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ABSTRACT: Diabatization of one-electron states in flexible molecular aggregates is a great 

challenge due to the presence of surface crossings between molecular orbital (MO) levels and 

the complex interaction between MOs of neighboring molecules. In this work, we present an 

efficient machine learning approach to calculate electronic couplings between quasi-diabatic 

MOs without the need of nonadiabatic coupling calculations. Using MOs of rigid molecules as 

references, the MOs that can be directly regarded to be quasi-diabatic in molecular dynamics 

are selected out, state tracked, and phase corrected. On the basis of this information, artificial 

neural networks are trained to characterize the structure-dependent onsite energies of quasi-

diabatic MOs and the inter-molecular electronic couplings. A representative sequence of DNA 

is systematically studied as an illustration. Smooth time evolution of electronic couplings in all 

base pairs is obtained with quasi-diabatic MOs. Especially, our method can calculate electronic 

couplings between different quasi-diabatic MOs independently, and thus possesses unique 

advantages in many applications. 
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Ab initio electronic structure calculation naturally provides the adiabatic representation of 

electronic states, which correspond to eigenstates of the electronic Hamiltonian. Because the 

nonadiabatic couplings change rapidly near state degeneracy in surface crossings,1,2 it is more 

appealing to express each adiabatic state as a superposition of diabatic states, whose derivative 

couplings can be neglected. In such a diabatic representation, the Hamiltonian elements are 

expected to vary smoothly no matter how the structure rearranges.3 This property is beneficial 

especially for nonadiabatic dynamics simulations of charge and exciton dynamics processes.4,5 

By definition, the most straightforward way is to minimize the derivative couplings through 

unitary transformation of the electronic states.6 However, this is generally time consuming due 

to the large amount of nonadiabatic coupling vectors to be calculated, and it has been proved 

that strict diabatization can only be obtained for electronic states of the same symmetry in 

diatomic molecules.7 Thereby, extensive efforts have been devoted to constructing quasi-

diabatic representations in the past decades.8-14 

In conjugated molecular aggregates, molecular orbitals (MOs) of individual molecules are 

widely adopted as quasi-diabatic states to expand the electronic wavefunction.15-18 The diabatic 

couplings between these MOs are usually called electronic couplings or transfer integrals,19-24 

which are key parameters in charge transfer and transport simulations. For instance, the 

electronic coupling can be calculated based on adiabatic quantities (i.e., vertical excitation 

energy, transition dipole moment, and change in dipole moment) as in the Mulliken-Hush 

method.19 Electronic polarization has been shown to have strong impacts on the site energies, 

and thus should be taken into account in electronic coupling calculations.21 In general, one MO 
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per molecule is considered, and the electronic coupling in a molecular pair is assumed to be 

independent of other molecules. Thereby, the site energies of MOs and the electronic couplings 

can be combined to construct the one-electron Hamiltonian of the whole system.25-27 

For flexible molecules, there exist complicated crossings between potential energy surfaces 

(PESs) of MOs, and thus MOs are not always quasi-diabatic when characterizing the complex 

intermolecular electronic couplings. To the best of our knowledge, these surface crossings 

between MO levels have been generally neglected in charge transport simulations. In principle, 

one needs to consider more MOs per molecule, and thus the difficulty of diabatization is 

significantly enhanced. With the rapid development of machine learning, developing more 

efficient diabatization methods using artificial neural networks (ANNs) has attracted growing 

interest.28-38 It is demonstrated that ANNs can be used to analytically express the diabatic 

Hamiltonian elements using ab initio data (e.g., adiabatic energies, energy gradients, and 

nonadiabatic couplings) as the training set.31 If selected diabatic Hamiltonian elements at some 

geometries are already known and used as constraints, the ANNs can be also trained with a 

high accuracy on the basis of only adiabatic energies.34,35 

Here, we propose an efficient machine learning approach to calculate electronic couplings 

with the consideration of surface crossings between MO levels. When a large number of MOs 

can be directly regarded as quasi-diabatic MOs, their information is used to train ANNs for the 

structure-dependent onsite energies and electronic couplings. Due to the importance of charge 

transport in DNA, electronic couplings between nucleobases have been extensively studied in 
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the literature.38-48 In a representative DNA sequence with all types of nucleobases and base 

pairs, we obtain a reliable description of electronic couplings in all base pairs. 

Without loss of generality, we consider a pair of molecules (i.e., A and B) in a certain 

environment. When a proper force field is constructed, a trajectory of the molecular pair is 

obtained through molecular dynamics (MD) simulation and a sequence of snapshots are chosen 

to ensure enough sampling of the geometries. Isolated molecules of A and B are optimized and 

utilized to best fit each of the corresponding molecular geometries in the MD snapshots with 

translational and rotational operations, generating an auxiliary series of rigid molecules. In our 

approach, MOs of these rigid molecules (RMOs) are chosen as references to diabatize MOs of 

the original molecules (OMOs) and calculate the corresponding electronic couplings between 

the two molecules. To this end, ab initio calculations are carried out to obtain the MOs of the 

molecular pairs in the MD snapshots and the individual molecules in both the MD and auxiliary 

sequences of geometries. 

Apparently, the same type of rigid molecules in the auxiliary geometries possess identical 

internal structures but different orientations, and thus their RMOs with the same indexes have 

exactly the same shapes and energies. The wavefunctions of RMOs, however, still suffer from 

phase uncertainties associated with the matrix diagonalization in ab initio calculations. As 

shown in Fig. 1A, we may start from RMOs in the first snapshot and make phase correction 

based on the overlaps between the corresponding RMOs in adjacent snapshots. In detail, a 

phase factor for the i-th RMO in the m-th snapshot is calculated as 
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where the subscript r represents the rigid geometries, and , 1 1
, ,,

j j j j
r i rr i iS φ φ+ +=  is the overlap 

integral between the i-th RMO in snapshot j, ,
j

r iφ , and that in snapshot j+1, 1
,
j

r iφ + . The RMO 

wavefunction is then corrected as 

, , ,
m m m

r i r i r ifφ φ′ = ,                           (2) 

so that the RMO phases of all rigid geometries are kept consistent with those in the first 

snapshot. Since atomic orbitals (AOs) are widely utilized as basis functions in quantum 

chemistry codes for molecular systems, the RMO wavefunctions are normally real-valued and 

all of the phase factors are limited to values of +1 or -1. Note that Akimov has proposed a 

general phase correction approach to deal with complex-valued MO wavefunctions.49 When a 

large time interval is utilized to generate the snapshots, however, the molecular orientations in 

adjacent snapshots may differ significantly with each other and the sign of , 1
,
j

r i
jS +  may be 

unreliable. To solve this problem, a critical value, Sc1, is introduced as an indicator of smooth 

change of the RMOs. If ,
, 1

1j j
r i cS S+ ≤ , we interpolate additional rigid geometries to the auxiliary 

sequence of geometries and perform ab initio calculations to get their RMOs until , 1
,
j

r i
jS +  

between adjacent geometries are all greater than Sc1. Then, the phases of RMOs are similarly 

corrected by Eqs. (1) and (2). In this process, Sc1 should be large enough to achieve smooth 

change of RMOs, but cannot be too large in order to avoid generating too many interpolated 

geometries. More details are provided in the Supporting Information (SI). 

For flexible molecules, PESs of the OMOs may easily cross with each other, and thus OMOs 

with the same indexes do not always match at different geometries. As shown in Fig. 1A, we 

use phase-corrected RMOs as references and make state tracking of the OMOs according to 
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their similarities to the corresponding RMOs. For both A and B molecules in any snapshot m, 

we calculate the maximum overlap between RMO i and all the OMOs under consideration, 

{ },max max j
m m
i ijS S= ,                           (3) 

where , ,
m m m
ij r i o jS φ φ′=  is the overlap integral between RMO i and OMO j in the m-th snapshot. 

Suppose the index of OMO with the maximum overlap is m
ia . If ,max

m
iS  is close to 1, RMO i 

dominates the m
ia -th OMO, meaning that this OMO can be naturally regarded as the i-th quasi-

diabatic MO. In practical calculations, we introduce another parameter, Sc2. If ,max 2
m
i cS S> , the 

m
ia -th OMO is considered as a quasi-diabatic MO, and the phase factor is 
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Otherwise, the m
ia -th OMO is supposed to be a superposition of multiple quasi-diabatic MOs. 

Here, the subscript o represents the original geometries, and 
, m

i

m
o a
φ  is corrected to 

, , ,m m m
i i i

m m m
o a o a o a

fφ φ′ = .                           (5) 

Note that traditional phase correction is usually performed by directly examining the overlap 

between adiabatic states in adjacent snapshots and relies on the reaction path through surface 

crossings.50 In comparison, RMOs are utilized as references in our method, and thus the results 

are completely path independent. As a result, the MOs of molecules with similar structures are 

always phase consistent, which is key for machine learning of electronic couplings. 

For molecule A or B, if the m
ia -th OMO is regarded as the i-th quasi-diabatic MO in the m-

th snapshot, its energy, m
i

m
a

E , is recorded as 

m
i

m
i a

E E= ,                             (6) 
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which gives the onsite energy of the i-th quasi-diabatic MO. As shown in Fig. 1B, if both the 

m
ia -th OMO of molecule A ( AOMO m

ia
) and the m

ja -th OMO of molecule B ( BOMO m
ja

) are 

regarded as quasi-diabatic MOs, the electronic coupling between these two OMOs in the 

molecular pair, ijV , can be calculated with the method proposed by Valeev and co-workers,21 
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, m

i

m
o a
φ′  and 

, m
j

m
o a
φ′  are phase-corrected OMOs, and Ĥ  is the one-electron Hamiltonian of the molecular 

pair. Note that other methods to calculate the electronic coupling can be also used here.19,20,22-

24 These onsite energies and electronic couplings are adopted as training and validation sets for 

further machine learning, and the obtained ANNs give analytical expressions of their structure 

dependence. In general, an ANN is composed of an input layer, multiple hidden layers, and an 

output layer (see Fig. S1 in the SI). If interatomic distances are utilized as descriptors of the 

molecular structure, the number of descriptors equals to the combinatorial number N(N-1)/2 

for a system of N atoms. For any input feature x, we first calculate its average value and 

standard deviation as μ and σ, and standardize the input feature as x' = (x-μ)/σ. The number of 

hidden layers, neurons in each hidden layer, and activation functions are tuned to achieve the 

best reliability. The output layer has only one neuron and gives the predicted onsite energy of 

a quasi-diabatic MO or the intermolecular electronic coupling between quasi-diabatic MOs. 

As shown in Fig. 2A, we study a representative double-strand B-form DNA embedded in 

water solution with K+ and Cl- ions following the well-established protocol proposed by the 

Ascona B-DNA Consortium (ABC).51 MD simulations are carried out by the AMBER suite 
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using the BSC1 force field.52 The sequence, 5’-GCAATCCCACGTTAGCTGAGC-3’, 

contains all kinds of inter-strand and intra-strand base pairs (see Fig. 2B). Here, A, C, T, G 

represent adenine, cytosine, thymine, and guanine, respectively. Oxidative damage to DNA 

generates holes,53,54 and simulation of hole transport in DNA usually considers only the highest 

occupied molecular orbital (HOMO) for each nucleobase in the literature.38-48 Thereby, we here 

focus on the electronic couplings between quasi-diabatic HOMOs of neighboring nucleobases. 

To characterize surface crossings with HOMO levels, we also consider HOMO-1 states. 

MD simulation of the DNA sequence is carried out at 300 K for a total time of 50 ns after 

equilibrium, and a sequence of snapshots of the MD trajectory are picked out. To ensure enough 

sampling, we choose 30000 snapshots with a time interval of Δt = 2 fs for the first 60 ps, 9940 

snapshots with Δt = 1 ps between 60 ps and 10 ns, and 20000 snapshots with Δt = 2 ps for the 

last 40 ns, resulting in a total number of 59940 snapshots. For each nucleobase, the atomic 

coordinates are extracted from the DNA strand and the missing hydrogens on the corresponding 

nitrogen atoms are added. They are then fitted by their optimized geometries to obtain an 

auxiliary sequence of rigid geometries. Ab initio calculations are carried out at the density 

functional theory (DFT) level by the Gaussian package55 for individual nucleobases in both the 

MD and auxiliary sequences of geometries and base pairs only in MD snapshots. The PW91 

functional is adopted with the 6-31+G* basis set. More computational details are provided in 

the SI. 

As shown in Figs. 2C and 2D, HOMO and HOMO-1 are significantly different for the same 

nucleobase in the optimized geometry. Using them as references, we may easily track the 
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characteristics of OMOs. First, phase correction is carried out for HOMO and HOMO-1 of the 

rigid nucleobases in the auxiliary geometries. As large time intervals have been used to 

generate the snapshots, we check the role of Sc1 and find that Sc1 = 0.80 is generally large 

enough to give robust results with low computational costs (see the SI). Note that the rigid 

geometries are arranged according to time here, but they can be also reordered based on 

geometry similarities to reduce the number of interpolated geometries. State tracking and phase 

correction are then performed for the OMOs. Because the nonadiabatic coupling between two 

MOs in a molecule is inverse proportional to their energy difference,56 we only consider 

HOMO ~ HOMO-5 to calculate the overlaps with reference HOMO and HOMO-1. 

The mean squared error (MSE) is used as the loss function in machine learning, and the 

number of neurons in each hidden layer i is set as i inputu n , where inputn  is the dimension of 

input and ui is a scale factor. To improve the sampling of the configuration space, the MO 

phases for the same kind of nucleobases in the first snapshot of the MD trajectory are kept 

consistent, and the data of the same kind of nucleobases or base pairs in the selected 59940 

snapshots is merged together. With a specified Sc2, all the data for each nucleobase or base pair 

is divided into the learning set with geometries whose MOs are considered to be naturally 

quasi-diabatized and the prediction set with the remaining geometries. The learning set is 

shuffled and further divided into training and validation sets with a ratio of 8:2. 

For each nucleobase, the proportion of learning data in all the data for HOMO and HOMO-

1 energies are shown in Fig. S2A and S2B, respectively. In all cases, this proportion drops with 

Sc2 due to the presence of surface crossings. Thereby, crossing is the most significant in T, 
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while G suffers the lightest among the four nucleobases. To find out the balance between data 

quality and diversity, the training sets with different Sc2 values (i.e., 0.75, 0.80, 0.85, and 0.90) 

are tested and ANN models with different numbers of hidden layers and neurons are evaluated. 

In Fig. S2C, we show the mean absolute errors (MAEs) obtained by 12 different ANN models 

to predict HOMO energies. To ensure better generalization ability, the validation MAE needs 

to be small, the MAEs of training and validation sets should be close, and the size of ANN 

should be as small as possible. According to these rules, we find that the ANN model (6) with 

5 hidden layers (i.e., u1 = 5, u2 = 6, u3 = 7, u4 = 6, and u5 = 4) using the dataset with Sc2 = 0.90 

is optimal. Thereby, we use this model to train the onsite energies for both quasi-diabatic 

HOMO and HOMO-1 (see Figs. S4 and S5). As shown in Fig. 3A, the MAEs of HOMO and 

HOMO-1 for all the nucleobases are smaller than 2 meV. Divided by the corresponding average 

values, the relative errors are all lower than 0.03% (see Fig. S2D), indicating that the obtained 

ANN models are highly reliable. 

In Fig. 4A, we use nucleobase T as an example and show representative PESs of HOMO and 

HOMO-1 in both quasi-diabatic and adiabatic representations. The quasi-diabatic MOs switch 

between the adiabatic HOMO and HOMO-1 frequently. The trained ANNs predict reasonable 

energies of quasi-diabatic MOs in surface crossing regions and give smoother PESs. As shown 

in Fig. 3B, the adiabatic HOMOs are contributed only by the quasi-diabatic HOMO and 

HOMO-1 in the learning sets, and thus HOMO and HOMO-1 of all nucleobases could be 

regarded as two-state systems. As shown in the SI, they should satisfy 

11 22 1 2V V E E+ = + ,                            (8) 
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where V11 (V22) and E1 (E2) are energies of the first (second) quasi-diabatic and adiabatic states, 

respectively. This equation can be used to examine the performance of trained ANNs in the 

prediction sets. To this end, we calculate the average energy difference by 

, , 1 , , 1
1

1 ( ) ( )
predN

adia adia dia dia
i HOMO i HOMO i HOMO i HOMO

ipred

E E E E E
N − −

=

∆ = + − +∑ ,           (9) 

where ,
adia
i HOMOE  and , 1

adia
i HOMOE −  are energies of adiabatic HOMO and HOMO-1, ,

dia
i HOMOE  and 

, 1
dia
i HOMOE −  are energies of quasi-diabatic HOMO and HOMO-1, and Npred is the number of 

geometries in the prediction set. The relative error is then calculated as 
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As shown in Fig. 3C, δ is lower than 4% for all nucleobases, replying that the independent 

learning of quasi-diabatic HOMO and HOMO-1 energies catches the essential physics. 

Because of the high performance in MO energy predictions, the data set with Sc2 = 0.90 is 

also used to train ANN models for electronic couplings between quasi-diabatic MOs. ANN 

models with different numbers of hidden layers and input dimensions are tested on four 

representative base pairs (i.e., AA, AC, AG, and AT) (see Fig. S3A). As the number of pairwise 

distances between atoms are large for base pairs, the principal component analysis is adopted 

to diminish the redundant information and to reduce the size of ANNs (see the SI). Different 

input dimensions are evaluated, including 100, 200, 3N-6 (i.e., the number of vibrational modes 

for a system with N atoms), and N(N-1)/2 (i.e., the number of all pairwise distances). We find 

that the ANN model (9) with 5 hidden layers (i.e., u1 = 2, u2 = 5, u3 = 7, u4 = 4, and u5 = 2) and 

100 input dimensions can achieve the best balance between minimizing MAE and avoiding 
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overfitting. Thereby, this model is used to predict the electronic couplings of all base pairs (see 

Figs. S6-S9). As shown in Fig. 3D, MAEs are smaller than 4 meV for all base pairs, 

corresponding to relative errors all smaller than 10% (see Fig. S3C). In Fig. 4B, the time-

dependent electronic couplings are shown using the base pair GT as an example. Different with 

the quasi-diabatic PESs of nucleobase T shown in Fig. 4A that cross frequently, those of 

nucleobase G have almost no crossings between HOMO and HOMO-1 PESs (see inset of Fig. 

4B). As a result, the time-dependent electronic couplings between the adiabatic HOMO of G 

and the adiabatic HOMO (HOMO-1) of T are discontinuous in certain regions due to the strong 

surface crossings in T. Encouragingly, the electronic couplings between quasi-diabatic 

HOMOs given by our ANNs are still smooth. 

In Fig. 5, we show the time-dependent onsite energies of quasi-diabatic HOMO for 

nucleobase T and electronic couplings between quasi-diabatic HOMOs for base pair GT in the 

MD trajectory with the trained ANNs. In comparison with onsite energies, the electronic 

couplings exhibit obvious long-period characteristics, corresponding to conformational 

transition.51 The electronic coupling fluctuates in a large range between -0.1 eV and 0.2 eV, 

implying that strong nonlocal electron-phonon coupling is present. It is important to emphasize 

that because robust phase correction has been considered, the frequent sign change of electronic 

coupling is intrinsic and should be explicitly considered for DNA studies. Similar behaviors 

can be found in other nucleobases and base pairs (see Figs. S10-S17 in the SI). 

Fig. 6A shows typical results reported in the literature concerning the absolute values of 

electronic couplings between HOMOs for different base pairs in DNA. In many studies, the 
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nucleobases are simply placed in the regular DNA structure with a distance of 3.38 Å and a 

twist angle of 36˚ between neighboring nucleobases.39-41,44 Although different ab initio 

methods and basis sets have been used, similar overall trends are obtained. The five largest 

electronic couplings generally correspond to AT, CT, GC, GT, and TT base pairs. Especially, 

Troisi and co-workers obtained average electronic couplings based on the most representative 

geometries extracted from 68 crystallographic structures.42 The additional structural sampling 

changes the trend evidently and the five largest electronic couplings now become AC, CA, GA, 

TA, and TT. This result agrees with the strong fluctuation of electronic couplings in Fig. 5B. 

Thereby, more extensive sampling is required to characterize the average strength of electronic 

couplings. 

In Fig. 6B, we make a systematic study of the average electronic couplings with our method. 

Considering a uniform sampling of the geometries with Δt = 2 ps, we calculate the mean 

absolute electronic coupling 

1| |
snapN

mm

snap

V
V

N
== ∑ ,                            (11) 

and the absolute mean electronic coupling 

1| |
snapN

mm

snap

V
V

N
==

∑
,                           (12) 

for each base pair, where Vm is the electronic coupling in the m-th snapshot and Nsnap is the 

total number of snapshots. By definition, | |V  and | |V  are identical only when all of the 

electronic couplings possess the same signs, and thus the difference between | |V  and | |V  

indicates the strength of sign change during the MD dynamics. For base pairs like CG and TC, 
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| |V  is much larger than | |V , and | |V  is close to zero, implying that positive and negative 

electronic couplings have similar amounts. For inter-strand base pairs (i.e., iAT and iCG), both 

| |V  and | |V  are less than 15 meV, which are much smaller than those in most intra-stand base 

pairs. Compared with ref. 42, the difference between our | |V  for different base pairs is much 

smaller due to two major reasons: sampling in the configuration space is much more sufficient 

in the present work, and the electronic couplings are calculated between quasi-diabatic HOMOs 

instead of the traditional adiabatic HOMOs. It is important to note that the mean electronic 

couplings are almost the same for all base pairs with different choices of Sc2. Thereby, the 

obtained electronic couplings are robust and do not rely on very large amount of data for 

training of the ANNs. 

In Fig. 6B, we also show | |V  based on adiabatic HOMOs. It is clear that | |V  are close 

between adiabatic and quasi-diabatic HOMOs only for AA, AG, GA, and GG base pairs. 

Namely, the major differences come from nucleobases C and T. For C, the energy gap between 

HOMO and HOMO-1 in the rigid geometry is only 0.04 eV (see Fig. 3E). Thereby, the 

equilibrium geometry is close to the crossing point between HOMO and HOMO-1 PESs, and 

these two states are easy to turn over during the MD dynamics. Surprisingly, over 99% of the 

adiabatic HOMOs of C actually correspond to HOMO-1 in the rigid geometry (see Fig. 3B). 

For T, the average energy difference between adiabatic HOMO and HOMO-1 is only 0.13 eV 

(see Fig. 3F), and only about 30% of the adiabatic HOMOs correspond to the quasi-diabatic 

HOMO (see Fig. 3B) due to the frequent surface crossings. Therefore, C needs to be carefully 

state tracked, while both state tracking and surface crossing are important for T. For G and A, 



 

15 

although only very limited number of adiabatic HOMOs are involved in surface crossings (see 

Fig. 3B) due to the large energy difference between HOMO and HOMO-1 (see Figs. 3E and 

3F), the phase correction based on overlaps between adjacent MOs is also invalid in the long-

time limit. Namely, the electronic couplings still suffer from severe sign problems even there 

exists a small chance of surface crossing. As a result, proper treatments of state tracking, phase 

correction, and surface crossing are essential for DNA. 

In summary, we have proposed a novel machine learning method to calculate electronic 

couplings between quasi-diabatic MOs. With an auxiliary sequence of rigid geometries, path 

independent state tracking and phase correction have been realized for the MOs. Without 

referring to nonadiabatic couplings, we take advantages of MOs that can be directly regarded 

to be quasi-diabatic and the smooth relation between quasi-diabatic quantities and the 

molecular structure to obtain the electronic couplings between quasi-adiabatic MOs 

independently. We have shown that HOMO and HOMO-1 for all nucleobases in DNA can be 

regarded as two-state systems, and the onsite energies given by trained ANNs satisfy the 

corresponding physical requirement. Our method has been successfully used to calculate 

electronic couplings between quasi-diabatic HOMOs in all base pairs. Strongly nonlocal 

electron-phonon coupling has been observed. With robust description of state tracking, phase 

correction, and surface crossing, the mean absolute results of electronic couplings between 

quasi-diabatic HOMOs differ significantly with traditional studies with adiabatic HOMOs. 

Based on the trained ANNs for onsite energies and electronic couplings, the Hamiltonian with 

one electronic state per nucleobase can be constructed directly for any sequence of DNA chain 
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and used for further nonadiabatic dynamics simulation of charge transport with computational 

efficiency significantly higher than ab initio calculations. In principle, our method can be also 

applied to the calculation of exciton couplings in flexible systems, providing that representative 

electronic states can be adopted as references. Relevant studies are currently under way. 
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Figure 1. (A) Schematic representation of phase correction for RMOs and the corresponding 

state-tracked OMOs. m
ia  is the index of OMO with the maximum overlap to the i-th RMO in 

the m-th snapshot, m
i

m
ia

S  is the overlap between the i-th RMO and the m
ia -th OMO, ,

m
r if  and 

, m
i

m
o a

f  are phase factors for the i-th RMO and the m
ia -th OMO, respectively. (B) Schematic 

representation of OMO selection for electronic couplings between quasi-diabatic MOs. ijV  is 

the electronic coupling between OMOs of the molecular pair A-B. ‘√’ means both AOMO m
ia

 

and BOMO m
ja

 are regarded as quasi-diabatic MOs, while ‘×’ means at least one of the OMOs 

is not a proper quasi-diabatic MO for a specified Sc2 of 0.90. 
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Figure 2. (A) System for molecular dynamics simulation and (B) sequence of the double-strand 

DNA studied in this work. In (A), oxygen and hydrogen atoms in water molecules are shown 

as red and white points, K+ and Cl- ions are shown as green and pink balls, respectively. In (B), 

nucleobases are numbered from 5’ end to 3’ end along the arrows. (C) HOMO and (D) HOMO-

1 of nucleobases in the optimized geometry. 
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Figure 3. (A) MAEs of HOMO and HOMO-1 energies in the learning set for different 

nucleobases using the ANN model (6) in Table S1. (B) Proportion of quasi-diabatic HOMO 

and HOMO-1 that correspond to adiabatic HOMOs in the learning set. (C) Relative errors of 

the energy differences defined by Eq. (10). (D) MAEs of electronic couplings between HOMOs 

in the learning set for different base pairs using the ANN model (9) in Table S2 with 100 input 

dimensions by PCA. (E) Energy differences between HOMO and other MOs in rigid 

geometries. (F) Energy difference between HOMO and HOMO-1 averaged over the MD 

geometries. In (A) and (D), Sc2 = 0.90 and tanh activation functions are used, and the number 

of training iterations and learning rate are 50000 and 2×10-5, respectively. 
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Figure 4. (A) Representative adiabatic and quasi-diabatic PESs of HOMO and HOMO-1 for 

nucleobase T. (B) Representative time-dependent electronic couplings between the HOMO of 

G and a specified MO (i.e., HOMO or HOMO-1) of T in adiabatic and quasi-diabatic 

representations. The corresponding adiabatic and quasi-diabatic PESs of HOMO and HOMO-

1 for G are shown in the inset of (B). The ANN-predicted results in surface crossing areas are 

highlighted by shaded squares. 
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Figure 5. Representative time-dependent (A) onsite energies of quasi-diabatic HOMOs for 

nucleobase T and (B) electronic couplings between quasi-diabatic HOMOs in base pair GT. 
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Figure 6. (A) Absolute values of electronic couplings between adiabatic HOMOs for different 

base pairs in the literature. (B) Average electronic couplings ( | |V  and | |V ) for all the base 

pairs between quasi-diabatic and adiabatic HOMOs with specified Sc2 values in this study. iAT 

and iCG represent inter-strand base pairs, while the others are all intra-strand base pairs. 
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