolites (6K human metabolites and 8K plant
metabolites) while a significant amount of the data is drugs (20%). The rest corresponds to peptides, lipids, forensics,
surfactants/contaminants and sugars/glycans. The dataset contains low and high resolution MS/MS spectra, obtained
through different fragmentation techniques. For a small number of molecules in the dataset there are available up to
MS4 spectra. Each molecule in the dataset may be associated with more than one spectrum which may be obtained
through different experimental conditions, that is, different fragmentation instrument, precursor ion, ionization mode,
collision energy or fragmentation level (MS2, MS3 or MS4).



2.2 Molecule dataset

The autoencoder, from which the Spec2Mol decoder had derived, was pre-trained on about 110 million molecules which
were sourced from the PubChem dataset [27]. The structures of the molecules in the PubChem dataset are represented
using the SMILES notation [24]. Stereochemistry information was not indicated in the SMILES representation.
The reason for not accounting for stereochemistry is that in the subsequent task of spectra translation recovering
stereochemistry information from the mass spectra is especially challenging or possibly even impossible and therefore
it is out of the scope of this work.

2.2.1 Data filtering

In order to minimize variations in the spectra data, due to differences in the experimental conditions, we chose to
keep certain variables in the dataset fixed. In particular, we used only the high resolution MS/MS spectra and more
specifically we used the spectra that are obtained through higher-energy collision dissociation (HCD) which was the
most common fragmentation method in the NIST dataset and additionally it is known to have high sensitivity and
produce more fragments [7, 22]. We did not use MS3 and MS4 spectra as these were provided only for a small
percentage of the data. Regarding the precursor ions, we retained only the most common ones, that is [M+H]+ and
[M-H]-. For each precursor ion, we used two spectra, one obtained using low collision energy and one with high
collision energy. The level for characterizing low collision energy was set to 35% NCE (Normalized Collision Energy)
and for high energy it was set to 130% NCE. These values were selected because they were the most common energy
levels in the NIST dataset for characterizing low and high energy, respectively. In the cases where a spectrum with
energy 35% or 130% NCE was not available, we selected the spectrum that was obtained using collision energy that
was closest to that level. Therefore, each instance in the dataset we constructed is characterized by four MS/MS spectra
derived from two different precursor ions and two energy levels. It should be highlighted though, that not all molecules
in the NIST dataset have experimental data for the specific precursors and energy levels. However, we have allowed
cases with missing data in the dataset and the missing spectra are represented as empty spectra, that is spectra with
no peaks, in an attempt to develop a model that is robust to missing data. Therefore, the model is being trained and
evaluated on cases that may not have available all four spectra.

As part of the data filtering process, we additionally removed molecules with rare atom species, that is species that
appeared in less than 30 molecules. Specifically, we excluded molecules with the following atoms: Co, Fe, Se, As, Si,
B, Sn, Au, Cu. We also did not make use of the data corresponding to peptides since the goal of this work is to identify
structures of small molecules. Finally, we filtered out all molecules for which the retained spectra, for the selected
precursor ions and energies, did not have peaks with m/z > 500. The reason for this final constraint is explained in the
following paragraph (Data representation).

2.2.2 Data representation

We represent each MS/MS spectrum as a vector in which each bit corresponds to a specific mass-over-charge (m/z)
value, representing the m /z value of the recorded fragments, while the value of each bit corresponds to the intensity,
or otherwise frequency, of the fragments that have been recorded with that specific mass-over-charge value. For that
representation, we need to specify the resolution of the mass as well as the minimum and maximum allowed mass
values. More specifically, the minimum mass is set to 50 Da while the maximum mass is set to 500 Da. The resolution
for the mass values is 0.01 Da. Given that our dataset is of higher resolution, that is more than 4 decimal points are
available, the intensity of each bit corresponds to an aggregation of all fragments that have been recorded and have
the same mass when considering two decimal points. Finally, the intensity values are normalized by dividing with the
maximum intensity over all the vector bits of a given spectrum. The minimum and maximum allowed mass values
were selected based on the statistics of the dataset. More specifically, the minimum allowed mass corresponds to the
minimum fragment mass that has been recorded over all data. Regarding the maximum allowed mass, although there
are molecules in the dataset with larger recorded fragments, the percentage of molecules with fragments larger than 500
Da is very small. In general, a smaller maximum allowed mass, as well as a lower resolution, will result in a more
compact and less sparse vector representation which is essential for preventing over-fitting when training the DL model.

Regarding the molecular structures, we represent them using canonical SMILES without indicating stereochemistry
information.

2.2.3 Data augmentation

The variability in the spectra for a given molecule opens up the possibility for data augmentation. In particular, although
some spectra from the same molecule may differ significantly, as shown in Figure 1, in many cases the obtained spectra
are closely related. One such case is when the collision energies that are being used are relatively close. Such an



example is illustrated in Figure 2 where all experimental conditions are the same except the collision energy which
however does not differ significantly between the two spectra.

In order to augment the dataset, for each instance in the training set we are creating an additional training instance by
slightly perturbing the collision energy in all four spectra. In particular, each spectrum, out of the four spectra that
are used to represent an instance in the dataset, is replaced with a spectrum that has the closest collision energy in the
dataset with the spectrum to be replaced. In order to avoid large deviations from the preset energy levels (35% for low
energy and 130% for high energy) we perturbed only the spectra that had exactly the pre-set energy levels (we recall
here that in cases where a spectrum of 35% or 130% NCE was not available, it was already replaced with the closest
available in the original dataset).
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Figure 2: MS/MS spectra obtained using nearby collision energies (Normalized Collision Energy). Spectra sourced from the NIST
library.

2.2.4 Data partition

After the data filtering process, the acquired dataset consists of 23K molecules, each one of them is associated with four
MS/MS spectra or more precisely up to four MS/MS spectra given that there are cases with missing spectra. This dataset
was partitioned into a training, a validation and a test set with the validation and test set having about 1K molecules
each. For the test set specifically, we used fingerprint similarity, based on the Tanimoto coefficient [28], in order to
ensure that no test molecule is either in the train or in the validation set. The validation set was used to select the model
hyper-parameters and the test set was used to evaluate the performance of the model.

3 Spec2Mol architecture

Spec2Mol uses an encoder-decoder architecture for recommending molecular structures from MS/MS spectra. The
Spec2Mol encoder generates spectra embeddings while the decoder reconstructs the SMILES sequence from a spectra
embedding. The encoder and the decoder have been trained separately as it is shown in figure 3. First, the decoder is
trained as part of an autoencoder architecture for reconstructing the SMILES sequence from a SMILES embedding. Next,
the spectra encoder is trained such that the learnt spectra embeddings match the corresponding SMILES embeddings.
Finally, for making inference on unseen cases, Spec2Mol uses the spectra encoder to obtain the spectra embedding



which is subsequently used in order to decode potentially novel molecules and also to retrieve molecules from the
pre-training dataset.

The specifications for training each model are given in the following paragraphs.
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(c) During inference, the spectra encoder and the SMILES decoder of the pre-trained model are used to translate spectra into
molecular structures.

Figure 3: The Spec2Mol model consists of a spectra encoder and a SMILES decoder which have been trained separately but share
the same embedding space.

3.1 Pre-training the AE on chemical structures

The autoencoder is trained on a translation task where a randomized input SMILES is translated into its corresponding
canonical SMILES, similar to the work of Winter et al [29]. The encoder and the decoder of the AE are both based
on gated recurrent units (GRU) which is a variation of the standard long short term memory (LSTM) models, that are
commonly used for learning sequence representations, with fewer parameters.

3.2 Training the spectra encoder

The spectra encoder is trained in a supervised manner such that the learnt spectra embeddings are the same as the
SMILES embeddings that the AE has learnt. More specifically, the input of the spectra encoder consists of the four
spectra that have been pre-selected to represent each molecule. The spectra encoder is based on 1-D CNNs and in
particular consists of two 1-D CNN layers and two fully connected layers. The four spectra are represented as 4 discrete
vectors which are fed into the 1-D CNN as data from four different channels. Each channel corresponds to a specific
precursor ([M+H]+ or [M-H]-) and energy level (low or high). If any of the required four spectra is not available, then
the input to the respective channel is an all zeros vector. The output of the spectra encoder is a 1-D vector which is the
latent representation of the spectra in the embedding space. The model is trained such that the distance (root mean
square error) between the latent representation that is learnt by the spectra encoder and the latent representation that is
obtained from the pre-trained SMILES encoder is minimized.



3.3 Recommending molecular structures for unseen spectra

Spec2Mol provides as output molecular structures that can potentially explain the observed spectra peaks. The
recommended molecules for unseen spectra are obtained using two strategies: a direct and an indirect molecule
generation strategy. The direct molecule generation strategy generates molecular structures using the SMILES decoder
from the computed MS/MS embedding. Multiple SMILES are generated for each MS/MS embedding using a pure
sampling strategy [30], and subsequently filtered in order to retain only the valid ones, i.e., the sequences that respect
the SMILES syntax. The indirect strategy retrieves molecular structures from the dataset that was used for pre-training
the AE based on the distance in the embedding space. More specifically, for each MS/MS embedding we find the
closest embeddings from the pool of molecules used to pre-train the AE and decode those embeddings into SMILES
sequences.

The predicted molecules obtained through these two strategies are combined and ranked based on their discrepancy
from the expected molecular weight. The molecular weight of the underlying chemical structure is easily inferred from
the mass spectrum and therefore in this work we consider it as known. The molecular structures that have molecular
weight closer to the reference weight are highly ranked. The top 20 ranked predictions are returned to the user.

4 Method evaluation

4.1 Reconstruction accuracy of the AE on the NIST molecules

As a sanity check, we evaluated the ability of the pre-trained AE to reconstruct the SMILES of the molecules in the
testing set of the spectra dataset. We recall that the AE has been pre-trained on molecular structures derived from the
PubChem database while the molecules in the spectra dataset are from the NIST database. The molecules from the
NIST dataset were not used for pre-training the AE, although it is expected that a portion of the NIST molecules is
present in the PubChem database which is used for pre-training.

The AE was able to correctly reconstruct the SMILES sequence for about 95% of the NIST molecules. This demonstrates
that the pre-trained model has been trained on a diverse set of molecules and therefore it is able to handle the large
variability of the molecules in the NIST dataset.

4.2 Spec2Mol performance evaluation

Spec2Mol generates a set of recommended molecular structures given MS/MS spectra. Our evaluation focuses on
assessing the similarity between the generated structures and the reference molecular structure from the NIST dataset.
We recall here that the information in an MS/MS spectrum may not be sufficient to fully reconstruct the molecular
structure. It is possible that more than one molecular structures may explain a given spectrum. For that reason our
analysis has been focused on assessing whether the model has learnt to identify key features in the molecular structure
from the mass spectra rather than identifying the exact same structure with the reference molecule from the NIST
dataset.

For the evaluation of the model, we first perform a coarse-level comparison taking into account physicochemical
properties and more specifically the molecular weight and the element composition of the molecule. Next, we assess
molecular similarity at the substructure level. In particular, we compute the fingerprint similarity as well as the
maximum common substructure between the generated structures and the reference structure. The specifications for
each metric are given below, while the results are aggregated in Tables 1 and 3. We evaluate the overall performance
in the entire test set as well as the performance of the model when not all four required spectra are available as input.
Additionally, we assess the contribution of each of the two strategies for generating the recommended structures.

* Physicochemical attributes: A property of special interest is the molecular weight since it is directly reflected
in the mass spectrum. In particular, the spectra indicates the mass of the fragments and therefore the mass of
the original, non-fragmented, molecule can be approximated more easily given the mass spectra as opposed to
determining the composition or the structure of the molecule. We record the difference between the molecular
weight of the generated structures and the reference structure and we report the relative average minimum
difference, that is, the average-minimum difference over all the predicted structures divided by the average
molecular weight of the reference structures (DM W,,,;,,). We also report the average-average difference over
all the predicted structures divided by the average molecular weight of the reference structures (DM W, q).
Additionally, we also evaluate whether the model is able to identify the element composition of the molecule.
In particular, we assess whether the atom species that are present in the reference molecule have been identified
in the predicted structures ignoring the numbers of atoms for each atom species. More specifically, for each



atom species we report sensitivity and specificity for detecting the presence of this species. In order to account
for discrepancies in the number of atoms per atom species we also report the difference between the molecular
formulas of the predicted structures and the reference structure (DM F'). We define the distance between two
molecular formulas as the number of atoms that differ between the formulas when accounting for the atom
species (not including hydrogen atoms). We report the minimum distance over all predictions divided by the
average number of heavy atoms (DM F,,,;,,) as well as the average distance over all predictions divided by the
average number of heavy atoms (DM Fy, ).

* Fingerprint similarity: Fingerprints are vector representations of chemical molecules, which indicate the
presence of certain substructures in the molecule, and are widely used as an efficient way to judge similarity
between molecules [28]. We extracted fingerprint representations based on the Morgan algorithm [31] using the
RDXK:it toolkit [32] and used the cosine coefficient to assess similarity (F'ngpcosine). The Morgan fingerprints
are computed for radius 2 and 32 bits.

* Maximum common substructure (MCS): We computed the MCS between two molecular structures using
the RDKit toolkit [32] with the following constraints: the substructure match respects the atom species,
the bond orders, as well as the ring bonds, that is ring bonds are only matched to ring bonds. From the
computed MCS we extracted the following three metrics: i) MCS ratio, ii) MCS Tanimoto, and iii) overlap

coefficient, which are defined as follows, respectively: MCS,qti0 = “4<5, MCSian = ,HZM%,
T T P
MCSourip = %, where a);cs denotes the number of atoms in the MCS, a,. the number of atoms in
r,dp

the reference compound, and a,, the number of atoms in the predicted compound. For each metric we report
the maximum value as well as the average value over all predictions.

Table 1 summarizes the evaluation of the effect of missing data in the predictions. More specifically, we present the
evaluation metrics on four different partitions of the test-set depending on the number of the available spectra. We recall
that the input to the model consists of four different spectra obtained through different specifications. However, not all
molecules in the dataset have all four spectra available. Our results indicate that missing only one spectrum does not
severely impact performance, but performance starts to degrade when less than three spectra are available.

Next, we evaluate the effect of the strategy that is used to generate the recommended molecules. The analysis is shown
in Table 2. We recall that the recommended structures are obtained either directly through decoding the computed
embeddings or indirectly by identifying the closest embeddings from the pre-trained dataset. In particular, we are
comparing the top-20 predictions, as ranked using the molecular weight criterion, through i) only the direct strategy, ii)
only the indirect strategy, and, iii) the two strategies combined. According to the results, the indirect approach, that
generates molecules through decoding the closest embeddings from the pre-trained dataset appears to have a larger
contribution on the effectiveness of the method to generate relevant structures. However, combining the two strategies
appears to slightly improve performance.

Overall the results illustrate that the predicted structures have a molecular weight that is significantly close to the
molecular weight of the reference compound. This is not surprising as the generated molecules are ranked based on
the molecular weight. The molecular formula though seems to also be considerably close to the reference one. The

Table 1: Effect of missing spectra in the model input. Evaluation metrics when considering the entire test set and the test-data
partitions that have available all 4, only 3, only 2 and only 1 spectrum. The arrows show the desired trend for each metric.

metric full dataset 4 spectra 3 spectra 2 spectra 1 spectrum

# test cases 1000 413 65 483 39
correct molecules (1) (%) 7.0 9.7 154 4.1 5.1
correct formulas (1) (%) 26.0 31.2 29.2 22.8 10.3
min 1.5 0.9 0.5 1.9 3.0

DMWe (1) avg 5.4 4.6 3.9 6.1 7.4
min 9.2 6.5 8.1 10.8 21.1
DMFy () avg 21.7 17.8 24.5 24.0 329
Ja e (1) max 0.85 0.87 0.85 0.84 0.83
"*gPeosine avg 0.74 0.76 0.72 0.72 0.72
max 0.68 0.70 0.72 0.66 0.57
MCSratio (1) avg 0.51 0.53 0.55 0.50 0.43
max 0.55 0.58 0.60 0.53 0.44
MCSian (1) avg 0.38 0.39 0.41 0.36 0.30
max 0.71 0.73 0.74 0.69 0.63
MCSecoes (1) avg 0.54 0.55 0.58 0.53 0.48




Table 2: Effect of the molecule generation strategy. Comparative evaluation of the top-20 predictions using the direct strategy, the
indirect strategy and the two strategies combined. The arrows show the desired trend for each metric.

metric direct indirect combined

correct molecules () (%) 0.8 6.9 7.0
correct formulas (1) (%)  13.5 203 26.0
DMWr ) WY s 7 54
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Table 3: Sensitivity and specificity for detecting the presence of each atom species in the entire test set, having as reference the
frequency of each species in the training spectra dataset.

O N S Cl F Br P I

Sensitivity 094 086 050 068 048 079 053 051
Specificity 050 0.76 096 091 092 098 0.99 099
Frequency (%) 854 71.5 184 152 115 175 2.5 1.4

model was able to retrieve the exact structure for a small percentage of the test cases (7%) while it identified the exact
molecular formula for a considerably larger percentage (26%). The performance of the model was significantly better
when at least 3 out of the 4 input spectra where available.

Regarding the structural similarity between the predicted structures and the reference structure, the obtained values for
the respective metrics demonstrate that the structures share common substructures. More specifically, the metrics that
are based on the MCS between the reference and the predicted structures indicate that the common substructure is, on
average, nearly 70% of the size of the reference structure for the closest structure and more than 50% for the average
prediction. This result is in agreement with the high correlation between the molecular fingerprints.

Regarding the ability of the model to identify the presence of each atom species in the molecular structure, it varies
significantly and it correlates with the frequency of each atom species in the training dataset, as it is shown in Table 3.
More specifically, the model has very high sensitivity for nitrogen (N) and oxygen (O) which are the most common atom
species in the dataset (excluding carbon which is not included in this analysis as it is present in all molecules). However,
the specificity for oxygen is significantly lower than that of nitrogen which means that there is a significant number of
false positives for oxygen compared to nitrogen. Regarding the more rare atom species, the opposite phenomenon is
observed: specificity is significantly high while sensitivity is low. This means that for the rare species there is a very
small number of false positives which is expected as these atoms are under-represented in the training set. However,
sensitivity is at least 0.5 for all atoms, which shows that the model is able to capture the presence of rare atoms quite
well considering that some atom species are severely under-represented in the training set.

Figure 4 shows a few examples of successful cases with the model correctly identifying key substructures such as rings
and long chains, and the presence of rare atoms and functional groups. Given the vast space of possible molecular
structures, these cases demonstrate that the model has indeed learnt to associate spectra features with molecular
structures.

We also identify two general scenarios where the model has a difficulty in predicting relevant structures: (1) Molecules
with large rings and (2) Molecules that have poor quality spectra. An example of the first case is illustrated in Figure 5.
We believe this is because molecules with large rings are significantly under-represented in the dataset that was used
to pre-train the decoder. Also, it is hard to generate a valid SMILES sequence for molecules with very large rings.
Regarding the second cases of poor quality input spectra, it includes cases where there is a very small number of peaks
in the spectra and therefore not adequate information to reconstruct the SMILES sequence.

10
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Figure 4: Examples of the most likely predicted structures from Spec2Mol along with the cosine similarity values with respect to
the original reference structures.
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Figure 5: An example where Spec2Mol failed to identify a similar structure for a reference compound containing a large ring.

4.3 Comparative evaluation

In order to perform a comparative evaluation, we have used SIRIUS 4 [33], which offers multiple functions including
chemical formula, as well as molecular structure, identification from mass spectra . SIRIUS’ structure elucidation
method, called CSI:FingerID, is a database retrieval method [16]. It relies on Support Vector Machines (SVMs) for
predicting a molecular fingerprint and subsequently compares the predicted fingerprint against those of a reference
database in order to identify candidate structures. The input to the SVM is the MS/MS spectrum along with the
corresponding computed fragmentation tree. CSI:FingerID has shown superior performance when compared to other
existing tools for automatic identification of molecular structures from spectra data. In particular, it was the best
performing method in the Critical Assessment of Small Molecule Identification (CASMI) contest for 2016 and 2017
[33]. However, the performance of this method degrades significantly for cases that are not covered in the training set
[33]. Additionally, the dependence of CSI:FingerID on fragmentation tree data adds significantly to the running time of
this method.

We run SIRIUS on the same test set we developed for evaluating Spec2Mol. As input, we provided SIRIUS with
the positive mode spectra (that is [M+H]+ at low and high energy) as they were selected for Spec2Mol. The spectra
from negative ions were not used since a single run for SIRIUS accepts spectra from a single precursor which may
be obtained through different energies. As 53 test cases out of the 1000 cases of the test set did not have any positive
mode spectra and therefore the test set used for the comparison consists of 947 cases. As a side note, SIRIUS performs
structure elucidation after identifying the molecular formula. The number of molecular formulas to be explored is one
of the parameters of the tool which we set to 10. An additional parameter is the reference database which we set to
PubChem, which is the largest available source offered by SIRIUS. Finally, SIRIUS allows the user to define the set of
chemical elements to be considered when performing the search which we set to: C, H, O, N, S, CL, F, Br, P and L. It
should be noted that expanding the pre-defined set of atoms (C, H, N, O, P, S) to account for more rare atoms which
were present in the NIST dataset significantly increased the running time.

On the test set of 947 cases, SIRIUS found the correct formula for about 98% of the test cases while it found the
correct structure for about 67%. For 6 cases out of 947 SIRIUS did not return any structures. At this point, it should
be highlighted that the CSI:FingerID method from SIRIUS for structure identification has been trained on the NIST
dataset (NIST v17). As it is discussed in the original study for the SIRIUS tool, the presence of spectra for a given test
structure in the training set can significantly boost performance even if these spectra which are used when testing are
not the exact same spectra used in training [33].

The comparative evaluation between SIRIUS and Spec2Mol was performed on the cases where SIRIUS failed to find
the exact molecular structure. Since Spec2Mol is intended for recommending potential molecular structures given mass
spectra, our intention here is to evaluate how relevant are the recommendations, when compared to widely accepted
and state-of-the-art method like SIRIUS. By focusing our comparison on the cases where SIRIUS did not find an
exact match, we are essentially evaluating the relevance of the recommended structures when an exact match is not
found, which points to the case of novel molecules. In particular, we compared SIRIUS and Spec2Mol on the 307
cases, for which SIRIUS failed to find an exact match, using the metrics based on fingerprint similarity and MCS. It
should be noted here that failure to identify the exact structure includes cases where SIRIUS either did not return any
structure and cases where the reference structure was not among the predicted structures. The results are summarized
in Table 4. According to our analysis, the structures recommended by Spec2Mol are at least as relevant as the ones
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recommended by SIRIUS. More specifically, Spec2Mol achieved better cosine similarity for the closest structure, while
almost all metrics based on the MCS are improved in the case of Spec2Mol. This outcome is especially interesting
and encouraging, given that Spec2Mol is an end-to-end approach that does not take into account any prior knowledge.
Spec2Mol generates potential molecular structures by solely looking at raw MS/MS spectra. On the other hand, the
combination of CSI:FingerID and SIRIUS attempts to retrieve the exact molecular structure from a reference database
taking as input the computed fragmentation tree on top of the raw mass spectra. Although a direct comparison of the
two methods is not possible, still the outcome of our comparative evaluation demonstrates that the molecular structures
generated by Spec2Mol are at least as successful as the ones obtained by state-of-the-art tools when considering novel
molecules despite the fact that Spec2Mol relies solely on raw MS/MS spectra.

Table 4: Comparative evaluation of structural similarity between the recommended structures and the reference structure between
SIRIUS and Spec2Mol.

Method Fngpcosine MCSratio MCSian  MCScoey
Thax 0.82 0.6 0.54 0.66
SIRIUS 0o 0.72 0.49 035 0.49
Tmax 0.84 0.66 0.53 0.69
Spec2Mol 0.72 0.50 0.36 0.53

5 Conclusions

Elucidating the structure of chemical compounds is a fundamental, but cumbersome, task, in metabolomics studies,
as well as in chemical analysis in various domains including drug development and forensics analysis. The available
computational tools for aiding structure elucidation are based on fragment annotation and database retrieval methods.
This approach fails to identify molecules that are not present in the reference database which, in practice, may correspond
to a considerably large percentage of the query spectra. We have developed Spec2Mol, an end-to-end deep learning
architecture for directly generating molecular structures (SMILES sequences) from the input MS/MS spectra. Spec2Mol
is based on an encoder-decoder architecture that generates molecular SMILES sequences, given mass spectra. While
the proposed architecture supports the retrieval of molecules from a database that best matches the input spectra,
it can also generate new molecules that have not been seen before in any dataset. Our analysis demonstrates that
the recommended molecules are structurally and physiochemically similar to the reference compounds, suggesting
that the latent embeddings has indeed learnt informative associations between the spectra and the structural features.
When compared to an existing method that depends on the fragmentation tree annotation on top of the raw spectra
for molecule identification, Spec2Mol performed on par for the task of recommending potential molecular structures.
Our results indicate that the proposed approach of recommending de-novo molecules directly from input MS spectra
provides critical insights on the characteristics of the underlying molecular structure, and, can complement existing
tools especially when the current tools fail to identify the right molecule from existing databases. We speculate that
incorporating prior knowledge in the model, for example in the form of fragmentation trees, can further boost the
performance of the proposed method.
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