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Abstract

In this work, we introduce a novel joint experimental design and computational

analysis procedure to reliably and reproducibly quantify protein analyte binding to

DNA aptamer-functionalised silver nanoparticles using slippery surface-enhanced

Raman spectroscopy. We employ an indirect detection approach, based upon mon-

itoring spectral changes in the covalent bond-stretching region as intermolecular

bonds are formed between the surface-immobilized probe biomolecule and its target

analyte. Sample variability is minimized by preparing aptamer-only and aptamer-

plus-analyte samples under the same conditions, and then analysing difference spec-

tra. To account for technical variability, multiple spectra are recorded from the

same sample. Our new DeltaPCA analysis procedure takes into account technical

variability within each spectral data set while also extracting statistically robust

difference spectra between data sets. Proof of principle experiments using thiolated

aptamers to detect CoV-SARS-2 spike protein reveal that analyte binding is me-

diated through the formation of N-H· · ·X and C-H· · ·X hydrogen bonds between

the aptamer (H-bond donor) and protein (H-bond acceptor). Our computational

analysis code can be freely downloaded from https://github.com/dlc62/DeltaPCA.

Keywords: Principal Component Analysis, Aptamer, Differential Anal-

ysis, Technical Variability, Sample Variability
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Introduction

Surface-enhanced Raman spectroscopy is a promising technique for direct detection of

environmental contaminants and/or biomolecular disease markers at extremely low con-

centrations.1–5 Advances in surface and substrate engineering have enabled selected ana-

lytes to be detected down to femtomolar or even attomolar concentrations, approaching

the single-molecule detection limit.6–8

However, the exquisite sensitivity and high spatial resolution of surface-engineered

SERS often comes at the cost of reproducibility; substantial fluctuations in a SERS

spectrum can be observed as molecules drift into and out of electric-field hot spots, and

SERS spectra are very sensitive to differences in sample preparation, optical alignment

and variations in laser power.9–12 In this work, we present a combined experimental

design, data acquisition and data analysis strategy to overcome these limitations.

Our approach is based upon the SLIPSERS method,6 in which a microdroplets of

citrate-capped silver nanoparticles - with and without the analyte of interest - are de-

posited on an omniphobic substrate and the solvent is evaporated off. Isotropic contrac-

tion of the near-spherical droplet leads to the formation of compact nanoparticle:analyte

aggregates in which the local concentration of the analyte is enhanced in a reproducible

and concentration-dependent manner. The main advantage of SLIPSERS over other

surface-enhanced Raman methods is that it dramatically improves sensitivity and de-

creases detection limits, without requiring sophisticated substrate engineering.4,6

However, questions of analyte specificity remain, particularly in the context of analysing

complex chemical and biochemical mixtures. This can be overcome by nanoparticle sur-

face functionalisation which selectively bind of the analyte of interest and enhance its local

surface concentration. For example, SERS immunoassays take advantage of selective in-

teractions between biological antigens and their associated antibodies.5,13 Upon binding

of the target biomolecule to the surface-immobilized probe, spectral changes are observed

in the so-called “fingerprint region” (500 - 2000 cm−1) that most clearly reflects differences

in Raman spectra between biomolecules.14 Unfortunately, with experimental complexity

– the presence of two large and complex biomolecules – comes spectral complexity, and
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these assays have not proven reproducible enough for commercial development.5,13

A key insight of the present work is that sample variability can be eliminated, or at

least controlled, using an indirect detection approach; monitoring changes in the Raman

spectrum of a surface-immobilized probe molecule upon analyte binding. Technical vari-

ability, on the other hand, can be quantified by taking multiple repeated measurements

on the same sample. By combining an indirect detection experimental strategy with

differential component analysis of the resultant spectra, sample and technical variability

can be accounted for on the same footing, to ensure that observed spectral differences

due to analyte binding are statistically significant and reproducible, i.e. are not technical

artefacts.

As an illustrative example, we consider SARS-CoV-2 spike protein binding to thiolated

aptamers immobilized on silver nanoparticles. Full experimental details are available in

the literature,15 and the salient points summarised briefly below.

Methods

Experimental

Citrate-capped silver nanoparticles were synthesised following the approach of Kitaev et

al.,16,17 using a borohydride reducing agent and bromide ions for faceting and shape con-

trol. 100 µM stock solutions of 5’-thiolated DNA aptamer:18 and a sequence-scrambled

analogue (Table 1) were prepared in 10 mM TCEP (pH 7) and incubated for 2 hours

at room temperature, and then diluted to final concentrations of 1 nM, 500 pM and 1

pM in 50 mM Tris/HCl buffer (pH 8), with and without equimolar quantities of the as-

sociated Spike protein analyte.15 After 15 minutes, 10 µL of these solutions were mixed

with 50 µL of colloidal Ag nanoparticle solution and mixed thoroughly. A blank con-

taining 10 µL of Tris buffer was also prepared. Each 60 µL mixture was pipetted onto

a polyfluoropolyether oil coated Teflon filters mounted on a glass slide, prepared accord-

ing to the method of Yang et al.6 Following evaporation of the excess solvent at 65 ◦C,

Raman spectra of the resultant aggregates were recorded under ambient conditions using
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a custom-built Raman microscope.15 The detector exposure time was 1 second and 60

exposures (data frames) were captured and stored separately prior to data analysis. No

background removal was applied during data collection.

Table 1: Aptamer sequences used in this work

Label Sequence
A 5’-dithiol-CAGCACCGACCTTGTGCTTTGGGAGTGCTGGTCCAAGGGCGTTAATGGACA-3’

SA 5’-dithiol-AACGCGGAGCCATTGGTAAGGTGCGTCCGTCCTCAGTATCTAAGCTGTGGG-3’

Data Analysis

For each set of 60 data frames, uncentred principal component analysis is applied to

obtain standardized scores and loadings, via singular values decomposition:

X = USVT (1)

Z = U
√
n (2)

W =
SV√
n

(3)

where X is an n × p data array where n = number of data frames and p = number of

intensity values recorded per frame, columns of US and V represent principal component

scores and axes, respectively, and columns of Z and W correspond to standardized scores

and associated loadings. The first column of W, w1, is the principal loading vector that

captures the similarity across each data set, and can be loosely interpreted as its average

or central spectrum. The remaining columns account for variability between frames.

Baseline corrections are performed on each principal loading vector using Korepanov’s

derpsalsa algorithm,19 and subtracted from each data frame. The baseline-corrected

central spectrum is also computed and stored.

To analyse variability between data sets (e.g. for samples with and without protein

analyte), the baseline-corrected data sets are concatenated, and the central spectrum for

the reference sample subtracted from each frame. The resultant set of 120 data frames
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is then subjected to PCA analysis as described above. In this case, the first 60 frames

contain only noise (by construction), while the last 60 frames contain noise plus signal

from the difference in experimental conditions. The principal loading vector captures this

signal, and can be interpreted as the difference spectrum.

These algorithms have been implemented in a python script that is freely available

from https://github.com/dlc62/DeltaPCA. Our code allows multiple pairwise compar-

isons to be performed and plotted simultaneously, or multiple samples to be compared

against a common reference. It also allows different spectral regions to be analysed in-

dependently, which may be useful if there are strong background effects in some spectral

regions but not others. The λ value that controls the stringency of the derpsalsa baseline

algorithm can be specified via the command line.

Results and Discussion

The first step in our analysis process is to compute a central spectrum for each set of

60 technical replicates using principal component analysis, perform baselining on this

reference spectrum, and subtract this common baseline from all 60 data frames. The

results of this procedure are illustrated in Figure 1. The grey lines represent the baselined

raw data while the coloured lines represent the primary principal component loading

vectors. Visual inspection reveals that the aptamer-only spectra are quite similar to one

another but qualitatively different from the aptamer + protein spectra, which display

increased intensities in the fingerprint region (500 - 2000 cm−1) and a change in both

intensity and spectral shape in the covalent bond stretching region (2500 - 4000 cm−1).

The next phase of our analysis procedure involves computing difference spectra by

concatenating the baselined aptamer-only and aptamer-plus-protein spectral data sets,

subtracting the aptamer-only reference spectrum, and then performing principal com-

ponent analysis on the resultant data set and extracting the primary principal compo-

nent loading vectors. The results shown in Figure 2(a) confirm a general increase in

spectral intensity across most of the fingerprint region (900 - 2000 cm−1) but not in a
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Figure 1: Primary principal component loadings (coloured lines) superposed on raw spec-
tral data (grey lines) from which they are derived for aptamer (A) and aptamer plus
protein (A+P) samples at a series of different concentrations (1 pM, 500 pM, 1 nM).

particularly reproducible or concentration-dependent manner. The clearest - and most

reproducible - determinants of analyte binding show up as depletions of the free C-H

stretching band at 2956 cm−1, the free N-H stretching band centred around 3480 cm−1,

and a nucleobase ring-deformation band at 763 cm−1. Localised depletion of another C-H

stretching band at 2889 cm−1 is also evident from these difference spectra. The strongest

concentration-dependent response is observed in the appearance of new hydrogen-bonded

C-H stretching bands at 2870 and 2912 cm−1, giving rise to the calibration curves illus-

trated in Figure 2(b). A new hydrogen-bonded N-H stretching band also appears at 3050

cm−1. These spectral changes indicate concentration-dependent binding of spike protein

to surface-bound aptamer via N-H· · ·X and C-H· · ·X hydrogen bonding between exposed

nucleobases and the target analyte.

To check that the spectral shifts we observe are due to specific binding, we performed

the same experimental and analysis procedure using a scrambled aptamer, with and

without the spike protein analyte. Results for the 1 pM sample are illustrated in Figure

3. It is immediately clear that the scrambled aptamer behaves very differently to the

original. Most significantly, there is no longer evidence for the formation of specific

intermolecular interactions between the aptamer and analyte. The characteristic spectral
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Figure 2: (a) Difference spectra computed as the primary principal component loadings
that capture the majority of the variability between aptamer-only (A) and aptamer plus
protein (A+P) SLIPSERS spectra at a range of different concentrations (1 pM, 500 pM, 1
nM) and (b) Log-log calibration curves6,20 obtained from differences in SERS intensities
at 2872 cm−1 (×) and 2912 cm−1 (+) between silver nanoparticles treated with aptamer
alone (A) at a given concentration vs those treated with aptamer plus protein (A+P) at
the same concentration. Error bars show the standard error of the mean for the difference
in intensity due to technical variability. Detection limits are obtained by analysis of
baseline scatter in the 3650 - 4000 cm−1 region. Dotted horizontal lines indicate 99%,
99.9% and 99.99% one-sided confidence intervals.

shifts - and particularly covalent stretching regions in which the intensity is depleted upon

analyte binding - are absent. This is consistent with the fact that the scrambled aptamer

does not display a free N-H stretching band within its Raman spectrum, so it cannot

form form hydrogen bonds to the analyte. There is also no significant enhancement in

the fingerprint region, which rules out the possibility of substantial non-specific binding.

Instead, the main difference between aptamer-only and aptamer-plus-protein spectra

is the accentuation of two free C-H stretching bands at 2892 and 2946 cm−1. There are two

possible explanations for this observation: experimental variability, or the formation of a

weak and distant association complex that influences the dynamics of the aptamer and

resolves the C-H environments but does not otherwise affect its SERS spectrum. Either

way, however, it is clear that the strong and reproducible spectral changes observed using

the original aptamer are unique and specific to that aptamer.

This example illustrates a number of key advantages of our approach:

1. Spectral shifts due to analyte binding are easy to observe, particularly in regions

where there is concurrent depletion of some bands and appearance of others
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Figure 3: Primary principal component loadings (coloured lines) superposed on raw spec-
tral data (grey lines) from which they are derived for (a) scrambled aptamer (SA) and (b)
scrambled aptamer plus protein (SA+P) samples, along with (c) the superimposed prin-
cipal component loadings from each sample and (d) the secondary principal component
loading that accounts for the majority of the variability between the samples.

2. Spectral difference profiles profiles are reproducible in shape, making them more

statistically robust than peak-picking or monitoring changes in intensity at a single

wavelength

3. Spectral changes that arise from specific interactions between the surface-immobilized

probe and analyte can be readily separated from those due to non-specific adsorp-

tion

4. Observed spectral changes have clear, physically-interpretable meaning that yield

molecular level information about bonding between the probe and analyte

5. Quantitative calibration curves can be obtained by monitoring changes in intensity
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at specific wavelengths once robust spectral shift patterns have been identified.

Although principal component analysis has been widely used in analysing Raman

spectra, it is usually applied to “blindly” categorise samples,21–23 although the impor-

tance of separating out technical and sample variability has recently been recognised.24,25

However, to the best of our knowledge, this work represents the first example of us-

ing differential principal component analysis in combination with a “probe recognition”

experimental strategy to separate out technical and sample variability by design. We

also note that our combined experimental and theoretical approach is fundamentally

different to most Raman studies that monitor and analyse spectral changes in the finger-

print region, generally arising from direct adsorption of the analyte.12 However, even in

cases where substrate-specific probes have been used to attract and/or attach analytes

more specifically, analysis has remained restricted to the fingerprint region and typically

focusses on quite narrow spectral bands (peak-picking).13 Our results go some way to

explaining why this approach may not be particularly robust.

Finally, we note that our differential PCA analysis approach is not solely restricted

to the current use case. It could also be applied to quantify spectral changes due to

direct analyte adsorption against an appropriate negative (no analyte/carrier medium

only) control, and to establish whether observed changes are statistically significant or

within the bounds of technical variability. Concurrent analysis of samples at different

concentrations against a common reference spectrum could be performed to reveal the

common spectral fingerprint whose intensity varies as a function of concentration. We

look forward to seeing our analysis code applied widely to facilitate statistically robust

generation and analysis of surface-enhanced Raman spectra.
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