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A B S T R A C T

The inherited insulating behavior of hexagonal boron nitride (h-BN) monolayer restricts its applica-
tion in several optoelectronic devices, so finding a technique to reduce the bandgap allows it to possess
the semiconducting functionality. Here, an experimentally feasible fluorinated hexagonal boron
nitride (FBNF), a structurally, dynamically, and mechanically stable monolayer is reported by using
density functional theory calculations. The significant geometrical transformation from planer h-BN
to buckled FBNF softens the structure by retaining the mechanical isotropy and structural symmetry.
Remarkably, the induced direct bandgap semiconducting behavior after fluorination enhances the
optical absorbance and reflectivity, reduces energy loss, creates strong optical anisotropy, and makes
FBNF monolayer a proper material in the optoelectronic and nanomechanical applications.

1. Introduction
The finding of reducing the dimension from three-

dimensional (3D) graphite to two-dimensional (2D)[1]
grap- hene suggests the further possibilities of low-dimensional
materials. Since then, several 2D materials like h-BN[2, 3,
4], SiC[5], phosphorene[6], transitional metal dichalcogenides[7,
8], MXenes[9] have been studied theoretically and ex-
perimentally. The 2D ultra-thin hexagonal boron nitride
(h-BN) monolayer is getting great attention due to it’s
intriguing physical and chemical properties [10, 2, 3]. It
has been successfully synthesized by several experimental
techniques such as the ball milling method[11], high-
energy electron radiation[12], chemical-solution-derived
method[13], sonication centrifugation method[14], molecu-
lar beam epitaxy method[15]. It is a low-cost, highly active,
and stable catalyst[16]. It shows excellent bio-mechanism,
useful in scanning probe microscopes in nano-medical
field[17]. It possesses excellent mechanical rigidity [18],
and the second-highest thermal conductivity among all 2D
semiconductors and insulators [19].

Unfortunately, the electronic bandgap of the h-BN is
too large (natural insulator) that lacks the semiconduct-
ing functionality. Therefore, most of the h-BN materi-
als are used as insulating materials[20][21] and restricts
its application in several optoelectronic devices. Various
approaches such as doping, vacancy defects, absorption,
strain, external electric field, and chemical passivation in
the pristine 2D structure [22][23][23][24]have been im-
plemented to settle this problem. However, applying an
external electric field or strain would considerably make
the device configuration complicated[25]. Meanwhile, sev-
eral experimental and theoretical works show that chemi-
cal passivation is one of the best approaches to tune the
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structural, electronic, and optical properties of the com-
pound. For instance, the first-principles calculations demon-
strate that fluorination is a practical route to induce half-
metallicity in zigzag boron nitride nanoribbon[26]. Simi-
larly, the passivation of hydrogen and fluorine on the h-BN
monolayer changes the electronic and magnetic properties
drastically[27]. The structural and electronic properties of
graphene supported on FBNF monolayer substrate modifies
the electronic properties of graphene supporting the fabrica-
tion of high-performance graphene-based nanodevices[28].
Additionally, the controlled adsorption of fluorine atoms
on both sides of a pristine h-BN sheet induces flatness
distortion and an out-of-plane dipole moment in a chair
conformer[29]. The fluorination of electrically insulating
the h-BN subsequently modifies the electronic band struc-
ture to a wide bandgap magnetic semiconductor via the
introduction of defect levels. The electrophilic nature of
fluorine causes changes in the charge distribution around
neighboring nitrogen atoms in the h-BN, leading to room
temperature weak ferromagnetism[30]. Very recently, an ex-
perimental study shows that exfoliation of the h-BN sheets
from bulk material and surface treatment by fluorination
makes structural improvements that lead to enhancement in
electrical and optical properties[31].

Multiple theoretical and experimental investigations
have been conducted to study various features of pure and
passivated the h-BN monolayer, what is lacking here is a
meticulous study on the structural, mechanical, and opto-
electronic response of fluorinated h-BN. Intrigued by the
prior findings, the first-principles calculations are performed
with the density functional theory to investigate and unravel
the underlined properties of fluorinated hexagonal boron
nitride monolayer.

2. Computational Details
The density functional theory (DFT) implemented in the

Spanish initiative for electronic simulations with thousands
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of atoms (SIESTA) [32, 33] with norm-conserving pseu-
dopotentials in the semilocal form [34] is used for the cal-
culations. The employed generalized gradient approxima-
tion (GGA) functional with Perdew-Burke-Ernzerhof (PBE)
[35] treats underlying exchange and correlation within the
double zeta plus polarization (DZP) basis sets. The K points
20×20×1 of Monkhrost pack scheme [36] is used to perform
Brillouin zone integration. The reciprocal space is expanded
by using an energy cutoff of 350 Rydberg. The atomic relax-
ation is achieved when the force reached the value of 0.02
eV/Å using the standard conjugate-gradient (CG) technique.
The convergence criteria for the energy of the self-consistent
field is set to 1.0 × 10 −6 eV. The vacuum gap of 25 Å is used
along the z-direction to prevent unnecessary interactions
between the adjacent unit cells. The chemical stability is
achieved by calculating and analyzing the formation (Ef )
and cohesive (Ecoℎ)[29] energies.

Ecoh =

(

E −
∑

i=B,N,F
niEi

)

∕N (1)

Ef =
1
N

(

Et − EBN − nF2EF2
)

(2)

where Et, EBN and EF2 represents is the total energy of
FBNF , h-BN and F2 molecule respectively. The nF2 and N
denotes the number of fluorine molecule and total number
of atoms. Similarly, in cohesive energy expression, the E
is total energy of the preferred system having N atoms. Ei
represents the total energy of an isolated i (B,N,F) atom
and ni is the number of a specific atom i per unit cell. The
frozen phonon method implemented in the Vibra package
of SIESTA is adopted for the phonon dispersion calculation.
An accurate force matrix is achieved at 5 × 5 × 1 supercell
of convergence. For optical properties calculations, a denser
k-point mesh, i.e. 60 × 60 × 1, within the Monkhorst-Pack
scheme and optical broadening of 0.1 eV is used. Optical
calculations in SIESTA are based on the first order time
dependent perturbation theory (TDP)[37]. The complex
dielectric function ("(!)) can be expressed as:

"(!) = "1(!) + i"2(!) (3)

where "2(!) is imaginary part of "(!) and can be obtained
with the help of TDP [38]

"2(!) =
e2

!2�m2
∑

v,c ∫BZ
dk⃗ ||

|

⟨

 ck|ê ⋅ p⃗| vk
⟩

|

|

|

2
�
(

Ec(k)−

Ev(k) − ℏ!)
(4)

Here, v and c represent the valence and the conduc-
tion band states, respectively. E(c,v)(k) and  (c,v),k are the
corresponding energy and eigenfunction of these states. p⃗
and ê are the momentum operator and polarization vector,
respectively. The equation (4) displays the connection be-
tween optical and electronic properties. Further, real part

of dielectric fuction "1(!) is obtained by Kramer-Kronig
transformation (KK) of "2(!) and is expressed as:

"1(!) = 1 +
2
�
P ∫

∞

0

"2
(

!′
)

!′

!′2 − !2
d!′ (5)

where P denotes the principle part of "1(!) [38].
Further, the complex refractive index (N) is expressed

as N =
√

"(!) = �(!) + iK(!), where �(!) and K(!) are
the refractive index and extinction coefficient, respectively.
These parameters are expressed as:

�(!) =

⎛

⎜

⎜

⎜

⎝

√

"21(!) + "
2
2(!) + "1(!)

2

⎞

⎟

⎟

⎟

⎠

1
2

(6)

K(!) =

⎛

⎜

⎜

⎜

⎝

√

"21(!) + "
2
2(!) − "1(!)

2

⎞

⎟

⎟

⎟

⎠

1
2

(7)

Further, the reflectivity, R(!) and absorption coefficient,
�(!) are expressed as [39]:

R(!) =
K(!)2 + [1 − n(!)]2

K(!)2 + [1 + n(!)]2
(8)

�(!) =
2!K(!)

c
(9)

Additionally, the electron energy loss function, L(!) is
given by the relation L(!) = Im

(

− 1
"(!)

)

and also in terms
of "1(!) and "2(!),

L(!) =
"2(!)

"1(!)2 + "2(!)2
(10)

All these optical parameters are calculated in the interval
between 0 to 25 eV for in-plane (E‖x), and out-of-plane
polarization (E‖z) of electric field.

3. Results and Discussion
3.1. Structural properties

The optimized unit cell of pristine h-BN has planer
geometry with lattice constant 2.52 Å and sp2 hybridized
B−N bond of length 1.45 Å. By adding F atoms on top of B-
sites and bottom of N-sites (Fig. 1) in the unit cell of h-BN,
the FBNF monolayer is designed which is allowed to fully
relax until it achieves the favorable stable configuration. The
optimized structure is buckled (0.50 Å) with lattice constant
2.66 Å and sp3 hybridized longer B−N bond of length
1.62 Å. The details of bond lengths in optimized structures
are presented in Table 1. The lattice constant of FBNF
is 10% more than pristine structure however retains the
hexagonal symmetry similar to fluorinated graphene [40]
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h-BN FBNF

  

(b)
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 Å

h-BN
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Figure 1: (Color online) Optimized strucutre (2 × 2 × 1
supercell) of h-BN and FBNF monolayer (a) top view (b) side
view.

and SiC[41]. This increment is attributed to the larger radius
of the F atom and inter-atomic repulsion. The structural
stability is confirmed by calculating the cohesive energy
(Equ. 1) which is -6.91 eV/atom and -4.83 eV/atom for
h-BN and FBNF monolayer, respectively. The relatively
smaller negative cohesive energy in FBNF is connected
to the longer B−N bonding. The formation energy (Equ.
2) of FBNF is -0.65 eV/atom which confirms the experi-
mental feasibility of flourination. These findings are very
consistent with the previous theoretical and experimental
results[42][43][44][45][46] .

The nature of chemical bonds are analyzed by Mulliken
charge density calculations (Fig. 2(a)− (f)). The red to pink
color codes (Fig. 2(c) indicates the lowest to highest charge
density distribution. The considerable overlap of electronic
wave functions (Fig. 2(d) with sharing of the electron among
B and N atoms in FBNF monolayer reveals the presence
of covalent B−N bonding, which agrees with the previous
report[45]. A similar configuration is found between F
and B atoms (Fig. 2f) thereby confirms the covalent F−B
bonding. On the other hand, there is a small distortion of
the overlapped wave function at the center of F and N atoms
( Fig. 2(e)) demonstrates a partly ionic and covalent F−N

  

(b)(a) (c)

(d) (e) (f)

h-BN FBNF

Figure 2: (Color online) Valence charge density contour plot
of (a) h-BN (b) FBNF (d)-(e) Zoomed view of charge density
between respective atoms (c) charge density index.

bonding. Further, to test the dynamic stability the phonon
dispersion calculations are performed (Fig. 3(a) and (b))
along Γ-K-M-Γ high-symmetry lines. The presence of real
frequencies in both monolayers demonstrates good kinetic
and dynamical stability.

After confirming the structural, and dynamical stability,
it’s crucial to test the mechanical stability and strength of
the material because the strain is unavoidable in material
growth and processing [47]

3.2. Mechanical properties
The h-BN monolayer, also known as "white graphene",

has extremely comparable physical and chemical properties
with graphene [18]. Particularly, the sp2 hybridized covalent
bonds between C atoms in graphene and B−N bonding in
h-BN makes both materials mechanically strong and stable.
However, the fluorination in h-BN makes the B−N bonding
sp3 hybridized, which distorts the planar geometry[29], the
mechanical response of fluorinated h-BN monolayer, FBNF,
is interesting to study.

To calculate the mechanical parameters, the strain is ap-
plied in the x−axis ("x), y−axis ("y), and in both directions
("x"y) of the monolayer. The strain is applied from -2% to
2% for each direction with an increment of 1%. For each
iteration of strain, the atomic positions of the system is
fully relaxed. Further, the result is fitted to the strain energy,
Es = a1"2x + a2"

2
y + a3"x"y [50]. Here, a1, a2 and a3 are

three constants that are obtained during the fitting process.
Due to the isotropy in the honeycomb symmetry, a1 is equal
to a2. The 3D surface fit (Fig. 4) shows the distribution of
strain energy with respect to the different possible value of
applied strain. The maximum strain energy value is lower in
FBNF predicting the relatively smaller mechanical strength.
The preceding expression is also obtained from elasticity
matrix in terms of elastic stiffness constants C11 and C12
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Table 1
Summary of structural and electronic properties: lattice constant a, bond length dXY where, (X,Y=B, N, F) , bandgap Eg,
cohesive energy Ecoℎ, formation energy Ef

Monolayer a d(Å) Eg Ecoℎ Ef
(Å) dBN dNF dBF (eV) (eV) (eV)

h-BN 2.52 1.45 - - 4.62 -6.91 -
Ref. 2.51[48] 1.45[48] - - 4.63[48] -7.09[49] -

FBNF 2.66 1.62 1.45 1.36 3.39 -4.83 -0.66
Ref.[29] - 1.62 1.44 1.35 3.30 -4.96 -0.65

- - 1.42[28] 1.34[28] 2.80[28] - -
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Figure 3: (Color online) Phonon dispersion bands for (a) h-
BN (b)FBNF monolayers.

by employing C11 = 2a1∕A0 and C12 = a3∕A0 where
A0 is strain-free area of the monolayer. The C11 and C12

are only two significant independent elastic stiffness coeffi-
cients [51]. Another calculated elastic constant, C66 is (C11-
C12)/2. The in-plane stiffness (C) and Poisson’s ratio(#)
are represented by C11 × [1 − (C12∕ C11 )2] and C12∕C11,
respectively. In 2D materials, the bulk modulus which gives
a measure of the material’s resilience to an external biaxial
strain is calculated in terms of layer modulus ( 
) with
the expression, 
= (C11+C22+2C12)/4. In addition, using
these second-order elastic constants Cij , the shear modulus,
K=C/2(1-#), is calculated. The shear modulus estimates the
resistance of the material to the shear strain. Further, the
in-plane stiffness and Poisson’s ratio are used to test the
mechanical anisotropy. They are functions of the direction
angles �, which can be represented as [52]:

C(�) =
C11C22 − C212

C22 cos4(�) + A cos2(�) sin
2(�) + C11 cos4(�)

#(�) =
C12 cos4(�) − B cos2(�) sin

2(�) + C12 cos4(�)

C22 cos4(�) + A cos2(�) sin
2(�) + C11 cos4(�)

(11)

where A =
(

C11C22 − C212
)

∕C66 − 2C12 and B = C11 +
C22 −

(

C11C22 − C212
)

∕C66.
The mechanical stability criteria [53] i.e. |C11| > |C12|

is approved by the FBNF monolayer, indicating the mechan-
ical stability. Comparatively, the computed elastic parameter
Cij of FBNF monolayer are relatively smaller (Table 2).
The in-plane stiffness of the FBNF is 168.33 N/m, less
than h-BN (266.29 N/m ) indicating the softening. Similarly,
the Poisson’s ratio of FBNF is 0.17, also not more than
h-BN (0.21 ) but comparable to graphene [18] indicating
reduction in sensitivity toward uniaxial strain. Similarly,
the shear (K) and layer moduli ( 
) are 71.70 N/m and
110.88 N/m, respectively. These values are also smaller
than h-BN indicating the less resilient material. The physics
behind the decrease in the value of mechanical parameter
after fluorination in the h-BN (FBNF) is attributed to the
decrease in cohesive energy per atom and elongation in
B− N covalent bond. Further, the directional dependency
of in-plane stiffness and Poisson’s ratio is checked by polar
plot fit using Equ. 5. From the polar plot shown in Fig.
5, the Poisson ratio and in-plane stiffness for FBNF is a
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Table 2
The calculated elastic constants Cij , in-plane stiffness C, and Poissons ratio #, shear modulus K and layer modulus 
 for each
MLs

Monolayer Cij (N/m) C(N/m) # K(N/m) 
(N/m)
C11 C12

h-BN 278.45 58.19 266.29 0.21 110.13 168.33
Exp.[55] 270.0 56.2 258.3 0.21 106.9 163.1

FBNF 173.58 30.18 168.33 0.17 71.70 110.88
Ref.[56] 188.64 35.02 - - - -

Figure 4: (Color online) Three-dimensional surface plot of
strain energy versus strain for h-BN (blue) and FBNF (red)
monolayers.

perfect circle, similar to h-BN, indicates elastic isotropy.
The computed mechanical parameters are very close to both
experimental and theoretical reports (Table 2).

It’s worth in mentioning that similar results are com-
puted by previous report in hydrogen passivated hexagonal
GeC monolayer[54].

Figure 5: (Color online) The polar plot of orientation depen-
dent in-plane stifness and Poisson’s ratio for h-BN and FBNF
monolayers.

3.3. Electronic properties
We calculate the spin-independent band structure and

partial density of states (PDOS) for FBNF and compare it
with h-BN. The electronic band structure is calculated along
the Γ-K-M-Γ direction of the Brillouin Zone (BZ) ( Fig.
6). The valence band maximum (VBM ) and conduction
band minimum (CBM) is positioned at the Γ point of BZ
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Figure 6: (Color online) The electronic band structures and partial density of states (PDOS) for (a) h-BN (b) FBNF monolayers

with bandgap 3.39 eV indicates the FBNF a large bandgap
semiconductor agrees with the previous report[29]. The
computed bandgap is 26.62 % smaller than h-BN (4.62
eV). The N-2p and F-5p, B-2p energy orbitals dominate the
contribution in CBM and VBM, respectively in the vicinity
of Fermi level to reduce the bandgap relative to h-BN. This
also demonstrates the influence of fluorination. This wide
direct bandgap and induced semiconducting functionality of
FBNF makes it a potential candidate material for application
in high-temperature processors, solid-state lighting, solar
cells, and power electronics[57, 58].

3.4. Optical properties
After making a good understanding of electronic proper-

ties, which are inherently connected to the optical behavior
of a semiconductor (Equ. 4), it is interesting to discuss the
optical behavior of FBNF monolayer. The optical response
is calculated by analyzing the amplitude and number of
peaks in the optical response curves with the photon energy
range of 0 eV to 25 eV. The incident polarized light
is considered in in-plane (E‖x), and out-of-plane (E‖z)
directions, which are sufficient directions to describe the
optical behavior of this 2D system. The spin non-polarized
calculations is performed to investigate the important optical
parameters such as the real ("1(!)) and imaginary ("2(!))
parts of dielectric functions, absorption coefficient (�(!)),
electron energy loss function (ELF) (L(!)), refractive index
(�(!)), and reflectivity (R(!)). To make a comparison, these
optical parameters are plotted side by side (Fig. 7−12 ) for
both directions and also compared with the pristine h-BN.

The real part of the dielectric function ("1 (w)) is related
to the energy stored by the medium when a material is
exposed to an electromagnetic spectrum. The optical spectra
in "1 (!) (Fig. 7) for FBNF mainly arise approximately
in between 4.6 eV to 15.2 eV with the early sharpest
peaks at 8.79 eV and 12.55 eV in E‖x. Meanwhile, such

sharpest peaks occur at 7.71 eV and 11.59 eV in E‖z, signif-
icantly different from h-BN. The value of "1(!) is positive
throughout the whole energy range in the in-plane direction
but a negative value is detected in between the 11.95 eV
to 12.45 eV for out-of-plane direction in FBNF mono-
layer which is unprecedented in h-BN. The corresponding
negative frequency is known as plasma frequency (!p),
which is very important to understand many exotic optical
phenomena[59]. The static dielectric function ("1(0)), the
value of "1(!) at zero photon energy, is 1.5 (≈ h-BN) for in-
plane direction but higher (1.65) in out-of-plane direction.

The major optical behavior of a material is linked with
the imaginary part of dielectric function ("2(!)) (Eqns. (3-
8)). The "2(!) describes the inter-band transitions by ana-
lyzing the major peaks. All the optical inter-band transitions
are essentially due to the p orbitals of F, B, and N atoms
which can be described by analyzing PDOS (Fig. 6). The
major sharper peaks (Fig. 8) arise at 9.16 eV and 9.95 eV
( blue-shifted) in E‖x, and 7.95 eV , 8.59 eV and 11.88 eV
(red-shifted) in E‖z displays earlier interband trasitions in
FBNF. The higher number and larger intensity in spectra
indicates the multiple inter-band transitions and enhanced
optical response of FBNF than the pristine counterpart.

The electron energy loss function (ELF) describes the
amount of energy loss through the material upon the in-
cidence of photon energy. The multiple energy losses in
the energy range 4.25 eV to 25.00 eV (Fig. 9) is detected
in FBNF for both directions. The major energy loss peaks
arises at 9.29 eV, 10.19 eV, 13.88 eV, 15.23 eV and at
8.83 eV, 12.47 eV, 15.87 eV, 18.0 eV, 19.40 eV for FBNF
in in-plane and out-of-plane direction, respectively. The
energy loss is significantly lower in FBNF than the pristine
counterpart in the in-plane direction. The sharpest resonance
peak at 12.47 eV due to plasma frequency (!p) creates
significant energy loss. The energy loss is highly anisotropic
like other paramters in FBNF as well as h-BN.
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Figure 7: (Color online) Real parts of dielectric function for
h-BN and FBNF in (a) in-plane, and (b) out-of-plane direction
of electric field polarizations
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Figure 8: (Color online) Imaginary parts of dielectric function
for h-BN and FBNF in (a) in-plane, and (b) out-of-plane
direction of electric field polarization

The absorption coefficient �(!) spectra describe the
light-harvesting quality of the material. The absorption
edges (Ae), the threshold value of energy absorption spectra,
are at 6.71 eV (red-shifted) and at 5.49 eV (blue-shifted) for
in-plane and out-of-plane direction (Fig. 10), respectively.
Null absorption in infrared region (IR) and visible region
(VR) for FBNF makes it a perfect material in optical
fibers and beam splitters[60]. The highest absorption peak is
observed at 12.91 eV (≈ 9.01×106 cm−1 ) and 12.23 eV for
in-plane and out-plane direction which is significantly better
than pristine h-BN. The exceptional long-range absorbance,
from 6.71 eV to 25 eV, and multiple absorption peaks in
the ultraviolet region (UV) region make FBNF monolayer
an appropriate light-harvesting material. Additionally, the

0

0.2

0.4

0.6

0.8
h-BN
FBNF

0 5 10 15 20 25

Energy (eV)

0

0.5

1

1.5

2

2.5
h-BN
FBNF

E
n

e
r
g

y
 L

o
s
s
 f

u
n

c
ti

o
n

 L
( 

ω
)

(a)

(b)

Figure 9: (Color online) Electron energy loss function(ELF)
for h-BN and FBNF in (a) in-plane, and (b) out-of-plane
direction of electric field polarization.
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Figure 10: (Color online) Absorption coefficient for h-BN and
FBNF in (a) in-plane, and (b) out-of-plane direction of electric
field polarization.

strong optical anisotropy broads its applications in light
polarizers and wave guides materials.

Besides, multiple reflection sharp peaks (Fig. 11) within
the same range of absorption coefficient peaks are detected
in both directions. The maximum reflectivity is 10% (7.95
eV) and 40% (12.29 eV) for in-plane and out-plane direction
which is higher than h-BN. The abrupt rise of reflectivity
at 12.29 eV in out-of-plane direction is connected to the
plasma frequency and the corresponding metallicity. The
loss of oscillatory reflectivity curve beyond 20 eV indicates
the monolayer’s transparency region.

The refractive index of a material describes the behavior
of light propagating through it (Fig.12). The static refractive
index (�(0)), the value of the refractive index at zero energy
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Table 3
Static dielectric constant "1(0) and static refractive index �(0) of h-BN and FBNF monolayers for E‖x and E‖z polarization

Monolayer Methods �(0) "1(0) Ae
E‖x E‖z E‖x E‖z E‖x E‖z

h-BN GGA 1.18 1.08 1.42 1.16 3.97 8.67
GGA 1.17[62] - 1.37[62] - - -
LDA - - 2.19[61] 1.50[61] - -

FBNF GGA 1.19 1.29 1.40 1.65 2.89 3.04
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Figure 11: (Color online) Reflectivity for h-BN and FBNF in
(a) in-plane, and (b) out-of-plane direction of electric field
polarization.

is 1.08 and 1.29 for in-plane and out-of-plane direction
which is higher than h-BN. However, the highest value
of the refractive index is 1.60 (at 12.55 eV) and 1.77 (at
11.67 eV) for FBNF in in-plane and out-of-plane directions.
The findings of the optical calculation (Table 3) are very
consistent with the available literature [61, 62].

With a careful analysis, it is clear that the induced large
bandgap of FBNF tends to create the optical spectra absent
in the IR, and in the VR, and only appear around the UV
regions from 4.61 eV to 22.10 eV. The multiple oscillatory
peaks in the real and imaginary dielectric curve demonstrate
the rigorous inter-band transitions. This supports FBNF to
possess the highest absorbance (up to 9.01×105 cm−1) with
small electron energy loss in in-plane direction demon-
strating an outstanding optical response. Plus, the strong
optical anisotropy enriches its optical quality to make it
a proper optoelectronic material. It is worth mentioning
that, similar optical behavior is observed in the fluorinated
SnC monolayer calculated by using first-principle DFT
calculations[63].

4. Conclusions
In summary, The FBNF is found to be a structurally,

mechanically, and dynamically stable monolayer. The sp3
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Figure 12: (Color online) Reflectivity for h-BN and FBNF in
(a) in-plane, and (b) out-of-plane direction of electric field
polarization.

hybridized B−N in FBNF, is longer than in h-BN is in-
volved in buckling to soften the structure by retaining the
structural and elastic isotropy. The F-5p orbital plays a role
to create the insulator−semiconductor electronic transition.
The visible range PBE-bandgap supports the largest optical
absorption, low electron energy loss, and good reflectivity.
In addition, the strong optical anisotropy enriches the optical
quality and establishes this material as a proper candidate in
optoelectronic devices. These outstanding findings are also
supported by the experimental evidence [31]. Hence, the
FBNF monolayer is a potential candidate for nanomechani-
cal and optoelectronic device applications.
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