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Abstract

We present a group contribution method (SoluteGC) and a machine learning model
(SoluteML) to predict the Abraham solute parameters, as well as a machine learning
model (DirectML) to predict solvation free energy and enthalpy at 298 K. The proposed
group contribution method uses atom-centered functional groups with corrections for
ring and polycyclic strain whilst the machine learning models adopt a directed message
passing neural network. The solute parameters predicted from SoluteGC and SoluteML
are used to calculate solvation energy and enthalpy via linear free energy relationships.
Extensive data sets containing 8366 solute parameters, 20253 solvation free energies,
and 6322 solvation enthalpies are compiled in this work to train the models. The three
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models are each evaluated on the same test sets using both random and substructure-
based solute splits for solvation energy and enthalpy predictions. The results show that
the DirectML model is superior to the SoluteML and SoluteGC models for both pre-
dictions and can provide accuracy comparable to that of advanced quantum chemistry
methods. Yet, even though the DirectML model performs better in general, all three
models are useful for various purposes. Uncertain predicted values can be identified
by comparing the 3 models, and when the 3 models are combined together, they can
provide even more accurate predictions than any one of them individually. Finally,
we present our compiled solute parameter, solvation energy, and solvation enthalpy
databases (SoluteDB, dGsolvDBx, dHsolvDB) and provide public access to our final
prediction models through a simple web-based tool, software package, and source code.

1 Introduction

Information on solvation free energy aids in the selection of viable solvents in chemical pro-
cesses such as the synthesis of organic molecules,1,2 optimization of purification processes,3

and pollutant level management.4 The solvation Gibbs free energy (∆Gsolv) of a solute in a
solvent is directly related to that solute’s partition coefficient between the gas and solvent
phase. This property is typically reported at room temperature and can be a valuable fea-
ture for the prediction of the solute’s liquid-liquid partition coefficient and solid solubility in
organic solvents. For process optimization, ∆Gsolv is required at the specified process tem-
perature and in a variety of solvents. Recently, we reported a strategy to calculate ∆Gsolv

of a dilute neutral solute in organic solvents at different temperatures.5 Using only the sol-
vation free energy and solvation enthalpy at 298 K and solvent’s temperature-dependent
density, ∆Gsolv for temperatures between 298 K and the solvent’s critical temperature can
be calculated along the solvent’s saturation curve in a fast and automated manner. For this
work, we aim to provide improved predictions of ∆Gsolv(298 K) and ∆Hsolv(298 K), which
can be used for the calculation of ∆Gsolv at elevated temperatures, an easy-access tool for
our predictive models, and new databases for ∆Gsolv(298 K) and ∆Hsolv(298 K).

The interest in solvation free energies dates back many years6 and has led to the develop-
ment of numerous predictive methods. These range from molecular dynamics and quantum
chemistry methods to empirical or data-driven approaches. Quantum chemistry methods
distinguish themselves between explicit and implicit solvent representations. Commonly
used quantum chemistry methods are based on the implicit polarizable continuum model
for solvent representation, such as the SMx methods developed by Cramer, Truhlar, and
coworkers7–9 and the COSMO(-RS) models proposed by Klamt and coworkers.10–12 These
first-principle methods are useful for the calculation of solvation properties of new solvent-
solute combinations, but they are computationally expensive and require comprehensive and
challenging searches for all relevant conformers of the considered solvent and solute molecules.
Empirical or data-driven approaches, on the other hand, allow for the fast prediction of sol-
vation properties. The main bottleneck for these methods is the scarcity and quality of
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available experimental data. As more data become available, more studies focus on the
application of empirical and data-driven models to the prediction of solvation-related prop-
erties such as ∆Gsolv. In this study, we focus on improving predictions for ∆Gsolv(298 K)
and ∆Hsolv(298 K) with several empirical and data-driven models, more specifically using
the commonly employed linear solvation energy relationship (LSER), a group contribution
method, and state-of-the-art graph-convolutional message passing neural networks.

The LSER equation used in this work is the one developed by Abraham et al.13,14 The
equation is built based on earlier attempts to relate the free energy of solvation to molec-
ular descriptors by quantitative structure-property relationships (QSPR), for example the
solvatochromic comparison method by Kamlet and Taft.15 The relationship developed by
Abraham and coworkers is given in Eq. 1. It combines Abraham solute (E, S, A, B, L)
and solvent (c, e, s, a, b, l) parameters through a linear equation for the determination of
the gas-liquid partition coefficient K. The Gibbs free energy of solvation can be directly
calculated from the partition coefficient through Eq. 2.

log10K(298 K) = c+ eE + sS + aA+ bB + lL (1)

∆Gsolv = −RT lnK (2)

The LSER is further explored by Mintz et al. 16 for the prediction of ∆Hsolv(298 K) as shown
in Eq. 3. The solute parameters in Eq. 3 are the same Abraham solute parameters as those
used in the Abraham LSER in Eq. 1, while new solvent parameters (c’, e’, s’, a’, b’, l’ ) are
used.

∆Hsolv(298 K)

1 kJ mol−1 = c′ + e′E + s′S + a′A+ b′B + l′L (3)

Each of the solute parameters used in the LSER is related to the physical property of a
solute and can be either determined experimentally or regressed from experimental values
of partition coefficients. E is the solute excess molar refractivity, S is the solute dipolar-
ity/polarizability, A and B are the overall hydrogen bond acidicity and basicity, respectively,
and L is the logarithm of the gas-hexadecane partition coefficient.14,17 The solute parameters
can be also used to estimate liquid-liquid partition coefficients, solid solubilities, heat capac-
ities, enthalpies of sublimation, and liquid phase hydrogen abstraction reaction rates.18–21

The solvent parameters, on the other hand, are largely treated as empirical parameters and
obtained from fitting to experimental data.

Several methods have been proposed to estimate some or all of the solute parameters from
molecular structure,22–30 among which the group contribution (GC) approach is widely used.
Platts et al.24,25 were the first to devise the group contribution scheme that can predict all
solute parameters. They developed 81 functional group fragments for predicting E, S, B, and
L and 51 fragments for predicting A. The ACD/Absolv software31 adopted the Platts-type
fragments and further optimized the fragments for their module. ACD/Absolv has shown to
give reasonably good estimates for many compounds, but it had large prediction errors for
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certain classes of molecular structure, such as highly halogenated compounds, triazoles, and
bridged ring structures.32 Brown et al. developed a different set of fragments or substructures
using the iterative fragment selection approach, in which the fragments are selected by using
k-fold cross validation.33,34 They used solute parameter data of around 3700 compounds and
built an open-access GC model that is available through the UFZ-LSER database.29 Their
model showed good predictive performance for the L parameter,34 but the performance on
the other solute parameters has not been reported.

As more comprehensive databases become available, researchers have started exploring the
use of machine learning (ML) for the prediction of ∆Gsolv(298 K). Initially, these efforts
focused on hydration free energies using the FreeSolv database.35 This database is often
used as a benchmark to compare model architectures in chemical property prediction.36,37

The Minnesota solvation database (MNSol)38 contains solvation free energies for a wide range
of solvents. Hutchinson and Kobayashi 39 were the first to use this database to account for
different solvents in a neural network by using the DeepChem framework40 with functional
class fingerprints that have solvent-specific features. More recent works have been published
based on a larger database Solv@TUM.41 Pathak et al.42 proposed a chemically interpretable
graph interaction network model comprised of a message passing, an interaction, and a
prediction phase using 6239 unique solvent-solute combinations extracted from Solv@TUM
and FreeSolv data sets. Lim and Jung43 used the same data sets and developed MLSolvA,
a ML architecture that computes pairwise atomic interactions from the solvent and solute
atomistic feature vectors and makes prediction by summing up the interactions. As part of
our previous work, Vermeire and Green44 presented a transfer learning approach in which
the model was pre-trained on 1 million quantum calculations and further fine-tuned on 10145
solvation free energy experimental data. The main purpose of that work was to demonstrate
how transfer learning from quantum chemical data improves performance on small dataset
sizes and on out-of-range sample predictions. Overall, the model achieves a mean absolute
error of 0.21 kcal/mol on a random test split.

In this work, we adopt three different approaches to predict ∆Gsolv(298 K) and ∆Hsolv(298 K),
two of which predict Abraham solute parameters and then calculate solvation properties us-
ing the LSERs. The third approach obtains ∆Gsolv(298 K) and ∆Hsolv(298 K) directly for
the specified solvent-solute pair. For the prediction of ∆Gsolv(298 K) we chose not to make
use of our previously published transfer learning model, since the purpose of this work is to
extensively compare different approaches to experimental data-driven methods. Extensive
databases of the solute parameters, ∆Gsolv(298 K), and ∆Hsolv(298 K) have been compiled
for this work and all models are trained on experimental data. The performance of the three
approaches is assessed for solvent-solute combinations that are considered out-of-sample with
respect to the training data. We specifically use the random and substructure-based solute
splits such that none of the solutes or selected solute substructures in the test sets appear in
the training sets. One of the novelties of this work is that the performance of all the meth-
ods is evaluated on exactly the same test sets for different splits. For the final prediction of
solvation properties, we advise to combine all three methods as they provide a different level
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of accuracy and interpretation of the contribution of several physical phenomenon to the
calculated values. We also provide an easy-accessible tool for our predictive models that can
be used to calculate the solute parameters, ∆Gsolv(298 K), and ∆Hsolv(298 K). Lastly, we
provide new databases for the solute parameters, ∆Gsolv(298 K), and ∆Hsolv(298 K) compiled
and curated from different sources.

2 Methods – Databases

Three different approaches are used to predict ∆Gsolv(298 K) and ∆Hsolv(298 K): (1) a GC
method for the solute parameters in the Abraham equation (SoluteGC), (2) ML for the
prediction of the same solute parameters (SoluteML), and (3) ML for the direct prediction
of solvation properties (DirectML). The advantage of using these three different methods for
the prediction of solvation properties is that they each provide a different level of information
on the physical contributions to the calculated values. Whereas the DirectML method is a
black-box, the SoluteML model provides solute parameters with physical meaning, and the
SoluteGC model relates those parameters to chemical substructures.

The three approaches start from two different experimental data sets: one with solute
molecules and their solute parameters (SoluteDB), and one with solvent-solute pairs and
values for ∆Gsolv(298 K) and ∆Hsolv(298 K) (dGsolvDBx, and dHsolvDB). The So-
luteGC and SoluteML methods predict the solute parameters from SMILES45 of the solute
compounds. The solvation free energy and enthalpy are subsequently computed from the
predicted solute parameters and empirically fitted solvent parameters through the LSERs
(Eqs. 1 and 3). The DirectML method takes SMILES of the solvents and solutes as input
and predicts the solvation free energy and enthalpy. Figure 1 depicts the prediction flowchart
of the three models starting from the two data sets. The details on the individual models
and information on the construction and splitting of the two data sets are given below.

2.1 Data Collection and Compilation

The experimental data for the solute parameters (E, S, A, B, L), ∆Gsolv(298 K), and
∆Hsolv(298 K) are collected from various sources. All data except those collected from the
Minnesota solvation database are open-source and published as a part of this work. The
data are limited to neutral solute compounds containing H, C, N, O, S, P, F, Cl, Br, or I
atoms and nonionic liquid solvents in this work. The standard state of 1 mol L−1 gas phase
and 1 mol L−1 liquid phase is used for ∆Gsolv and ∆Hsolv.

The solute and solvent information in the collected databases are given in various represen-
tations, such as CAS numbers, InChI,46 SMILES, chemical names, and 3D coordinates. The
data are standardized by converting the given identifiers to both SMILES and InChI strings
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Figure 1: Schematic overview of ∆Gsolv(298 K) and ∆Hsolv(298 K) prediction with the three
methods (SoluteGC, SoluteML, and DirectML) starting from the three data sets (SoluteDB,
dGsolvDB, and dHsolvDB)

using PubChemPy,47 CIRPy,48 RDKit,49 and ARC.50 All available chemical identifiers are
converted and the resulting InChI strings are compared to eliminate incorrect or ambiguous
naming. The compounds with specified stereochemistry are converted to isomeric SMILES.
The non-standard InChI containing a fixed-hydrogen layer is used instead of the standard
InChI to distinguish tautomers. Those InChIs are used as unique identifiers to identify differ-
ent solutes or solute-solvent pairs in the data sets. When multiple data points are found for
the same solute or solute-solvent pair, the mean values of the Abraham solute parameters,
∆Gsolv(298 K), or ∆Hsolv(298 K) are used and the standard deviations are calculated. No
data are removed based on the standard deviations as most of the data are found to have
relatively low standard deviations.

Abraham solute parameters. The data statistics of the in-house Abraham solute pa-
rameter database (SoluteDB) are summarized in Table 1. The number of data points per
parameter varies as some solutes have missing parameters. The number of Abraham and
Mintz solvent parameters used in this study are provided in the table as well. These solvent
parameters are empirically fitted based on the collected solute parameters, ∆Gsolv(298 K),
and ∆Hsolv(298 K) data. The details on the fitting method, the fitted solvent parameters, and
the molar weight distribution of the solutes in the data set can be found in the Supporting
Information Sections 1 and 2.1.
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Table 1: Data summary for the in-house Abraham solute parameter database (SoluteDB)
and the number of fitted solvent parameters. The total number of data points (N total),
mean values, standard deviations (std. dev.), and minimum and maximum (min, max)
values are presented.

solute parameter N total mean std. dev. min max
E 8163 0.97 0.81 -1.51 6.87
S 7654 1.14 0.78 -1.60 10.97
A 8159 0.21 0.35 0.00 6.80
B 7395 0.66 0.61 0.00 7.97
L 7038 6.77 3.79 -1.20 49.98

Total number of solutes 8366
Number of solvents with fitted Abraham 195

solvent parameters (e, s, a, b, l, c for ∆Gsolv)
Number of solvents with fitted Mintz 66

solvent parameters (e’, s’, a’, b’, l’, c’ for ∆Hsolv)

Solvation free energy and enthalpy. A summary and analysis of the compiled solvation
free energy and enthalpy data sets are given in Table 2. The solvation free energy data
are acquired from the Minnesota solvation database (MNSol),38 CompSol database,51 Free-
Solv database,35 and published work by Abraham, Acree and coworkers52–83 and compiled
together as a dGsolvDB1 data set. FreeSolv database is obtained from MoleculeNet.36 Addi-
tionally, we have nearly 4000 gas-water partition coefficient data (logKw) from the in-house
database. While adding these data significantly increases the size of the data set and the
number of solute compounds considered, it also causes the solvation free energy data to be
more heavily biased towards water as a solvent. Therefore, a separate data set, dGsolvDB2,
is prepared that includes the dGsolvDB1 data and the aqueous solvation free energy data
converted from the in-house logKw data set.

We also convert octanol-water partition coefficient data (logPow) from the in-house database
and solvent-water partition coefficient (logP ) data from OCHEM,84 DrugBank,85 PHYSPROP,86

and published work by Abraham, Acree, and coworkers52,53,57–75,78–82,87 to solvation free en-
ergies. For the solute species with logKw and logP data available, the gas-solvent partition
coefficient (logK) can be calculated from Eq. 4.

log(K) ≈ log(P ) + log(Kw) (4)

logK is subsequently converted to the solvation free energy through Eq. 2. Note that Eq.
4 assumes that logP is measured in dry solvents, i.e. the solvents do not dissolve into one
another while in contact. This approximation would introduce an additional uncertainty to
the data set, especially for polar solvents in contact with water. Moreover, including the
in-house logPow data causes the data set to be biased toward 1-octanol as a solvent. Thus,
another separate data set, dGsolvDB3, is prepared that includes the dGsolvDB2 data and
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the solvation free energy data converted from the logPow and logP data. As Table 2 shows,
the dGsolvDB3 data set has the most data but nearly a half of the solvents correspond
to water and 1-octanol. All three solvation energy data sets (dGsolvDB1 - dGsolvDB3) are
used separately to build DirectML models, and the test set errors are compared to determine
which data set gives the best prediction.

Solvation enthalpy data are collected from Acree Enthalpy of Solvation data set88 and Comp-
Sol database.51 Self-solvation data (solvation of a compound in itself) are included in both
solvation energy and enthalpy data sets. It can be seen from Table 2 that the majority of
the solvents in the data sets only have a single entry that corresponds to the self-solvation
datum in the final database. As a result, if self-solvation data are excluded, the number of
solvents would reduce to 302 and 142 solvents in the solvation free energy and enthalpy data
sets, respectively. The molar weight distribution of the solutes in each data set is provided
in the Supporting Information Section 2.1.

Table 2: Summary of the data sets for solvation free energy (dGsolvDB) and enthalpy
(dHsolvDB), including the total number of data points (N total), the number of solutes (N
solutes), the number of solvents with and without solvents that only appear in self-solvation
(N solvents), and a list of the most commonly found solvents. (CCl4: carbon tetrachloride,
DMF: dimethylformamide.)

data set N total N solutes N solvents top 5 solvents
(included data) (excl. self-solv) (% data)

dGsolvDB1 12202 2387 1459 water (11.6 %)
(∆Gsolv

35,38,51–83) (302) 1-octanol (3.2 %)
hexadecane (2.1 %)

heptane (1.7 %)
hexane (1.7 %)

dGsolvDB2 16180 5991 1459 water (33.3 %)
(∆Gsolv,35,38,51–83 (302) 1-octanol (2.4 %)

in-house logKw data) hexadecane (1.6 %)
heptane (1.3 %)
hexane (1.3 %)

dGsolvDB3 20253 5991 1459 water (26.6 %)
(∆Gsolv,35,38,51–83 (303) 1-octanol (21.1 %)

in-house logKw data, hexadecane (1.3 %)
in-house logPow data, ethanol (1.1 %)

logP 52,53,57–75,78–82,84–87) heptane (1.1 %)
dHsolvDB 6322 1665 1432 cyclohexane (3.5 %)

(∆Hsolv
51,88) (142) methanol (3.2 %)

benzene (3.1 %)
CCl4 (2.8 %)
DMF (2.8 %)
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Comparison of the LSER estimates and experimental data. Based on the collected
data sets, the errors associated with the LSER are evaluated prior to the construction of the
prediction models. Solvation free energies and enthalpies are calculated from the Abraham
and Mintz LSERs using the experimental solute parameters (SoluteDB) and the fitted solvent
parameters, and the calculated values are compared to the ∆Gsolv(298 K) and ∆Hsolv(298 K)
data sets listed in Table 2. The parity plots and errors are shown in Figure 2. It can
be seen that the LSER has small ∆Gsolv(298 K) error and relatively higher ∆Hsolv(298 K)
error. These errors are due to both the aleatoric uncertainty of the experimental data and
the fact that the linearity of the LSER cannot capture the non-linear relationship between
the solute parameters and solvation energy/enthalpy. Since the LSER estimates of both
solvation free energy and enthalpy in Figure 2 are calculated using the same experimental
solute parameters, it is likely that the model error associated with the Mintz LSER (Eq. 3)
is higher than that of the Abraham LSER (Eq. 1). It is also possible that the solvation
enthalpy data (dHsolvDB) have higher experimental uncertainty than the solvation energy
data (dGsolvDBx ), but we are unable to assess the experimental uncertainties of the data
sets used in this work as the majority of solvent-solute pairs only have a single data point.
The SoluteGC and SoluteML models that predict ∆Gsolv(298 K) and ∆Hsolv(298 K) through
the LSER will, at their best performance, have these underlying errors when compared to
the dGsolvDBx and dHsolvDB data sets.

Figure 2: Comparison between the experimental ∆Gsolv(298 K) and ∆Hsolv(298 K) data
and the estimations from the LSER. The LSER estimations are calculated using the Abra-
ham solute parameter database and the fitted solvent parameters. The experimental data
from dGsolvDB1, dGsolvDB2, dGsolvDB3, and dHsolvDB are compared to the LSER esti-
mates. The mean absolute error (MAE) and root mean square error (RMSE) are reported
in kcal/mol.

2.2 Data Split for Model Comparison

As summarized in Tables 1 and 2, a total of four data sets are prepared for the prediction of
solvation free energy: (1) SoluteDB, (2) dGsolvDB1, (3) dGsolvDB2, and (4) dGsolvDB3.
The final models that are available through the easy-access tool are trained on all of the
data available. However, to evaluate and compare the performance of the models, each data
set is split into a ∼90 % training/validation and a ∼10 % carefully selected test set. The
test set is constructed such that the solute compounds from the test set do not overlap
with the training and validation set. For example, if compound A is chosen as a test set
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solute, all solvent-solute pairs that have compound A as a solute are included in the test
sets and excluded from the training and validation sets. The test set solutes are selected
in a (1) random and (2) substructure-based manner while maintaining a ∼90/10 % data
split. The substructure-based splits are employed to test the out-of-range performance of
the models on new classes of solute molecules. All solute compounds that contain any of the
selected functional groups and scaffolds are included in the test set for our substructure splits.
Those splits are comparable to the Murcko scaffold-based splits that are commonly used in
molecular property predictive models for drug discovery.36,37 The substructures are manually
selected to maintain a ∼90/10 % split for all data sets. The substructures are represented in
SMARTS,89 and substructure search on solute compounds is done using RDKit. Examples
of chosen substructures are benzoic acid, adamantane and phenanthrene scaffolds, and a
trifluoromethyl group. The list of all substructures used to split the data sets is presented in
the Supporting Information Section 2.2. The data sets used for the prediction of solvation
enthalpy (SoluteDB and dHsolvDB) are split in the same fashion.

The training and testing sets we have prepared so far are designed for evaluating the model
performance on unseen solutes. To investigate the performance of the DirectML models on
unseen solute and unseen solvent pairs, 10 and 8 solvents are removed from the training
sets of dGsolvDB and dHsolvDB, respectively, and placed in the test sets. The solvents
with Abraham and Mintz solvent parameters are selected to allow the solvent-wise error
comparison with the SoluteGC and SoluteML models. Moreover, the solvents are selected
such that the number of solutes in each training set remains unchanged even after the chosen
solvent data are excluded from the training set. The list of excluded solvents is provided in
the Supporting Information Section 2.3, and detailed data statistics of all training and test
sets used in this study is presented in the Supporting Information Section 2.4.

3 Methods – Models

3.1 SoluteGC: Group Contribution Method for Abraham Solute
Parameter Prediction

The SoluteGC model is built as part of Reaction Mechanism Generator (RMG),90,91 open
source chemical kinetic modeling software package. RMG uses the Benson-type92 group
contribution method for gas phase thermochemistry estimations and has over 2000 groups
in the database. For the SoluteGC model, RMG’s gas phase group contribution scheme is
adopted to include the Abraham solute parameters, and missing groups that are important
to the solvation data sets are added.

RMG’s GC method estimates thermochemistry by dividing a molecule into atom-centered
(AC) functional groups and summing the contribution from all groups. Additionally, RMG
implements ring strain correction (RSC) and long distance interaction (LDI) groups to ac-
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count for more advanced structural effects that cannot be captured by the atom-based ap-
proach. The SoluteGC model follows the same scheme to calculate the solute parameters as
shown in Eq. 5

E, S,A,B, or L =
Natom∑
i=1

ACi +
∑
j=1

RSCj +
∑
k=1

LDIk (5)

where Natom is the number of heavy atoms in a molecule and RSC and LDI corrections
are applied for each ring cluster and long distance interaction group found in a molecule,
respectively. For more details on the GC scheme, the reader is referred to the dedicated
work by Gao et al. 90 and Han et al. 93 as well as the RMG documentation.94

While most molecules follow Eq. 5, halogenated molecules are treated differently in the
SoluteGC model: all halogen atoms are first replaced by hydrogen atoms, then the GC
estimate is made on the replaced structure, and halogen corrections are lastly added for each
halogen atom to get the final GC prediction as shown in Eq. 6

E, S,A,B, or L =
Natom∗∑
i=1

ACi +
∑
j=1

RSCj +
∑
k=1

LDIk +

Nhalogen∑
l=1

Halogenl

= (E, S,A,B, or L)replaced compound +

Nhalogen∑
l=1

Halogenl

(6)

where the subscript ‘replaced compound’ denotes the compound whose halogen atoms are
replaced by hydrogen atoms, and Natom∗ and Nhalogen represent the number of non-halogen
heavy atoms and the number of halogen atoms in a molecule, respectively. The halogen
groups are halogen-centered functional groups and defined by neighboring atoms including
other halogens that are bonded to the same atom. We take this unique approach because it
allows one to use the experimental solute parameter data of a replaced compound and simply
apply halogen corrections to get more accurate estimates for a halogenated compound. While
this approach is inspired by various works,95,96 it is primarily based on the hydrogen bond
increment (HBI) method devised by Lay et al.,95 in which a radical correction is applied to
a saturated compound datum to get a thermochemistry estimate for a radical compound.

Once the types of functional groups to be considered and the GC relationships are established
(Eqs. 5 and 6), a set of functional groups relevant to our data set needs to be created
before fitting the associated group values. The functional groups for the SoluteGC model
are constructed largely based on the existing groups within RMG. The groups that do not
appear in the Abraham solute parameter database (SoluteDB) are removed, and new AC,
RSC, and halogen groups that frequently appear in the database but are missing from RMG,
mainly halogen, phosphorus, and heterocyclic groups, are created. The number of groups
used for the final SoluteGC model is listed in Table 3.
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Table 3: Description and the number of groups used for the SoluteGC model.

Group Category Number of Groups Description
AC-regular 729 Atom-centered functional groups.

Applied for each non-halogen heavy atom
AC-halogen 193 Halogen correction

(halogen-centered functional groups)
RSC-ring 116 Monocyclic ring strain correction

RSC-polycyclic 179 Polycyclic ring strain correction
LDI-cyclic 29 Aromatic ortho, meta, para correction

LDI-noncyclic 16 Gauche interaction correction

Finally, the group values are fitted to the experimental data using the ridge regression
method from Scikit-learn package.97 Ridge regression is chosen as a fitting method be-
cause it gave overall the lowest error on our test sets compared to other regression meth-
ods such as ordinary least squares, lasso, and elastic net. Ridge regression98 is a lin-
ear least squares regression with L2 regularization and can help prevent overfitting. The
hyperparameter of the regression is tuned using 10-fold cross-validation on each train-
ing set prepared from SoluteDB in the earlier section. The final SoluteGC model im-
plemented in RMG is fitted using the entire data set, omitting the very small molecules
where GC approach is unsuitable. All molecules with more than two heavy atoms are
used to fit the group values. The group definitions and the number of data used to fit
each group can be found on GitHub as part of the RMG-database at https://github.com/
ReactionMechanismGenerator/RMG-database/tree/master/input/solvation/groups. De-
tailed information on how the groups are defined and organized in the RMG-database is given
in the Supporting Information Section 3.1.

3.2 SoluteML and DirectML: Machine Learning for Solute Pa-
rameters, Solvation Free Energy, and Enthalpy Prediction

Two machine learning models are developed for the prediction of solvation free energy and
enthalpy. The first deep neural network ensemble (SoluteML) is trained on the database
with the Abraham solute parameters (SoluteDB). The average prediction of this ensemble
of neural networks is combined with the solvent parameters through the LSER (Eqs. 1 and
3) to calculate ∆Gsolv(298 K) and ∆Hsolv(298 K). The second ensemble of deep neural net-
works (DirectML) is trained on dGsolvDB and dHsolvDB and used to predict the solvation
properties directly. For both machine learning models, the final models are trained on the
complete data sets. For the purpose of comparing model performance in the remainder of
this work, the models are trained on the different splits (see Section 2.2).

The model architecture for both models used in this work are based on the state-of-the-art
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chemical property prediction software Chemprop.37 This software uses a directed message
passing neural network (D-MPNN), a type of graph convolutional neural network, to convert
atom and bond feature vectors to a molecular latent representation. The embedded molecule
is subsequently sent through a second neural network for the property prediction task. For
more details on the D-MPNN, the reader is referred to the dedicated work by Yang et al.37

The software package can be found on GitHub (https://github.com/fhvermei/chemprop_
solvation). Specifics related to this work are discussed below.

For the SoluteML model, the training set consists of solute SMILES as input and their
corresponding solute parameters as output to the neural network. Minor adjustments are
made compared to the original version of Chemprop to include atom, bond, and molecular
features specific to solvation. A summary of the used atom and bond features is given in
Table 4. Different sets of additional molecular descriptors are tested for training the neural
network. These are concatenated with the molecular latent representation generated by the
D-MPNN. We find that using all the available 2D-RDKit molecular descriptors (a vector of
200 features automatically generated by RDKit37) yields overall the best performance for
the SoluteML model, and therefore they are chosen as the additional molecular features.

For the DirectML model, the original version of Chemprop is adapted to the application of
multiple input molecules, a solvent-solute pair. The solvent and solute SMILES strings are
each converted to a latent representation by a separate D-MPNN, after which the embeddings
are concatenated prior to the second neural network for property prediction. The same
atom and bond features are used for the D-MPNN as for the SoluteML model (see Table 4).
Similar to SoluteML, different sets of additional molecular descriptors are tested to improve
the performance of the model. In this case, the selected molecular features are the RDKit-
calculated octanol-water partitioning coefficient and Van der Waals Surface Area (VSA)
combined in RDKit’s SlogP_VSA_ descriptor. The molecular feature vectors for a solute and
a solvent are concatenated with the latent representation after the D-MPNN and prior to
the second neutral network for property prediction.

Different hyperparameters are used for the SoluteML and the DirectML models. For each
model, the hyperparameters are selected based on a search algorithm that includes optimiza-
tion of the neural network for different hyperparameter combinations. The search procedure
combines the algorithms available in the software package Hyperopt99,100 with manual inter-
vention to balance the size of the neural networks with the gain in accuracy. The hyperpa-
rameters that are optimized include the depth and hidden size of the D-MPNN, the number
of layers and hidden size of the neural network for property prediction, the learning rates,
and the batch size. An overview of the selected hyperparameters for the different models is
given in the Supporting Information Section 3.2.

The models are trained with 5-fold cross-validation. For each of the different splits, the test
set is pre-defined as detailed in Section 2.2. During the 5-fold cross-validation, a different

13

https://github.com/fhvermei/chemprop_solvation
https://github.com/fhvermei/chemprop_solvation


Table 4: Atom and bond features used for the directed message passing neural network.

Atom features Type
Atomic number One-hot
Total neighbor number One-hot
Formal charge One-hot
Connected hydrogen atoms One-hot
Hybridization One-hot
Lone pairs One-hot
H-bond donor One-hot
H-bond acceptor One-hot
Ring size One-hot
Aromaticity One-hot
Electronegativity Binary
Molar mass Binary

Bond features Type
Bond type One-hot
Conjugation One-hot
In ring One-hot
Stereo One-hot

random validation set of 10 % is generated and distinguished from the training set to deter-
mine at which iteration (or epoch) to stop training the model. Within each fold, an ensemble
of 5 different models is generated by Glorot initialization of the model parameters101 with
different seeds. All models are used to make predictions for the pre-defined test set. The
predictions of each individual model are averaged to calculate the prediction of the model
ensemble. Additionally, the variance on the predictions of the individual models is used as a
measure for the model uncertainty (i.e. epistemic uncertainty) on the individual data points.

3.3 Prediction Using Existing Methods

The performance of our models is compared to the following quantum chemistry (QM),
ML, and GC methods from literature: SMD,9 COSMO-RS,12 the solvation free energy
ML model by Lim and Jung (MLSolvA),43 the transfer learning model by Vermeire and
Green44 (transfer learning), the solvation enthalpy ML model by Jacquis et al.,102 and the
solute parameter GC method from the UFZ-LSER database (UFZ-LSER).29 The COSMO-
RS calculations are performed in-house at the BP86/TZVPD-FINE level of theory using the
software COSMOtherm.103 These calculations are done for the solvent-solute pairs whose pre-
calculated quantum chemical COSMO data are available in the COSMObase database.104

Note that no additional quantum chemical calculations are done in this work. The solvation
enthalpy at 298 K is computed by calculating solvation free energies at 297, 298, 299 K,
estimating the temperature gradient at 298 K from the three data points, and using the
relationship ∆H = ∆G−T d∆G

dT
. The GC method from the UFZ-LSER database29 is used to

predict the solute parameters. These predicted parameters are combined with our in-house
solvent parameters to compute the prediction errors of the UFZ-LSER GC method. Since
the training data used for the regression of the solute parameters in the UFZ-LSER database
are unknown, the errors are evaluated using all of our data. Only the solute molecules with
more than two heavy atoms are used to evaluate the UFZ-LSER GC method as the GC
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method is not suitable for small molecules. For the remaining methods, SMD9 and the ML
models,43,44,102 the reported errors from literature are used for comparison. Note that these
errors are reported on a different test set than the one used in this work.

4 Results and Discussion

In the subsequent section, we evaluate the performance of the three models (SoluteGC,
SoluteML, and DirectML) on 10 % test sets for both random and substructure-based solute
splits. The comparison is done for the test splits with unseen solutes, and additionally for
the DirectML model, on unseen solute and unseen solvent pairs. Because the size of the
test set is different for each model, only overlapping test data of the compared models are
considered in our comparison. For the comparison of the three models, the test solvents
are limited to those with Abraham or Mintz solvent parameters since the SoluteGC and
SoluteML models can be evaluated on only those solvents (see Table 1). The results on
the entire test set data of each model can be found in the Supporting Information Section
4, which includes the results on the solvents without the solvent parameters for the test
sets of the DirectML model. Furthermore, only the prediction of the solvation free energy
and enthalpy is discussed in the main text. The prediction results on the individual solute
parameters are presented in the Supporting Information Section 4. At last, the performance
of our models is compared to that of the existing quantum chemistry, ML, and GC models.

The model performance is analyzed by comparing parity plots, the mean absolute error
(MAE), and the root-mean-square error (RMSE), both in kcal/mol. Because the scale of
the solvation free energies and their errors differ between some of the compared test sets, we
also compare the relative error using the percent MAE (PMAE) defined as:

PMAE =

∣∣∣∣ MAE

test mean

∣∣∣∣ · 100 % (7)

The test mean represents the average experimental value in the test set. PMAE is used
instead of the mean relative error, which is a mean of the individual absolute errors divided
by their experimental values, because several solvation free energy and enthalpy have exper-
imental values close to zero. This leads to inflation of the mean relative error, which would
not be representative of the model performance.

4.1 Comparison of the DirectML Models Trained on Different Sol-
vation Free Energy Data Sets

Before comparing the performance of the different models (SoluteGC, SoluteML, and Di-
rectML), we start by comparing the performance of the DirectML models that are trained
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and validated on three different solvation free energy data sets (dGsolvDB1, dGsolvDB2,
dGsolvDB3) to determine which model gives the best prediction. As explained in Section
2.1 and summarized in Table 2, the data sets differ in what kind of solvation data is included
(∆Gsolv, in-house logKw data, and logP data). The size of the data set increases from
dGsolvDB1 to dGsolvDB3, including more solutes, but the solvents become more skewed
towards water and 1-octanol as logKw and logP data are added. To select the best perform-
ing model, in this section, only overlapping test data between the three DirectML models
trained with the three data sets are compared. Because each data set is the subset of the
next larger data set (dGsolvDB1 ⊂ dGsolvDB2 ⊂ dGsolvDB3), the overlapping test data
only include the ∆Gsolv data from dGsolvDB1 and do not include in-house logKw and logP
data. The results on the entire test set of each model are given in the Supporting Information
Section 4.1.

The test errors of the three models on the overlapping test set data are shown on the parity
plots in Figure 3. For a random split, the performance of the three models is very similar.
The model trained on dGsolvDB3 gives the lowest MAE of 0.29 kcal/mol, which is only 0.02
kcal/mol lower than the model trained on dGsolvDB1. The difference between the models
is a bit more pronounced in the substructure split. The model trained on dGsolvDB3 gives
the lowest MAE of 0.81 kcal/mol, which is 0.06 kcal/mol lower than the model trained on
dGsolvDB1. The result indicates that adding both logKw and logP data to the training
and validation data set slightly improves solvation energy predictions compared to training
and validating the models on only solvation free energy data. Yet, considering that the
total number of data and the number of solutes in dGsolvDB3 are nearly twice as many as
those in dGsolvDB1, the improvement is not as significant as expected. In the Supporting
Information Figure S3, a similar comparison is done using the complete (10 %) test set of each
respective data set rather than only the overlapping data. In this case, the model trained,
validated, and tested on dGsolvDB1 gives the lowest MAE of 0.31 kcal/mol compared to
0.40 kcal/mol for the model trained, validated, and tested on dGsolvDB3 for a random split.
For the substructure split, the difference is less significant with the lowest MAE of 0.87
kcal/mol for dGsolvDB1 closely followed by 0.89 kcal/mol for dGsolvDB3. If the PMAE is
compared instead, the dGsolvDB1 and dGsolvDB3 models both have the lowest PMAE of
4.9 % for the random split and the dGsolvDB3 model has the lowest PMAE of 9.2 % for the
substructure split compared to the PMAE of 10.1 % for the dGsolvDB1 model.

These observations are in line with the conclusions made in earlier work by Vermeire and
Green.44 The model performance improves with an increasing amount of data in the training
and validation set; however, the extent to which the model performance can be assessed is
limited by the experimental (or aleatoric) uncertainty in the test set. For the same test set,
the performance of the three models on a random split is similar since the aleatoric limit
of assessing the performance on that test set is reached. For the substructure split, there
is still a slight improvement in performance observed by the addition of more data to the
training and validation set. For the comparison against the complete (10 %) test set of
each data set in the Supporting Information, it is expected that the test splits of the data
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Figure 3: Parity plots of the DirectML models trained and validated using 3 different sol-
vation free energy data sets (dGsolvDB1, dGsolvDB2, and dGsolvDB3) that differ in the
type and amount of solvation data considered. The plots only show the overlapping test
data in each split type. The MAE and RMSE are in kcal/mol, and the PMAE is given in
parenthesis. Information on the training and test data are given on the figures together with
the overall errors. Note that the test sets are prepared using random and substructure-based
solute splits, and therefore none of the test set solutes appear in the training and validation
sets.

sets containing logKw and logP data have a higher associated experimental uncertainty.
The experimental uncertainty in solvation free energies of neutral compounds is typically
estimated as 0.2 kcal/mol,105,106 but the solvation free energies measured in water (logKw)
often have higher uncertainties,107 which we believe are due to larger magnitudes of the
values and disagreements between data reported by different sources. The conversion of
logP data to solvation free energies also comes along with an additional uncertainty because
of the assumption that solvents are not in contact with one another. As a result, the model
trained and validated on dGsolvDB1 seems to have better performance if we compare the
MAE evaluated on the complete test set. However, this conclusion cannot be directly drawn
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because of (1) the additional uncertainty in the other test sets and (2) the different range of
the magnitudes of solvation free energies in the test set data. The latter is compensated for
by comparing the PMAE of the different models instead of the MAE or RMSE.

Overall, including more data in the training and validation set is beneficial as it lowers the
prediction error when assessed on the overlapping test set data, and thus dGsolvDB3 is
chosen as the optimal solvation free energy data set for this work and comparison to other
methods. We also compare the solvent-wise test errors of the three DirectML models in
the Supporting Information Figure S4, and it is found that having data bias towards two
opposing solvents like water and 1-octanol does not cause any particularly high errors in
other solvents. However, since the accuracy of the three models is not significantly different,
it is possible that different data splits or data sizes can yield contrasting results.

4.2 Comparison of the Three Prediction Approaches

4.2.1 Performance on Unseen Solutes

The test set errors for the solvation free energies ∆Gsolv(298 K) predicted by the SoluteGC,
SoluteML, and DirectML models are presented in Figure 4. The three different models are
tested on unseen solutes, and only overlapping test data of the three models are compared in
the figure. All solvents in the overlapping test data appear in the training set of the DirectML
model, and the SoluteGC and SoluteML models use the empirical solvent parameters, and
therefore, the results shown in Figure 4 can be considered as the predictive performance on
pairs of unseen solutes and trained solvents. The DirectML model is trained and validated
using the data set dGsolvDB3 (including ∆Gsolv data, in-house logKw data, and logP data),
which is selected based on earlier results from Section 4.1. Note that the overlapping test
data in Figure 4 are different from those in Figure 3, and therefore the test errors of the
DirectML model from the two figures are slightly different each other.

For both the random and substructure solute splits, the DirectML model achieves the best
predictions and the SoluteGC model gives the highest error. While the DirectML model
performs better than the SoluteML model, there is no significant difference; the MAE differs
less than 0.1 kcal/mol for both splits. The SoluteML and DirectML models have likely
reached close to the aleatoric limit of the experimental data in the random split, and we
believe that the relative underperformance of the SoluteML model in comparison to the
DirectML model is due to the inherent error caused by the linearity the LSER as discussed
in Section 2.1. Even though the SoluteML model has about 2100 more solutes in the training
set than the DirectML model has, the additional solute data are not able to compensate for
the underlying error.

The three models are compared for the prediction of solvation enthalpies ∆Hsolv(298 K) on
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Figure 4: Parity plots for experimental and predicted ∆Gsolv(298 K) on the 10 % test sets.
The plots only show the overlapping test data in each split type. The three different models
are tested on pairs of unseen solutes and trained solvents for the random and substructure
solute splits. The MAE and RMSE are in kcal/mol, and the PMAE is given in parenthesis.
Information on the training and test data are given on the figures together with the overall
errors.

unseen solutes in Figure 5. Again, all solvents in the overlapping test data appear in the
training set of the DirectML model, and hence, the figure reflects the results on pairs of
unseen solutes and trained solvents. The DirectML model is trained using much fewer data
that contain only about 1500 solutes due to the limited availability of data on solvation
enthalpies. Nevertheless, the DirectML model achieves a similar accuracy as the SoluteML
model on a random split and outperforms the SoluteML model on the substructure split.

The MAE of each substructure used for the substructure splits is compared for the three mod-
els in Figure 6. The SMARTS strings and drawings of the substructures can be found in Sec-
tion 2.2 of the Supporting Information. The three models have errors of similar magnitudes
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Figure 5: Parity plots for experimental and predicted ∆Hsolv(298 K) on the 10 % test sets.
The plots only show the overlapping test data in each split type. The three different models
are tested on pairs of unseen solutes and trained solvents for the random and substructure
splits. The MAE and RMSE are in kcal/mol, and the PMAE is given in parenthesis. In-
formation on the training and test data are given on the figures together with the overall
errors.

for many substructures, but they have very different levels of accuracy for some substructures.
For example, for the ∆Gsolv(298 K) predictions, the solutes containing methanesulfonamide
functional group (SMARTS: NS(=O)(=O)C) are the main outliers of the SoluteGC and So-
luteML models whereas the solutes with cyclopentene scaffold (C1=CCCC1) give the highest
error for the DirectML model. The difference between the key outliers is more pronounced
for the ∆Hsolv(298 K) predictions; here, the SoluteML model has much higher MAE than the
other two models for the solutes containing adamantane scaffold (C1C2CC3CC1CC(C2)C3)
while it has much lower error for imidazole scaffold (c1c[n&H1]cn1), which is the main outlier
of the other two models.

In the random splits, the common outliers of the three models are cyclic or polycyclic so-
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Figure 6: The MAE of each substructure for the prediction of ∆Gsolv(298 K) and
∆Hsolv(298 K) in the substructure split. Only the overlapping test data of the three models
in each split type are compared in the plots. The number of solute data containing the
corresponding substructure in each test set is given in parenthesis in bold.

lute compounds such as guanabenz, galantamine, methotrexate, and colchicine for ∆Gsolv

predictions and salicylamide, pyrene, 1,4-diphenylbenzene, and benzo-15-crown-5 for ∆Hsolv

predictions. However, the majority of the main outliers are found to be different for each
model.

The solvent-wise errors of the three models are compared for the 30 most frequently appear-
ing solvents in each test set as shown in Figure 7. Note that the figure shows the results on
the unseen solutes in the trained solvents. For the majority of the solvents for ∆Gsolv(298 K)
prediction, the DirectML model performs similar to or better than the SoluteML model,
and the SoluteGC model gives the highest errors. In the random split set of ∆Gsolv(298 K),
the SoluteML model performs better than the DirectML model for non-polar solvents such
as alkanes, carbon tetrachloride (CCl4), isooctane, and p-xylene. However, the DirectML
model gives the best predictions for the same non-polar solvents in the substructure split
set. Similarly, the SoluteGC and SoluteML models have much higher errors for dimethyl-
formamide (DMF), ethyl acetate, and ethyl ether than the DirectML model in the random
split, but their performance is similar to the DirectML model in the substructure split for
the same solvents (with exception of the SoluteML model for DMF). No clear correlation
between the model performance and the types of solvents is found from the results as there
are no specific types of solvents that a certain model always underperforms or outperforms.
It is also noted that the three models have very similar error scales for most of the solvents.

Similar to the prediction of ∆Gsolv(298 K), the DirectML model performs better than the
other two models for the majority of the solvents in the prediction of ∆Hsolv(298 K) in
Figure 7. Some exceptions include hexadecane, ethanol, dichloromethane, and tert-butanol
for which the SoluteML model gives much lower errors than the DirectML model in the
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Figure 7: The MAE for the prediction of ∆Gsolv(298 K) and ∆Hsolv(298 K) on the 30 most
frequently appearing solvents in each test set. The performance of the different models
is compared only using the overlapping test data. The number of solvent data in each
test set is given in parenthesis in bold. All solvents are included in the training sets of
the DirectML models. (CCl4: carbon tetrachloride, DMF: dimethylformamide, o-NPOE:
2-nitrophenyl octyl ether, THF: tetrahydrofuran, NMP: N-methyl-2-pyrrolidone, DMSO:
dimethyl sulfoxide)
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random split, but the SoluteML and DirectML models have similar prediction accuracy for
the same solvents in the substructure split. The three models have different levels of accuracy
for many solvents for the ∆Hsolv(298 K) prediction in the substructure split compared to the
∆Gsolv(298 K) prediction.

Overall, the DirectML model outperforms the SoluteML model despite having fewer solute
data. The SoluteGC model gives the highest error but also contains the most useful informa-
tion that relates physical contributions to the solvation properties to chemical substructures
in the solutes. The underperformance of the SoluteML and the SoluteGC models are most
likely related to the approximation of using the linear relationships for the calculation of
energy-related solvation properties. For the SoluteGC model, an additional error comes
from limiting most of the groups to the nearest neighboring atom interaction. The graph
convolutional neural networks in the ML methods, on the other hand, allow the information
of each atom to propagate into further-distanced atoms within the molecule and hence can
include the non-nearest atom interaction.

Yet, as can be concluded from Figures 6 and 7, there is not one model that outperforms
the others on all substructures and all solvents. Based on the observation that the three
methods have different levels of accuracy for various solute substructures and solvents and
have different outliers, we expect that using the average predictions of the different models
may be able to give better predictions by suppressing the large errors from outliers. To test
this, we compare the average predictions of the SoluteML and DirectML models (2 model
average) and of the SoluteGC, SoluteML, and DirectML models (3 model average) with the
experimental data. The resulting parity plots and error summary are shown in Figure 8
and Table 5. The average predictions indeed lead to slight improvements for most test sets
compared to the single predictions from the DirectML model. More significant improvements
are observed for some of the main outliers of the DirectML model where the other models
had better performance.

In summary, even though the DirectML model performs better in general, the three models
can offer different levels of information on the predicted values, and, when combined together,
they can provide even more accurate predictions of ∆Gsolv(298 K) and ∆Hsolv(298 K). The
three models as a whole can be used to identify errors or outliers in any of the models.
However, users of these models should still be cautious even when using the average values
of the three models since it is possible that the particular solute-solvent pair of greatest
interest to a user would be one that is significantly mis-predicted by all three models. We
also caution that while the models work very well overall, this is not a guarantee that all
the model parameters have been well-determined. In particular for the SoluteGC model, as
is typical with large linear models, some linear combinations of group contribution values
may have not been very well determined or tested by our data set. Therefore, it would be
inadvisable to combine these group values with other group values determined some other
way, without validating the newly formed combined model on independent data.
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Figure 8: Parity plots between the experimental data and average predictions of the two
different models (SoluteML, DirectML) and the three different models (SoluteGC, So-
luteML, DirectML) on the overlapping test data. The parity plots are for ∆Gsolv(298 K)
and ∆Hsolv(298 K) predictions tested on pairs of unseen solutes and trained solvents for the
random and substructure splits. The MAE and RMSE are in kcal/mol, and the PMAE is
given in parenthesis. The number of test data are also given on the figures along with the
test errors. The plots only show the overlapping test data in each split type, and therefore
the test data are identical to those in Figures 4 and 5.

Table 5: Test set error summary of the SoluteGC, SoluteML, and DirectML models and the
average predictions of multiple models on unseen solute and trained solvent pairs. ”Avg.
2Models” represents the average predictions of the SoluteML and DirectML models, and
”Avg. 3Models” represents the average predictions of the SoluteGC, SoluteML, and Di-
rectML models. The MAE and RMSE are reported in kcal/mol. The lowest errors in each
test set are marked in bold. The table shows the results on the overlapping test data, and
therefore the test data are identical to those in Figures 4 and 5.

Model ∆Gsolv Random ∆Gsolv Substr. ∆Hsolv Random ∆Hsolv Substr.
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

SoluteGC 0.63 1.06 1.18 1.66 0.64 0.88 1.13 1.53
SoluteML 0.48 0.95 1.00 1.43 0.50 0.69 0.93 1.37
DirectML 0.41 0.75 0.91 1.32 0.47 0.71 0.73 1.07

Avg. 2Models 0.40 0.76 0.91 1.29 0.42 0.60 0.75 1.01
Avg. 3Models 0.42 0.77 0.91 1.31 0.44 0.61 0.73 0.94
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4.2.2 Performance on Unseen Solutes and Unseen Solvents

Figure 9: The MAE for the prediction of ∆Gsolv(298 K) and ∆Hsolv(298 K) on the solvents
excluded from the DirectML training and validation sets. The performance of the different
models is compared using only the overlapping test data. The number of solvent data in
the test set is given in parenthesis in bold. (DMF: dimethylformamide, NMP: N-methyl-2-
pyrrolidone, THF: tetrahydrofuran)

To test the predictive performance of the DirectML model on pairs of unseen solutes and
unseen solvents, 10 solvents and 8 solvents are excluded from the training and validation
sets of dGsolvDB3 and dHsolvDB, respectively. New DirectML models are trained and
validated on these reduced data sets, and their performance on the excluded solvents are
compared with the baseline DirectML models trained using all solvents. The SoluteGC and
SoluteML models from the earlier section are also compared to see whether the new DirectML
models can still outperform them on the unseen solvents. The results on the random and
substructure splits for ∆Gsolv(298 K) and ∆Hsolv(298 K) are presented in Figure 9.

For the majority of the out-of-sample solvents for ∆Gsolv(298 K) prediction, the DirectML
models trained on the reduced data set still outperform the SoluteGC and SoluteML models.
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Compared to the baseline case, the new DirectML model has on average a higher error
for the random split as expected, but achieves comparable or even better performance on
some solvents for the substructure split. Most likely, this is because the prediction error
of the substructure split is predominantly caused by the lack of solute substructures in the
training set rather than missing solvent information. Moreover, the training set still includes
solvents with similar structures to the excluded solvents. For example, even though decane is
excluded, the training set still contains a series of other alkanes. Hence, for the substructure
split, it is expected that the DirectML model still provides a similar performance even if
solvents are excluded from the training set.

Similar results are observed for the prediction of ∆Hsolv(298 K); the DirectML model has
higher errors than the baseline model for all out-of-sample solvents in the random split and
has similar or even lower errors for some solvents in the substructure split. Even though
the DirectML model for the prediction of ∆Hsolv(298 K) is trained using much fewer data
points (142 solvents when not including the solvents that are only present in self-solvation
data) compared to the ∆Gsolv(298 K) model trained on 303 solvents, the error increase for
the excluded solvents is on average similar to that of the ∆Gsolv(298 K) prediction.

Overall, the prediction error of the DirectML on out-of-sample solvents increases in the
random splits on average by 0.1 - 0.2 kcal/mol and by 0.4 - 0.5 kcal/mol at most. On
the contrary, a lack of solvent information does not affect the predictive performance of the
DirectML model much in the substructure splits where the error is primarily caused by a lack
of solute substructures in the training sets. The DirectML model can still provide better
or similar predictions for most of the out-of-sample solvents compared to the SoluteML
model, which uses empirical solvent parameters. However, caution should be made when
applying the DirectML model to a solvent with a foreign structure or characteristic that is
vastly different from the solvents in the training set as the error is usually much larger for a
compound with a unique substructure.

4.3 Comparison to Existing Methods

Finally, the prediction errors of our models on unseen solutes that are presented in Section
4.2 are summarized in Table 6. In the table, the prediction errors of our models are reported
using the entire 10 % test set data of each model while smaller common test sets were used
in the previous sections for model comparison. All DirectML models in the table are trained,
validated, and tested using the dGsolvDB3 data set for the solvation free energy prediction.

The prediction errors of the selected existing models from Section 3.3 are also included in
Table 6. Lim and Jung43 reported results on multiple split types for their MLSolvA model,
but only the results on solute clustering are included in the table as this is most similar to
the random and substructure-based solute splits used throughout our work. Similarly, for
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the transfer learning model by Vermeire and Green,44 the results on element-based solute
splits are used for comparison. To the best of our knowledge, there is no ML model that
can predict solvation enthalpies in a variety of solvents. One model reported by Jaquis
et al. 102 is used for comparison, but it only considers ethanol as a solvent. Note that the
size and the nature of the training and test sets used for each method varies, and therefore
the relative ranking of these methods could change when evaluated on different data sets.
The parity plots comparing the experimental data with the in-house calculations using the
existing methods, namely the COSMO-RS and the UFZ-LSER GC methods, are provided
in the Supporting Information Sections 4.3.1 and 4.3.2.

For both ∆Gsolv(298 K) and ∆Hsolv(298 K) predictions, our ML models achieve a similar or
even better accuracy than the QM methods on random split but have higher errors on the
substructure split. MLSolvA gives lower error than the DirectML and SoluteML models
for the solute substructure splits. Nevertheless, it is difficult to draw a solid conclusion
without knowing what substructures are found in MLSolvA’s solute clustering. The transfer
learning model by Vermeire and Green44 yields relatively low error for the element-based
solute splits, which are considered more challenging than the substructure-based splits. Their
transfer learning model, however, is pre-trained on 1 million quantum calculations while our
models are limited to the use of experimental data. For the solvation enthalpy prediction,
our models are more accurate than the ML model by Jaquis et al.,102 even though their
model is limited to ethanol as a solvent.

The performance of the SoluteGC model on random solute split is similar to or better than
that of the UFZ-LSER GC model evaluated on all solvation free energy and enthalpy data.
Nevertheless, the reported errors of the UFZ-LSER in Table 6 are not true test errors since
the training set of the UFZ-LSER is unknown. A considerable portion of its training set
solutes are expected to overlap with the test set solutes used in the work, and hence we are
unable to test the performance of the UFZ-LSER model on any solute splits.

Because of the paucity of experimental data, often all or nearly all data are used for training
with no or a very small independent test set as it is done for our final models. The resulting
final DirectML and SoluteGC models achieve very low training and testing errors similar
to the expected experimental error bars as it can be seen from Table S7 in the Supporting
Information. The final SoluteGC model has larger training errors, likely because the true
solvation energies are not exactly linear in the functional groups. All of our final models can
be accessed through various ways described in Section 6.
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Table 6: Comparison of various QM, ML, and GC methods for solvation energy and enthalpy
prediction at 298 K. The MAE and RMSE are in kcal/mol, and the number of each test set
data (Ntest) is presented. Our model results are written in bold. The results here for each of
our models use its own full test set. In the comparisons in the text, a smaller common test
set was used for all the models.

target method method test set split type MAE RMSE Ntest Ref.
type

∆Gsolv SMD/IEF-PCM/ QM - 0.63 0.86 2346 9 a

M05-2X/6-31G*
COSMO-RS/ QM - 0.46 0.77 14236 b

BP86/TZVPD-FINE
MLSolvA ML K-mean solute cluster CV 0.62 1.15 6239 43

using scaffold-based split
Transfer learning ML element-based solute split 0.52 0.91 4684 44

(O excluded)
Transfer learning ML element-based solute split 0.45 0.63 1124 44

(Cl excluded)
DirectML ML random solute 0.40 0.73 2138
DirectML ML substructure solute 0.89 1.32 2033
DirectML ML random solute 0.40 0.75 2138 c

(10 solvents excluded)
DirectML ML substructure solute 0.89 1.32 2033 c

(10 solvents excluded)
SoluteML ML random solute 0.48 0.95 2016
SoluteML ML substructure solute 1.01 1.45 1948
UFZ-LSER GC evaluated on 0.78 1.42 16878 e

all ∆Gsolv data d

SoluteGC GC random solute 0.63 1.06 2016
SoluteGC GC substructure solute 1.18 1.66 1947

∆Hsolv COSMO-RS/ QM - 0.69 1.06 6058 b

BP86/TZVPD-FINE
Jaquis et al. ML random solute - 1.58 35 102

(only solvent ethanol)
DirectML ML random solute 0.50 0.80 643
DirectML ML substructure solute 0.78 1.13 551
DirectML ML random solute 0.51 0.80 643 c

(8 solvents excluded)
DirectML ML substructure solute 0.78 1.12 551 c

(8 solvents excluded)
SoluteML ML random solute 0.50 0.69 506
SoluteML ML substructure solute 0.94 1.38 373
UFZ-LSER GC evaluated on 0.59 0.98 4099 e

all ∆Hsolv data d

SoluteGC GC random solute 0.64 0.88 506
SoluteGC GC substructure solute 1.13 1.53 373

a The original authors used IEF-PCM protocol implemented in Gaussian03 for the SMD calculations. The

errors were reported separately for neutral solutes in aqueous and non-aqueous solvents in the original paper,

and we calculated the errors for all solvents based on the reported errors and number of data points. b The

COSMO-RS calculations are performed in this work using COSMOtherm 103 and COSMObase.104 c These

refer to the DirectML models from Section 4.2.2 for which 10 and 8 solvents are excluded from the training
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and validation sets of dGsolvDB3 and dHsolvDB, respectively. d Note that these are not true test errors

since the training set of the UFZ-LSER is unknown and its training set solutes are expected overlap with

the test set solutes used in these error calculations. e The UFZ-LSER GC calculations are done in this work

through the UFZ-LSER database29 using in-house solvent parameters. The UFZ-LSER calculation is only

available for molecular weight less than 1000 g/mol, and therefore, a few solute compounds could not be

evaluated for ∆Gsolv predictions.

5 Conclusions

A group contribution method (SoluteGC) and a machine learning model (SoluteML) are
constructed for the Abraham solute parameter prediction that are used to estimate sol-
vation free energy and enthalpy via the LSERs. Additionally, a machine learning model
(DirectML) is developed for the direct prediction of the solvation free energy and enthalpy
for a given solvent-solute pair. The predictive performance of the three models is evaluated
on common test sets of the solvation free energy and enthalpy for out-of-sample solute com-
pounds prepared using a random and substructure-based split. The results show that the
DirectML model is superior to the SoluteGC and SoluteML models for both solvation energy
and enthalpy predictions on all data splits. The SoluteML model performs similarly with
the mean absolute errors (MAEs) around 0.1 kcal/mol higher than those of the DirectML.
The SoluteGC model underperforms with the MAEs about 0.2 - 0.3 kcal/mol higher than
those of the DirectML.

It is also found that adding logP data and a substantial amount of logKw data to the sol-
vation free energy data set improves the performance of the DirectML model mainly for the
substructure solute split. Although including these data introduces additional data uncer-
tainty and causes the solvent data to be biased toward water and 1-octanol, the information
gained from the additional data can compensate for these drawbacks and gives overall better
results.

The present models and some other recently developed models43,44 trained with large data
sets are all accurate enough that they give ∆Gsolv(298 K) predictions close to the aleatoric un-
certainties for random-split test data sets. Each model’s predictions for solutes and solvents
that are very different from those in its training data are less reliable, and hence an aver-
aging or consensus-of-models approach is recommended. Here we provide a convenient set
of 3 rather different models for ∆Gsolv(298 K) and also provide 3 models for ∆Hsolv(298 K).
Together these models provide good inputs for predicting the solvation thermodynamics of a
very large range of solutes and solvents at temperatures up to each solvent’s critical point.5

Finally, we present our compiled solute parameter (SoluteDB), solvation free energy (dG-
solvDBx ), and solvation enthalpy (dHsolvDB) databases and provide public access to our
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final prediction models through a simple web-based tool, software package, and GitHub.
A web-based tool is designed for quick calculations and others are more suited for bulk,
automated calculations.

6 Data and Software Availability

The in-house Abraham solute parameter database (SoluteDB) along with the in-house logKw

and logPow data are provided as a part of the Supplementary Information. The publicly
available ∆Gsolv(298 K) and ∆Hsolv(298 K) data are also provided in the Supplementary
Information. This excludes the ∆Gsolv(298 K) data from the Minnesota solvation database,
which is not open-source. For each entry of a solute-solvent pair, the list of all individual
data points, mean value, and standard deviation are tabulated in our databases. Although
we limit our work to the solute compounds containing H, C, N, O, S, P, F, Cl, Br, or I atoms,
the open-source solute parameter, ∆Gsolv(298 K), and ∆Hsolv(298 K) data that contain the
elements out of our scope are also provided as Supplementary Information.

The final SoluteGC, SoluteML, and DirectML models that are constructed using all data are
made publicly available through GitHub, conda software package, and web-based search tool.
The web-based tool is available on https://rmg.mit.edu/database/solvation/search/

and is the simplest way to search for solute parameters, solvation free energies, and solvation
enthalpies. Temperature-dependent ∆Gsolv calculation based on our earlier work5 is also
available through the web-based tool for the solvents whose temperature-dependent densi-
ties can be computed by a free fluid modeling software CoolProp.108 For bulk queries, one
can download the source code using GitHub or install a conda package. The SoluteGC model
can be accessed by installing the source code from RMG-Py and RMG-database git reposi-
tories (https://github.com/ReactionMechanismGenerator) with a sample code located at
https://github.com/ReactionMechanismGenerator/RMG-Py/blob/master/ipython/estimate_

solvation_thermo_and_search_available_solvents.ipynb. The SoluteML and DirectML
models can be downloaded as a conda package from https://anaconda.org/fhvermei/

chemprop_solvation. The source code for the ML models can be found from chemprop solvation
git repository (https://github.com/fhvermei/chemprop_solvation).
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