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ABSTRACT: Local electric fields can alter energy landscapes to impart enhanced reactivity in enzymes and at surfaces. There 
has been renewed interest on their use in molecular systems, where they can be installed using charged functionalities. Man-
ganese(V) salen nitrido complexes (salen = N,N’-ethylenebis(salicylideneaminato)) appended with a crown ether unit con-
taining a Na+ (1-Na), K+, (1-K), Ba2+ (1-Ba), Sr2+ (1-Sr), La3+ (1-La), or Eu3+ (1-Eu) cation were investigated to experimentally 
demonstrate the effect of cation-induced electric fields on pKa, E1/2, and the effective bond dissociation free energy (BDFE) of 
N–H bonds. The series, which includes the manganese (V) salen nitrido without a crown appended, spans 4 units of charge. 
Bounds for the pKa values of the transient imido complexes were determined by UV-visible and 1H NMR spectroscopy. These 
values, together with the reduction potentials for the Mn(VI/V) couple measured by cyclic voltammetry in acetonitrile, were 
used to calculated the N–H BDFEs of the imidos. Despite spanning >700 mV and >9 pKa units across the series, the hydrogen 
atom BDFE only spans ~ 5 kcal/mol (between 76 and 81 kcal/mol). These results suggest that incorporation of cationic func-
tionalities is an effective strategy for accessing wide ranges of reduction potentials and pKa while minimally affecting BDFE, 
which is essential to modulating electron, proton, or hydrogen atom transfer pathways. 

The activation of strong heteroatom-hydrogen (X–H) 
bonds using high valent metal oxidos or nitridos as hydro-
gen atom acceptors is an robust area of bio-inspired reac-
tion chemistry.1–4 The free energy of these reactions is de-
pendent on the hydrogen-atom bond dissociation free ener-
gies (BDFE) for the reactants and products. BDFE values are 
comprised of both the pKa and redox potential (E1/2) accord-
ing to eq. 1 (Chart 1).5–7 Exergonic reactivity with metal ox-
idos or nitridos requires the BDFE values for the resultant 
hydroxido or imido bonds to exceed that of the targeted X–
H bond. However, the relative contributions of pKa and E1/2 
to the BDFE are also critical for steering reactivity.8,9 The 
difference in reduction potential and pKa between the donor 
and accepter (ΔE1/2 and ΔpKa, respectively) governs the 
most favorable reaction pathway for either proton or elec-
tron transfer, or concerted hydrogen atom transfer (HAT).  
For example, Green and co-workers reported that cyto-
chrome P450 activates strong C–H bonds at a mild potential 
due to an unusually basic iron(IV) oxido species, thus low-
ering the driving force for unfavorable single-electron re-
dox events.11 More broadly, the most favorable reaction 
pathways based on ΔE1/2 and ΔpKa can be mapped onto pro-
ton-coupled electron transfer (PCET) zone diagrams, as de-
scribed by Glover, Hammerström, and co-workers.11 In 
some cases, the rate of HAT correlates more strongly with 
ΔE1/2 or ΔpKa than ΔG(H·),12–14 deviating from the Bell-Ev-
ans-Polanyi principle that overall free energy governs ki-
netic reactivity.15,16 These examples illustrate a route to 
achieving kinetic selectivity for the cleavage of stronger X–
H bonds in the presence of weaker bonds. Thus, 

understanding how synthetic variations modify the reduc-
tion potential, pKa, and consequent BDFE is critical for con-
trolling the thermodynamics and kinetics for HAT reactions. 

Most studies have used inductive effects (i.e. electron-
donating and withdrawing functionalities) to modulate 
these thermodynamic quantities, leading to modest 
changes.17 An alternative approach is to use the secondary 
coordination sphere to tune these properties. Borovik and 
coworkers demonstrated basicity controlled HAT to a man-
ganese-oxido, where the pKa of the resulting hydroxide was 

Chart 1. (left) Manganese nitride complexes and 
(right) thermodynamic properties investigated in 
this study. 

 



 

modulated by hydrogen-bond donation from the amide lig-
and (Figure 1a, left).18  

The use of electrostatic interactions to control reactiv-
ity has inspired the design of a growing number of synthetic 
molecular complexes that incorporate charged functionali-
ties.19–45 However, very few experimental studies explicitly 
examine the secondary effect of charge. A rare example 
from Tolman and co-workers investigated pincer coordi-
nated Cu(II)-hydroxide complexes (Figure 1a, right).46 They 
reported that incorporation of sulfonate or trimethylammo-
nium substituents expands the range of the Cu(III/II) reduc-
tion potential (E1/2) by 275 mV. Despite the change in E1/2, 
the bond dissociation energies of the respective Cu(II)-aqua 
species remained relatively constant while the kinetics of 
hydrogen atom transfer to the Cu(III)-hydroxide varied. 
Tolman and coworkers attribute the varying kinetic rates to 
steric contributions of the counterions in addition to possi-
ble electrostatic effects. However, direct correlations be-
tween changes in thermochemical parameters and electro-
static effects at molecular complexes has been minimally ex-
plored.47–50 

In this study, we report the profound effect of a proxi-
mal mono-, di-, and tri-cation on high-valent Mn nitrido 
complexes and the hydrogen atom BDFEs of their associ-
ated imidos. The salen-crown framework provides a unique 
platform for isolating the effect of cationic charge on the 
metal center (Chart 1). The salen macrocyclic ligand sup-
ports high-valent metal ions. Non-redox active cations of 
varying charge are easily inserted into the crown cavity 
which significantly modifies the electric field potential 
around the redox active metal.51 Our previous investigation 
of Mn(V) salen nitrido complexes (1-Na, 1-K, 1-Ba, 1-Sr) 

with bound alkali and alkaline earth metals showed that an 
increase of cationic charge at the complexes resulted in an-
odic shifts of over 400 mV of the Mn(VI/V) reduction poten-
tial (Table 1).52 To expand on these studies, we synthesized 
two derivatives with +3 cations, so that our data set spans 
four different units of charge. We also experimentally deter-
mine the impact of charge on C–H bond activation.  

Manganese nitrido complexes were selected for this 
study due to their utility in a variety of catalytic and stoichi-
ometric reactions, many of which involve the formation of 
intermediate imidos (Figure 1b.).53–66 Lau and coworkers 
previously reported salen manganese nitrido complexes 
that were activated for stoichiometric aziridination of al-
kenes following protonation with a Brønsted acid or addi-
tion of electrophiles.67–69 Chirik and coworkers demon-
strated proton-coupled electron transfer (PCET) at salen 
manganese nitrido complexes to form ammonia through ei-
ther photodriven70,71 or thermal72 pathways. Although the 
bond dissociation free energies (BDFEs) at transition metal 
imidos are central in catalytic nitrogen cycles73–78 and C–H 
activation,79–84 few BDFE values have been measured com-
pared to isoelectronic metal oxido analogues.  

Following a modification of the previously reported 
procedure, 1-La and 1-Eu were obtained in quantitative 
and 94% yield, respectively (see SI for details). The 1H NMR 
of 1-La exhibited sharp diamagnetic resonances and the 
number of peaks was consistent with C2V symmetry (Figure 
S27). The 1H NMR of 1-Eu exhibited paramagnetically 
shifted resonances due to the unpaired spin of the Eu3+ cat-
ion, however the number of observed peaks was also con-
sistent with C2V symmetry (Figure S29). Single crystals suit-
able for X-ray diffraction of 1-La (Figure 2a.) and 1-Eu (Fig-
ure S31) were obtained from concentrated acetonitrile so-
lutions. In the solid state, both 1-La and 1-Eu show three 
inner sphere triflate anions, one of which is coordinated 
2O,O’ to the La3+ cation in 1-La.  

The electrochemical properties of 1-La and 1-Eu were 
measured in acetonitrile using cyclic voltammetry (see SI 
for full experimental details). We previously described the 
bimolecular coupling of the oxidized Mn(VI) species to form 
two equivalents of the corresponding Mn(III) complex and 
N2, or an EC mechanism (electron transfer followed by a 
chemical step) (Figure 1b.ii).52,56 In the prior study with the 

Table 1. Summary of Thermodynamic Parameters 

Complex E1/2c pKad N–H BDFEe 

Aa 0.43 8.0–9.4 76–78 

1-Naa 0.59 6.2–8.0 77–80 

1-Ka 0.62 6.2–8.0 78–80 

1-Baa 0.80 0.2–2.6 74–77 

1-Sra 0.88 0.2–2.6 75–79 

1-Lab 1.02 <0.2 <79 

1-Eub 1.13 <0.2 <81 

aValues from ref 82. bValues from this work. cMnVI/V(N) couple 
vs. Fe(C5H5)2+/0 in MeCN. dValues from protonation of nitride 
complexes in MeCN-d3 at 20 ºC as determined by 1H NMR. 
eValues in kcal/mol, calculated from experimentally meas-
ured E1/2 and pKa data according to equation 1. 

 
Figure 1. (a) Hydrogen-bond donors and charged sub-
stituents on ligands tune E1/2 or pKa in metal-hydrox-
ides. (refs 17 and 45) (b) Examples of activation of 
salen manganese nitrides, some of which involve for-
mation of intermediate metal imidos (i. ref 65; ii. refs 
53 and 82; iii. ref 96 and this work.). 
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mono- and di-cationic nitrido complexes, an increase in 
charge corresponded to a slower rate of bimolecular cou-
pling. Consistent with this trend there is no evidence of bi-
molecular coupling upon oxidation of 1-La to Mn(VI) even 
at slow scan rates (10 mV/s) (Figure S17). The redox event 
is reversible and there is no reduction event corresponding 
to the Mn(III/II) couple at more negative potentials, which 
would be the expected product of bimolecular coupling. The 
scan-rate dependent cyclic voltammetry was collected for 
1-La (Figure 2b.). The current increases linearly with the 
square root of the scan rate, indicating electron transfer is 
under diffusion control (Figure S18).  

Complex 1-Eu does not exhibit a strictly reversible oxi-
dation event corresponding to the Mn(VI/V) redox couple 
(Figure S19); the cathodic wave is smaller than the anodic 
wave. Although analytically pure 1-Eu is used for cyclic volt-
ammetry, there is evidence that upon oxidation adventi-
tious Na+ ions (ionic radius of 102 pm) displaces the euro-
pium (III) ion due to the latter’s poor fit (ionic radius of 94.7 
pm) in the crown.85 There is no evidence of any contamina-
tion by 1-Na prior to oxidation by elemental analysis. Addi-
tionally, the 1-Na oxidation peak is not observed in the ini-
tial oxidative scan. However, after several oxidation cycles, 
an additional cathodic redox feature appears at ~0.6 V (vs. 
[Fe(C5H5)2]+/0) (Figure S21), which matches the oxidation 
potential of the Mn(V) nitrido with Na+ in the crown cavity. 
Based on the oxidation event observed for 1-Eu, we esti-
mate an E1/2 value of ~1.13 V for 1-Eu.  

The E1/2 values for the Mn(VI/V) reduction potential of 
1.02 V and ~1.13 V (vs. [Fe(C5H5)2]+/0) for 1-La and 1-Eu, 
respectively, corresponds to a shift of 600 and 730 mV more 
positive than that of the non-crown (salen)MnN (A). These 
values correspond to 14 and 16 kcal/mol changes, respec-
tively, in the E1/2 contributions to the N-H BDFE (eq 1 in 
Chart 1 and Figure 3). 

We investigated the protonation of the manganese(V) 
nitrido complexes in order to determine the pKa values and 
calculate the BDFE of the imido as a function of overall cati-
onic charge (Figure 1b.i). The direct detection and isolation 
of electrophilic transition metal parent imido complexes is 
challenging because of accessible coupling, disproportiona-
tion, and nitrene transfer pathways.86–90 Acid titration ex-
periments conducted at room temperature or -35 ºC in 

acetonitrile and were monitored by UV-vis spectroscopy by 
observing changes to two absorption bands associated with 
the manganese nitrido at ~380 and ~600 nm. No spectral 
features corresponding to a putative imido were observed 
by UV-vis.  

Lau and coworkers previously discussed the instability 
of the imido formed following protonation of the nitrido.68 
They postulate that, following protonation of the nitrido, 2 
equiv. of the resulting imido complex couple to form a man-
ganese(III) µ-diazene species, which rapidly decomposes to 
give the final Mn(III), N2, and NH3 (Figure 1.b.i). Indeed, in 
our studies the UV-vis spectrum at the endpoint of acid ti-
tration corresponded to that of the Mn(III) complexes. 

In an effort to observe the imido, we synthesized the 
15N-labeled nitrido complex, 1-Ba(15N). Protonation of 1-
Ba(15N) with 1 equiv. [H(OEt2)2][BF4] in acetonitrile-d3 was 
performed in a J-Young tube and tracked by 1H and 15N NMR 
at -30 ºC. Only resonances corresponding to the starting 
material and Mn(III) product were observed. Additionally, 
analysis of the gas headspace following protonation of 1-
Ba(15N) showed evolution of 14N15N and 15N2, further sup-
porting the coupling pathway postulated by Lau. It is possi-
ble that instead of protonating on the nitrido, nucleophilic 
attack at the imine of the salen could occur.91–93 Alterna-
tively, protonation of the crown ether could result in dis-
placement of the bound cation.94–96 However, protonation at 
either of these sites is unlikely, as there is quantitative re-
covery of the of the manganese(III) complex following pro-
tonation, indicating the reactivity proceeds as shown in Fig-
ure 1.b.i. 

The instability of the manganese salen imidos pre-
cluded accurate establishment of an equilibrium following 
protonation of the nitrido. Therefore, we determined 
bounds for the pKa values by tracking protonation using 1H 
NMR in acetonitrile-d3 at room temperature. Protonation of 
the Mn(V)N with acids of known pKa values (see SI for full 
experimental details) resulted in effective bracketing of the 
pKa values for the imido intermediates. Notably, the pKa val-
ues span ~9 units, with the basicity of the Mn(V) nitrido de-
creasing with increasing charge of the bound cation. A lin-
ear correlation between the Mn(VI/V) reduction potential 
and pKa was also observed (Figure 3), indicating that a pos-
itive shift in reduction potential is largely compensated by 
acidification of the imido. 

The BDFEs for the imido N–H bonds were then calcu-
lated according to the thermodynamic relation depicted in 
the square scheme in Chart 1 and equation 1. These values 
are also tabulated in Table 1. The change in pKa and positive 
shift in reduction potential serve to maintain a relatively 
constant BDFE across the series, encompassing four differ-
ent overall charges. Although determination of N–H bond 
strengths is challenging due to the reactive nature of the in-
termediate imido, understanding these values is essential to 
predicting reactivity. In a recent computational study from 
Cundari and coworkers on these crown-appended manga-
nese nitrido salen complexes, they determined that increase 
in charge at the bound cation resulted in an increase in N–H 
BDFE.97 Further, an increase in charge of the cation was cor-
related to lowering of the free barrier energy for hydrogen 
atom transfer (HAT) from methane, thus indicating that this 
process should be kinetically facilitated by the presence of 
bound cation. Therefore, we explored the hydrogen atom 

Figure 2. a. Solid state molecular structure of 1-La at 50% 
probability ellipsoids. Hydrogen atoms were omitted for 
clarity. Selected bond metrics: Mn1–N3, 1.524(2); Mn1–
La1, 3.6220(6). See SI for full bond lengths and angles. b. 
Scan-rate dependent cyclic voltammetry of 1-La (2 mM) 
showing MnVI/V oxidation event with scan rates ranging 
from 10 mV/s to 2500 mV/s in CH3CN and 0.2 M TBAPF6 
electrolyte. 

 



 

abstraction (HAA) reactivity of the Mn(VI) complexes with 
a hydrogen atom donor, 9,10-dihydroanthracene (DHA, 
BDFE (DMSO) = 76 kcal/mol)17 (Figure 4). Through UV-vis-
ible spectroelectrochemical experiments as well as chemi-
cal oxidation, we determined that hydrogen atom transfer 
(HAT) reactivity was enhanced in the presence of the intra-
molecular cation. 

UV-visible spectroelectrochemistry was used to moni-
tor the reactivity of complexes A and 1-Ba in the presence 
of 100 equiv. DHA. Upon oxidizing A to the Mn(VI) species, 
only spectral changes that correspond to formation of 
Mn(III) were observed (Figure S13). Recovery of the solu-
tion following bulk electrolysis and analysis by 1H NMR 
spectroscopy showed no evidence for formation of anthra-
cene, the expected product of hydrogen atom abstraction. 
For 1-Ba, however, absorption bands corresponding to 

anthracene (340-380 nm) were observed to increase in in-
tensity during electrolysis (Figure S14). Analysis of the re-
covered solution following electrolysis by 1H NMR spectros-
copy exhibited peaks corresponding to anthracene. At-
tempts to perform the spectroelectrochemical electrolysis 
of solutions of 1-La in the presence of 100 equivalents of 
DHA and monitoring by UV-Vis were unsuccessful. The pos-
itive potential required to oxidize 1-La resulted in direct ox-
idation of DHA, resulting in unreliable determination of 
whether 1-La was reacting with DHA directly. Therefore, 
we elected to perform the chemical oxidation of A, 1-Ba, and 
1-La with tris(2,4-dibromophenyl)aminium hexachloroan-
timonate (Magic Green) under an inert atmosphere in n-
PrCN at -40 ºC. Following in situ generation of the Mn(VI) 
nitrido and consumption of Magic Green, 10 equiv. of DHA 
were subsequently added and the reaction was allowed to 
stir at -40 ºC until no further reaction was observed. Analy-
sis of the products by 1H NMR was used to quantify the yield 
of anthracene (2) for each manganese complex (Scheme 1, 
inset table, Figure S15). Results of the chemical oxidation 
were variable due to issues with complete formation of the 
Mn(VI) intermediate prior to addition of 9,10-dihydroan-
thracene. However, the addition of cationic charge did have 
a slightly positive effect on C–H activation. The hydrogen 
atom abstraction exhibited by 1-Ba and 1-La may be due to 
the inhibition of bimolecular coupling following oxidation 
to the Mn(VI) due to charge.52 However, additional electro-
static interactions facilitating HAT cannot be ruled out.  

Protonation and hydrogen atom transfer reactions 
were explored at a series of Mn-nitrido salen complexes 
with appended crown-bound cations. The effect of electro-
statics imparted by the cation were investigated for their re-
activity toward proton and electron transfer. Our results es-
tablished BDFEs for the manganese imido N–H bonds and 
demonstrated reactivity with a hydrogen atom donor, DHA, 
where incorporation of bound cation facilitated HAT. Our 
findings demonstrate the utility of electric fields for tuning 
reduction potential, pKa, and BDFE, while also differentially 
affecting hydrogen atom transfer. Future work will focus on 
understanding electrostatic effects for controlling different 
pathways for proton and electron transfer as well as C–H 
activation. 
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