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Organic molecular fluorophores in the second near-infrared window (NIR-II) have attracted 

much attention in the recent decade due to their great potentials in both fundamental research 

and practical applications. This is especially true for biomedical research, owing to their deep 

light penetration depth and low bioluminescence background at the long wavelength. However, 

the fluorescence quantum yields (QY) of most NIR-II materials are very low, which are not 

ideal for practical applications. Although there is a growing need to discover new NIR-II 

fluorophores, most of them were designed based on experience, and the structures were limited 

to few molecular motifs. Herein, we report the design of high QY NIR-II fluorophores in 

solutions based on enhancing the rigidity of the conjugated backbones, which could be 

quantified by the Seminario method. A deep neural network was trained to predict the HOMO-
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LUMO energy gaps for a chemical library of NIR-II backbone structures. Hundreds of new 

NIR-II cores with low Eg were discovered, and eight of them across different acceptor cores 

are found to have relatively rigid conjugated backbones. With further molecular processing or 

formulation, the proposed new fluorophores should boost the development of NIR-II materials 

for applications in a wide range of fields.   
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1. Introduction 

Organic molecular fluorophores in the second near-infrared window (NIR-II, 1000−1700 

nm) have attracted much attention in fundamental research and biomedical applications.[1-4] 

Because of their low molecular mass, superior biocompatibility, and flexible molecular design, 

NIR-II organic dyes are more promising for biological applications than inorganic contrast 

agents.[5-8] In both research and clinical applications, NIR-II fluorescence imaging provides a 

spectacular imaging modality for disease diagnosis and image-guided surgery.[2,9-11] 

Fluorescence imaging does not require or emit hazardous radiations, unlike clinical modalities 

such as positron emission tomography, computed tomography, and single-photon emission 

computed tomography. However, due to the high absorption, scattering, and autofluorescence 

of biological tissues, the primary bottleneck in the development of fluorescent imaging lies in 

the shallow tissue penetration depth and poor signal-to-background ratio.[12-17] In the recent 

decade, fluorescence imaging in the NIR-II region has shown great potentials owing to its 

higher resolution at larger penetration depth (ca. 5−20 mm) in biological tissues as compared 

to that of light in the visible (400−700 nm) and first near-infrared (NIR-I, 700−900 nm) 

regions.[15, 18-23]  

Fluorophores with NIR-II emission are under intense research interest because they are 

imperative for NIR-II imaging. Recent review papers have summarized the rational design,[24-

26] HOMO/LUMO engineering, and strategies to modify NIR-II molecules with high brightness 

in different environments,[27-29] such as aqueous media and aggregate state. These molecules 

are generally limited to the benzo[1,2-c:4,5-c′]bis[1,2,5]thiadiazole (BBTD) core,[9, 24, 30-32] 

polymethine skeleton[27, 33-37] and few examples have been developed based on BODIPY,[38, 39] 
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squaraine,[40] as well as rhodamine.[41] It is difficult to design high-performance NIR-II 

fluorophores due to high vibronic coupling caused nonradiative decay between S1 and S0 states. 

Moreover, multiple factors, such as resonant energy transfer, - interactions, conjugated chain 

length, chain length alternations, have been reported to affect the performance of NIR-II 

fluorophores.[5, 36, 42] These factors further increase the difficulty in designing high-

performance NIR-II molecules. It is critical if one could prioritize multiple factors in the design 

of NIR-II fluorophores and more precisely quantify them, and in turn, offer a clear design 

strategy towards many new NIR-II fluorophores. Detailed literature review reveals that 

shielding of excited center and reduction of - interaction could help boost NIR emission. [26, 

36, 42] 

To facilitate the design of NIR-II fluorophores, we summarized the current strategies and 

proposed rigidity of conjugated backbones as one important parameter for yielding high-

performance NIR-II fluorophores. Owing to the strict HOMO-LUMO energy gap (Eg) 

requirement, NIR-II molecular fluorophores are mainly focused on two types of architectures, 

namely, donor–-acceptor-–donor (DAD) fluorophores and D+D (heterocyclic D+ with 

positive charge serving as the acceptor). The design of new fluorophores is therefore reliant on 

D/A/ engineering. We chose to focus on rigidity engineering and further propose to quantify 

the molecular rigidity by using Seminario and Compliance methods. All the QYs (f) of 

selected molecules in the monomolecular state (solvent) show good agreement with the rigidity 

calculations. 

To design new NIR-II fluorophores with high rigidity, we also trained a deep neural 

network capable of predicting Eg using a molecular graph convolutional neural network. We 
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performed predictions on a chemical library made up of NIR-II backbone structures in DA and 

DAD arrangements. As a result of accurate prediction and accelerated screening, hundreds of 

new NIR-II cores with low Eg are discovered. Of which, eight of them are quantified to have 

relatively rigid conjugated backbones. To ensure the performance of the newly designed NIR-

II fluorophores in practical applications, strategies to prevent the two primary quenching effects, 

excited center-polar media (e.g. water) interaction and - interaction are also summarized. 

With further molecular processing or formulation, all the proposed new fluorophores should 

boost the development of NIR-II materials in a wide range of fields.   

 

2. Results and Discussion 

2.1. Molecular Design of NIR-II Fluorophore 

The difficulty in designing NIR-II molecules with high f lies in their very high non-

radiative decay which can be attributed to the strong vibronic coupling between S0 and S1 states, 

although other factors may also play a role. With a small energy gap between S0 and S1, the 

low vibronic state of S1 can decay to the high vibronic state of S0 efficiently via vibrational 

relaxation. The longer the absorption wavelength for a molecule, the higher the chance for the 

molecule to show low f. One solution to resolve the conflict between the low S0-S1 energy 

gap and high f is to restrict the vibrational relaxation from S1 to S0, which can be realized 

through the engineering of molecular rigidity. As the vibrational energy relaxation of the NIR-

II molecule in its excited state is dependent on a vibronic coupling process, increasing 

molecular rigidity, especially the rigidity of the core structure, could effectively deviate the 

intramolecular motion of S1 and thereby increase the f of the molecule (Figure 1a). In addition, 
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to achieve efficient S1-S0 transition, the configuration of S1 should preferably be π-π* instead 

of n-π* as the latter is spatially forbidden.  

The next question is how to quantify the molecular rigidity of NIR-II fluorophores. Since 

most NIR-II fluorophores are composed of conjugated backbones formed by donor, acceptor, 

and π-bridge, the rigidity of any molecule can be evaluated by calculating the rigidity of both 

rings involved and the conjugated backbone structures. The rigidity of a ring can be represented 

by the amount of bond stretching of all the bonds involved and this can be quantified with 

average relaxed force constants (𝑆̅, Figure 1c). Herein, the Compliance method [46, 47] is used 

to derive individual relaxed force constants (𝑆) for bond stretching between 2 adjacent atoms. 

Compliance constants are elements of an inverted Hessian matrix and the relaxed force 

constants can be obtained by taking the reciprocals of the compliance constants [47, 48]. On the 

other hand, the rigidity of a conjugated backbone can be represented by the average dihedral 

angle force constant (𝑇̅) to quantify the amount of bond torsion or rotation (Figure 1c). The 

Seminario method allows the derivation of force constants through diagonalization of the 

partial Hessian matrix [49], and herein, only the individual dihedral angle force constants (𝑇) 

are of focus. For both Seminario and Compliance methods to work, a structure’s Hessian matrix 

(Cartesian 2nd order partial derivatives of a molecule’s energy function with respect to its 

geometric coordinates [46]) is imperative. With density functional theory (DFT), the Hessian 

matrix can be computed with vibrational frequency calculations on a geometry optimized 

structure. Both geometry optimization and vibrational frequency calculations were completed 

with the same method (B3LYP hybrid functional and 6-31g(d) basis set) in this work. It is 
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important to note that each group of the examples selected in this study has similar backbone 

structures so that the contributions of other factors that influence f could be normalized to 

highlight the importance of molecular rigidity in designing high-performance NIR-II 

fluorophores. 
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Figure 1. Molecular rigidity for the design of high-performance NIR-II fluorophores. a) 

Schematic illustration of the importance of molecular rigidity on the design of high-

performance NIR-II fluorophores. b) Schematic illustration on how relaxed force constant (𝑆) 

for bond stretching and dihedral angle force constant (𝑇) for bond torsion are related to the 

individual atoms and are derivable from the Hessian matrix; u refers to bond vector; RAB and 

RCB are the two bond lengths; θ is equilibrium bond angle. c) Rigidity quantification for 

conjugated backbone and acceptor/donor rings with average dihedral angle force constants (𝑇̅) 

and average relaxed force constants (𝑆̅), respectively. d) Molecular engineering strategies for 

the modification of NIR-II fluorophores in a high-polarity environment and aggregate state.  

Several factors could cause the quenching of excited fluorophores such as π-π interaction 

in aggregate state and excited state center-water interaction in an aqueous medium[42]. For 

instance, owing to the high-energy vibrational band of -OH in the NIR region, a resonant 

energy transfer process with water molecules will dominate the excited-state decay of NIR-II 

fluorophores. This explains why many NIR-II fluorophores show severe quenching effects in 

aqueous media. To alleviate the excited center-water interaction, a shielding unit, particularly 

an alkyl or alkoxy chain that surrounds the backbone, could isolate the excited state NIR-II 

backbone from surrounding water molecules and thus favours fluorescence emission. The 

effectiveness of the shielding unit is affected by its position, size, and orientation (Figure 1d).  

When NIR-II molecules are formulated into nanoparticles, they tend to form face-to-face 

π-π stacking and result in intermolecular interaction to cause exciton quenching.[26] To address 

this issue, one way is to design the backbone structure with certain distortion, which can reduce 

the face-to-face - interaction. The other way to prevent closed  stacking is to introduce 

bulky groups or aggregation-induced emission (AIE) molecules around the emission center, 

which could yield high steric hindrance around the backbone to effectively prevent close 

molecular packing. Nonetheless, fine-tuning the molecular structure for optimized 
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performance requires the fundamental design of backbones that fall within the NIR-II region 

with good potentials to be a high-performance fluorophore. 

 

2.2. Molecular Strategies towards Rigid NIR-II Conjugated Backbone 

2.2.1. π-Bridge Engineering on DπAπD NIR-II Fluorophore 

Compounds 1, 2, and 3 represent DπAπD NIR-II fluorophores with different π bridges 

(Figure 2). According to dihedral force constant calculation on the two rotatable single bonds 

along the conjugated backbone, compounds 2 and 3 with 3,4-propylenedioxy thiophene (PDOT) 

ring show relatively higher torsional forces, leading to more rigid conjugated backbones as 

compared to 1. In compound 3, the additional alkyl chains cause the increase of dihedral force 

constants along all rotatable single bonds compared. As a result, 3 has the highest f of 39% 

while 1 has the lowest f (19%).[43, 44] These results reveal the importance of the dihedral force 

constant (𝑇̅) and rigidity of conjugated backbone in the design of high-performance DπAπD 

NIR-II molecules. 
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Figure 2. π-Bridge engineering on DπAπD NIR-II fluorophores. a) Molecular structures and 

b) optimized structures of compounds 1-3. c) Force constants and photophysical properties[43, 

44] of 1-3. HiPCO SWCNTs: pressure carbon monoxide conversion single-walled carbon 

nanotubes. 

With an additional thiophene on the conjugated backbone, compound 4 (Figure 3) shows 

a weaker dihedral force constant as compared with 1. Compared with 5 and 6, compound 4 has 

the lowest value of 𝑇̅, and it also has the lowest f of 12%.[43, 44] Compounds 5 and 6 show 

relatively higher dihedral force constant by introducing alkoxyl chain and alkyl chain to the 

thiophene rings. As a result, the dihedral angle force constants between acceptor and π bridge 

reach 51.53 and 55.56 kcal·mol-1·rad-2 for 5 and 6, respectively, which are much higher than 
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that of compound 4 (43.62 kcal·mol-1·rad-2). Such a result reveals the effectiveness of π bridge 

engineering on increasing molecular rigidity and improving fluorescence efficiency.  

 

Figure 3. -Bridge engineering on DπAπD NIR-II fluorophores. a) Molecular structures and 

b) optimized structures of compounds 4-6. c) Force constant and photophysical properties[43, 

44] of 4-6. 

2.2.2  -Bridge Engineering on DπA NIR-II Fluorophore 

Conjugated double bonds are the most widely used π bridge in the design of DπA NIR 

fluorophores. For compounds 7–9, they have the same electron donor and acceptor on both 

sides of double bonds. The average dihedral angle force constants of the bonds, 𝑇̅, decrease 

(Figure 4) with the increase in the number of conjugated double bonds. When n = 3, 𝑇̅ for the 

central double bond (C37-C38) is as small as 27.89 kcal·mol-1·rad-2. 𝑇̅ values for compounds 
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7-9 are 51.5, 44.7, and 41.1 kcal·mol-1·rad-2, respectively. Clearly, the decrease of f from 1.3% 

to 0.33% agrees well with the decrease in backbone rigidity for 7-9.[45] In general, the extension 

of conjugation by increasing the number of conjugated double bonds decreases both the 

HOMO-LUMO energy gap and molecular rigidity.  

 

Figure 4. π-Bridge engineering on DπA NIR-II fluorophores. a) Optimized structures and b) 

molecular structures of compounds 7–9. c) Force constant and photophysical properties[45] of 

7–9. DCM: dichloromethane.  

2.2.3 Donor Engineering on D+πD NIR-II Fluorophore 

Compounds 10-11 belong to the D+πD type of NIR-II molecules with different D+ (Figure 

5). The primary difference between compounds 10 and 11 is the size of the ring conjugated 

with π bridges. These rings are constructed with the double π bridge to form the conjugated 

backbone. As such, we analyzed the rigidity of the conjugated backbone by calculating the 

dihedral angle force constant between D+ and D. Compound 10 shows relatively higher rigidity 

of backbone as compared with 11, indicating that cyclopentane forms a more rigid conjugated 

double bond structure than cyclohexane. Since cyclopentane and cyclohexane rings are the 

main component of acceptor for compounds 10 and 11, the ring rigidity was further analyzed 
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by calculating the relaxed force constants of the involved bonds. The average relaxed force 

constants (𝑆̅) of compounds 10 and 11 are 4.52 and 4.51 mdyn·Å-1, respectively (Figure 5b). 

Considering that sulfur atom could lead to heavy-atom caused fluorescence quenching, the 

much higher f [36] of 10 as compared to 11 can be attributed to its higher backbone rigidity.  

 

Figure 5. Donor engineering on D+πD NIR-II fluorophores. a) Molecular structures and b) 

optimized structures of compounds 10-11. c) Force constant and photophysical properties [36] 

of 10-11. Average bond stretching force constant (𝑆̅). DCE: 1,2-dichloroethane. 

 

2.3. Design of NIR-II Conjugated Backbone by Virtual Screening 

Based on the understanding of the structure-property relationship between NIR-II 

conjugated backbone and fluorescence efficiency, virtual screening of NIR-II cores with DA 

and DAD structures based on HOMO-LUMO energy gap (Eg) was conducted using a deep 



 

14 
 

neural network based active learning strategy [57] to expedite the search of low energy gap 

structures. 

Firstly, based on a molecular space generation approach [57], the full chemical library of 

11,745 structures (6,210 DA and 5,535 DAD) was generated through iterative combinations of 

a list of starting backbone components. A total of 9 donors, 46 acceptors, and 15 bridges (14 π 

and 1 single bond) were selected either from literature or proposed as new components for 

NIR-II molecular backbones (the full list is available in Figures S1-S3). A DA (or DπA) 

structure was formed by combining a donor with an acceptor molecule, with either a single 

bond or a π bridge in between, at designated respective atomic positions. A DAD (or DπAπD) 

structure was formed similarly but with two identical donor and bridge components bonded to 

two atomic positions of a central acceptor. The combination algorithm adopted the RDKIT [54] 

python package for conversions from simplified molecular-input line-entry systems (SMILES) 

to molecular structures and bond connections between component structures.  

Next, to learn the structure-property relationship between the NIR-II molecular backbone 

and its HOMO-LUMO energy gap (Eg), a deep neural network was trained to predict Eg. Herein, 

a molecular graph convolutional neural network [51] was used for the prediction of Eg with a 

molecular structure as an input. In our dataset, SMILES was used to represent the input 

molecular structures and the Eg label values for all structures were computed with structural 

optimizations via quantum calculations based on DFT. A preliminary model was first trained 

on an initial dataset of 673 structures that were randomly selected from the full chemical library. 

To accelerate the search of promising NIR-II cores with low Eg from the whole molecular 

search space, a Bayesian optimization-based active learning [52] strategy adapted from our 
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previous work [57] was used herein. In each active learning cycle, a small subset of 20 new 

structures with the highest expected improvement score, based on a tradeoff between 

exploitation and exploration of the search space, was suggested for labeling by DFT before 

they were added to the current training set for the next cycle (Figure 6). This strategy allowed 

the model to improve its accuracy in the target region of the entire search space, specifically 

structures with low Eg, while requiring fewer structures to be labeled [52, 57]. 

 

 

Figure 6. Schematic overview of virtual screening of molecular space guided by active 

learning with a molecular graph convolutional neural network used for prediction of energy 

gaps. The evaluation of recommended candidates is based on force constants (𝑇̅ and 𝑆̅) and 

natural transition orbitals (NTO) computations. 

After the completion of 5 active learning cycles, a total of 773 NIR-II fluorophore cores 

were labeled with their Eg values. A fixed test set of 135 structures (making up 20% of the 

initial random dataset) was used to evaluate the final model prediction accuracy with mean 

absolute error (MAE) by fitting the model on the training dataset (638 structures) over 200 

epochs (Figure 7a-b). With 5 repetitions of training and evaluation, an average MAE of 0.1315 

eV for the final model was obtained. This accuracy was comparable with many DFT methods 

that have MAE of approximately 0.1 eV for the same type of energy gap predictions for organic 
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molecules. With the use of the trained deep learning model, the predictions could be accelerated 

to seconds compared to up to a few hours for a DFT calculation of the same molecule, thus 

allowing a high-throughput screening of a large molecular space.  

After 5 cycles of active learning have been completed, the final model trained on all labeled 

datasets (i.e. 773 molecules) was used to predict the Eg values for the remaining unlabeled 

molecular space. A total of 403 structures were predicted to meet the low energy gap criteria 

of < 1.25 eV. To suggest NIR-II fluorophores with a variety of acceptors, 24 structures (8 sets 

of 3 structures, with each set consisting of structures with the same acceptor) were selected for 

comparisons, and their 𝑇̅ and Eg values were calculated with DFT. In each set, the structure 

with the highest calculated rigidity (quantified by 𝑇̅) of the conjugated backbone was finally 

recommended. A range of structures is well-represented across different absorption 

wavelengths and rigidity (Figure 7c) and the 8 new cores with high rigidity across different 

acceptors are presented (Figure 7d, details for each set in Figures S4-S11). With a high rigidity 

of conjugated backbone, these 8 new cores can be potentially used to form NIR-II molecules 

with high f. Among the 8 of them, 4 cores, namely NDAD_4731, NDA_3155, NDAD_2873, 

and NDAD_4204, are already in the NIR-II absorption region (Figure 7c-d). 
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Figure 7. Virtual screening to discover new NIR-II fluorophores with both low Eg and rigid 

conjugated backbones with the help of a deep neural network and active learning. a) 

Performance of a final Eg prediction model that was fitted on a training set (638 structures) for 

200 epochs and b) Eg predictions on the fixed test set (135 structures) made by the same model 

compared against DFT calculated values. c) Distribution of average 𝑇̅ and Eg for the selected 

24 NIR-II fluorophore cores predicted by the final model (𝑇̅ and Eg values here were calculated 

with DFT). d) NIR-II fluorophore cores identified with low predicted Eg (in eV), high oscillator 

strength (f) for high extinction coefficient, and high rigidity of conjugated backbone quantified 

by 𝑇̅ (in (kcal/mol)/rad2). 

 

 



 

18 
 

2.4. NIR-II Fluorophore Modification  

2.4.1. Mitigate Water-Caused Quenching 

For biomedical applications, either the fluorophores are encapsulated into polymer 

matrices to form nanoparticles, or they are modified to be dispersible in aqueous environment. 

In both cases, finetuning the structures of NIR-II fluorophores is necessary for optimized 

optical performance. To effectively reduce the excited NIR-II fluorophore-water interaction, 

three strategies have been used to improve the hydrophobicity around the excited center. Firstly, 

the hydrophobicity around the center can be enhanced significantly by  bridge engineering in 

3D size/space. Compounds 12-15 were designed with increasing size of  bridge (Table 1). 

The radial distribution function (RDF) of oxygen atoms in water molecules and the counted 

number of water molecules versus the radius showed that 15 exhibited the smallest RDF value 

in three compounds; therefore, there were the least amount of water molecules around the 

BBTD center of 15.[43, 44] The increasing hydrophobicity revealed by RDF from 13 to 15 can 

be attributed to the enhanced protection against water molecules from the increasing 3D size 

of  bridge and the alkyl chains.  
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Table 1. a) Molecular skeleton for compounds 12-20. Properties of b) compounds 12-15 [43, 44] 

and c) 13, 16-20 under different conditions. 

  

Secondly, the hydrophobicity around the center will be affected by the orientation of the 

shielding chain. As compared with 13, 17, and 19, 16, 18, and 20 possess additional thiophene 

rings within the  bridge, which could increase the torsion between the acceptor and the 

shielding units on the donor. As shown in Table 1c, the additional thiophene ring increases the 

sum of dihedral angles by 11-12 degrees for compounds 16, 18, and 20. As a result, 16, 18, and 

20 show higher hydrophobicity around the center with RDF values at 8 angstroms of 0.65, 0.63, 

and 0.60, respectively, as compared with 13, 17, and 19. A reasonable explanation is that the 
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alkoxy chain on the donor provides a better shielding effect when there is less torsion between 

donor and acceptor.  

Thirdly, the shielding effect will also be affected by the length/size of shielding units. 

Compounds 21-23 were designed with shielding units of different chain lengths (Table S2). 

From the simulation, the RDF values for oxygen atoms in water at 8 angstroms are 0.46, 0.38, 

and 0.29 for 21, 22, and 23, respectively (Table S2). The increasing hydrophobicity around the 

center from 21 to 23 can be attributed to the enhanced protection toward water molecules from 

the increasing size of  bridge around the center. Overall, hydrophobicity around the center 

plays a very important role in determining the fluorescence f of compounds 22-23 in aqueous 

media, [58] suggesting that the described strategies could be useful in further modification of 

screened rigid NIR-II fluorophores.  

2.4.2. Prevention of - interaction-caused quenching 

Nanoparticle formation, on the other hand, could cause NIR-II fluorophores to face 

fluorescence quenching due to - interaction in aggregate state. Backbone distortion could 

alleviate - interaction caused quenching in solids. As shown in Figure S14, the dihedral 

angles between the  bridge and benzo[1,2-c:4,5-c’]bis[1,2,5]thiadiazole (BBTD) unit/ bridge 

of 24 at S0 state were calculated to be 45/26°, smaller than 56/27° of 25, indicating that 

compound 24 exhibits smaller backbone distortion than 25. As a result, compound 25 shows 

higher f as compared with 24 in aggregate state. Dihedral angles between the  bridge and 

acceptor unit/donor unit of 26 are 55/25°, smaller than that of 25, but larger than that of 24, 
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resulting in a mediocre f of 9.1%.[59] These results suggest that certain backbone distortion 

favors the fluorescence efficiency of NIR-II fluorophores in nanoparticles. 

 

3. Conclusion 

We demonstrate that a high-rigidity conjugated backbone plays an important role in the 

development of new NIR-II fluorophores with high f. Both Seminario and Compliance 

methods have been used to successfully quantify the rigidity by calculating the average dihedral 

angle force constants and average relaxed force constants, respectively. Molecular strategies 

towards the design of rigid conjugated backbone are demonstrated with concrete examples. 

Based on the good understanding of the structure-property relationship between NIR-II 

conjugated backbone and fluorescence efficiency, a virtual screening system based on a deep 

neural network was designed and applied in the design of new NIR-II conjugated backbones. 

Hundreds of new NIR-II cores with low Eg are discovered, and eight of them have relatively 

rigid conjugated backbones with the highest 𝑇̅ among the same series. The proposed strategies 

toward prevention of the two primary quenching effects, excited center-water interaction and 

- interaction in a different environment, will further raise the usefulness of the screened new 

fluorophores across a range of applications.   
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4. Methods 

Quantum Mechanics Calculations: Density functional theory (DFT) calculations were 

performed with B3LYP hybrid functional and a 6-31g(d) basis set. Geometry optimizations 

and vibrational frequency calculations were performed for all structures with the same method. 

To build up the training dataset for the energy gap prediction task, geometry optimizations are 

done with B3LYP hybrid functional and a 6-31g(d) basis set. For the calculation of oscillator 

strength, excited-state characteristics were calculated by time-dependent density functional 

theory (TD-DFT) using the optimized ground state geometries based on the B3LYP functional 

and 6-31g(d) basis set. All calculations are completed with Gaussian16 (Revision A.03) 

software [53].  

Force Constants Calculation: The Hessian matrix is central to both the Seminario and 

Compliance methods and it can be read from Gaussian output files (specifically fchk and log 

files) after geometry optimization and vibrational frequency calculations are completed for a 

given structure at the same level of theory (in this case, B3LYP/6-31g(d)). The Seminario 

method was used to calculate dihedral angle force constants. For a given dihedral angle along 

4 atoms, CartHess2FC.py code from AmberTools17 [50] was used to calculate the dihedral angle 

force constant by reading the Hessian matrix from a Gaussian formatted checkpoint file (.fchk 

file). The Compliance method is used to compute each relaxed force constant for the bond 

stretching between two atoms. Compliance 3.0.2 software [46, 47] is a graphical interface used to 

compute the Compliance constants for every bond of interest, and in this case, the bonds in an 

acceptor ring. With the software, the Compliance constants are the diagonal values of the 
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Compliance matrix. Each relaxed force constant was calculated by taking a reciprocal of the 

respective Compliance constant before an average value is obtained for comparison across 

molecules.  

Machine Learning: To construct the chemical library of DA and DAD structures, a 

molecular space generation algorithm [57] was used. The python script adopted the RDKIT 

python package [54] for SMILES conversion and molecular bonding operations. OpenBabel 

3.1.1 [55] software was used for the conversion of molecular structures from SMILES to 

Gaussian input files (in .gjf). The deep learning model made use of a graph convolutional neural 

network implemented using the DeepChem [56] python package. The model’s hyperparameters 

(Table S1) were used consistently for the initial model, all models throughout the active 

learning cycles, and the final prediction model. For the evaluation of model performance (by 

mean absolute error) on the prediction of the energy gap, a train-test dataset split (80% and 

20%, respectively) was done on the initial dataset (673 structures) and a fixed test set of 135 

structures was used for evaluation. The active learning framework used herein was adapted 

based on our previous work [57]. In each active learning cycle, the model was trained for 200 

epochs on all the labeled dataset (molecular structures and their energy gap values calculated 

by DFT) so far (i.e. the initial model was trained on 673 structures while the subsequent model 

after cycle 1 was trained on 693 structures with the increment of 20 new structures 

recommended by the first cycle of active learning). In each cycle of active learning, the 

currently trained model predicted structures in the remaining unlabeled molecular space. An 

expected improvement (EI) value was calculated based on the mean values of the predicted 
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energy gap and the uncertainty of the prediction for each structure. The uncertainty prediction 

was conducted using the DeepChem package [56]. In each cycle, the top 20 structures with the 

highest EI values were selected, calculated with DFT, and added to the training set for the next 

active learning cycle. This process was repeated 5 times and a final model was obtained. The 

final model was then trained on a total labeled dataset of 773 structures before being used to 

predict the energy gaps of the remaining unlabeled molecular space of 10,972 structures. The 

final trained model files are available at https://github.com/cpfpengfei/NIRII-ML-Design. 

 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the author. 
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Figure S1. List of acceptors used in molecular space generation. 
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Figure S2. List of donors used in molecular space generation. 

 

 

Figure S3. List of π bridges used in molecular space generation. 
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Table S1. Model hyperparameters used for Graph Convolutional Neural Network 

Graph convolution layers [512, 512, 512, 512] 

Dense layers [128, 128, 128] 

Learning rate 0.001 

Dropout 0.01 

Batch size 10 

Epochs 200 

 

 

Figure S4. Selected structures set 1 and their corresponding dihedral angle force constants 

and energy gaps. 
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Figure S5. Selected structures set 2 and their corresponding dihedral angle force constants and 

energy gaps. 
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Figure S6. Selected structures set 3 and their corresponding dihedral angle force constants and 

energy gaps. 
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Figure S7. Selected structures set 4 and their corresponding dihedral angle force constants and 

energy gaps. 
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Figure S8. Selected structures set 5 and their corresponding dihedral angle force constants and 

energy gaps. 
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Figure S9. Selected structures set 6 and their corresponding dihedral angle force constants and 

energy gaps. 
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Figure S10. Selected structures set 7 and their corresponding dihedral angle force constants 

and energy gaps. 
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Figure S11. Selected structures set 8 and their corresponding dihedral angle force constants 

and energy gaps. 
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Figure S12. NTO distribution of S1 of recommended structures. 
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Figure S13. Optimized structures of compounds 13, 16, 17, 19, 20, and 21. 

 

Table S2. Hydrophobicity of compounds 21-23.[S1]
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Figure S14. Increasing backbone distortion in aggregate state. a) Molecular structures and b) 

optimized structures of compounds 24–26. c) Photophysical properties of 24–26 [S2]. 
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