Cationic Effects on the Effective Hydrogen Atom Bond Dissociation Free Energy of High Valent Manganese Imido Complexes

Nadia G. Léonard,a Teera Chantarojirsib, Joseph W. Ziller,a Jenny Y. Yanga

aDepartment of Chemistry, University of California, Irvine, California, 92697, United States
bDepartment of Chemistry and Center for Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand

ABSTRACT: Local electric fields can alter energy landscapes to impart enhanced reactivity in enzymes and at surfaces. There has been renewed interest on their use in molecular systems, where they can be installed using charged functionalities. Manganese(V) salen nitrido complexes (salen = N,N'-ethylenbis(salicylideneaminato)) appended with a crown ether unit containing a Na+(1-Na), K+(1-K), Ba2+(1-Ba), Sr2+(1-Sr), La3+(1-La), or Eu3+(1-Eu) cation were investigated to experimentally demonstrate the effect of cation-induced electric fields on pKa, E1/2, and the effective bond dissociation free energy (BDFE) of N–H bonds. The series, which includes the manganese(V) salen nitrido without a crown appended, spans 4 units of charge. Bounds for the pKa values of the transient imido complexes were determined by UV-visible and 1H NMR spectroscopy. These values, together with the reduction potentials for the Mn(VI/V) couple measured by cyclic voltammetry in acetonitrile, were used to calculate the N–H BDFEs of the imidos. Despite spanning >700 mV and >9 pKa units across the series, the hydrogen atom BDFE only spans ~5 kcal/mol (between 76 and 81 kcal/mol). These results suggest that incorporation of cationic functionalities is an effective strategy for accessing wide ranges of reduction potentials and pKa while minimally affecting BDFE, which is essential to modulating electron, proton, or hydrogen atom transfer pathways.

The activation of strong heteroatom-hydrogen (X–H) bonds using high valent metal oxidos or nitridos as hydrogen atom acceptors is an robust area of bio-inspired reaction chemistry.1–4 The free energy of these reactions is dependent on the hydrogen-atom bond dissociation free energies (BDFE) for the reactants and products. BDFE values are comprised of both the pKa and redox potential (E1/2) according to eq. 1 (Chart 1).5–7 Exergonic reactivity with metal oxidos or nitridos requires the BDFE values for the resultant hydroxido or imido bonds to exceed that of the targeted X–H bond. However, the relative contributions of pKa and E1/2 to the BDFE are also critical for steering reactivity.8,9 The difference in reduction potential and pKa between the donor and accepter (∆E1/2 and ∆pKa respectively) governs the most favorable reaction pathway for either proton or electron transfer, or concerted hydrogen atom transfer (HAT). For example, Green and co-workers reported that cytochrome P450 activates strong C–H bonds at a mild potential due to an unusually basic iron(IV) oxido species, thus lowering the driving force for unfavorable single-electron redox events.11 More broadly, the most favorable reaction pathways based on ∆E1/2 and ∆pKa can be mapped onto proton-coupled electron transfer (PCET) zone diagrams, as described by Glover, Hammerström, and co-workers.11 In some cases, the rate of HAT correlates more strongly with ∆E1/2 or ∆pKa than ∆G(H–),12–14 deviating from the Bell-Evans-Polanyi principle that overall free energy governs kinetic reactivity.15,16 These examples illustrate a route to achieving kinetic selectivity for the cleavage of stronger X–H bonds in the presence of weaker bonds. Thus, understanding how synthetic variations modify the reduction potential, pKa, and consequent BDFE is critical for controlling the thermodynamics and kinetics for HAT reactions.

Most studies have used inductive effects (i.e. electron-donating and withdrawing functionalities) to modulate these thermodynamic quantities, leading to modest changes.17 An alternative approach is to use the secondary coordination sphere to tune these properties. Borovik and coworkers demonstrated basicity controlled HAT to a manganese-oxido, where the pKa of the resulting hydroxide was...
modulated by hydrogen-bond donation from the amide ligand (Figure 1a, left).\(^\text{18}\)

The use of electrostatic interactions to control reactivity has inspired the design of a growing number of synthetic molecular complexes that incorporate charged functionalities.\(^\text{19-45}\) However, very few experimental studies explicitly examine the secondary effect of charge. A rare example from Tolman and co-workers investigated pincer coordinated Cu(II)-hydroxide complexes (Figure 1a, right).\(^\text{46}\) They reported that incorporation of sulfonate or trimethylammonium substituents expands the range of the Cu(III/II) reduction potential (\(E_{1/2}\)) by 275 mV. Despite the change in \(E_{1/2}\), the bond dissociation energies of the respective Cu(II)-aqua species remained relatively constant while the kinetics of hydrogen atom transfer to the Cu(III)-hydroxide varied. Tolman and coworkers attribute the varying kinetic rates to steric contributions of the counterions in addition to possible electrostatic effects. However, direct correlations between changes in thermochemical parameters and electrostatic effects at molecular complexes has been minimally explored.\(^\text{47-50}\)

In this study, we report the profound effect of a proximal mono-, di-, and tri-cation on high-valent Mn nitrido complexes and the hydrogen atom BDFEs of their associated imidos. The salen-crown framework provides a unique platform for isolating the effect of cationic charge on the metal center (Chart 1). The salen macrocyclic ligand supports high-valent metal ions. Non-redox active cations of varying charge are easily inserted into the crown cavity which significantly modifies the electric field potential around the redox active metal.\(^\text{51}\) Our previous investigation of Mn(V) salen nitrido complexes (1-Na, 1-K, 1-Ba, 1-Sr) with bound alkali and alkaline earth metals showed that an increase of cationic charge at the complexes resulted in anodic shifts of over 400 mV of the Mn(V)/VI reduction potential (Table 1).\(^\text{52}\) To expand on these studies, we synthesized two derivatives with +3 cations, so that our data set spans four different units of charge. We also experimentally determine the impact of charge on C–H bond activation.

Manganese nitrido complexes were selected for this study due to their utility in a variety of catalytic and stoichiometric reactions, many of which involve the formation of intermediate imidos (Figure 1b).\(^\text{53-66}\) Lau and coworkers previously reported salen manganese nitrido complexes that were activated for stoichiometric azidation of alkenes following protonation with a Brønsted acid or addition of electrophiles.\(^\text{67-69}\) Chirik and coworkers demonstrated proton-coupled electron transfer (PCET) at salen manganese nitrido complexes to form ammonia through either photodriven\(^\text{70,71}\) or thermal\(^\text{72}\) pathways. Although the bond dissociation free energies (BDFEs) at transition metal imidos are central in catalytic nitrogen cycles\(^\text{73-78}\) and C–H activation,\(^\text{79-84}\) few BDFE values have been measured compared to iso electronic metal oxidized analogues.

Following a modification of the previously reported procedure, 1-La and 1-Eu were obtained in quantitative and 94% yield, respectively (see SI for details). The \(^1\)H NMR of 1-La exhibited sharp diamagnetic resonances and the number of peaks was consistent with \(C_{2v}\) symmetry (Figure S27). The \(^1\)H NMR of 1-Eu exhibited paramagnetically shifted resonances due to the unpaired spin of the Eu\(^{3+}\) cation, however, the number of observed peaks was also consistent with \(C_{2v}\) symmetry (Figure S29). Single crystals suitable for X-ray diffraction of 1-La (Figure 2a) and 1-Eu (Figure S31) were obtained from concentrated acetonitrile solutions. In the solid state, both 1-La and 1-Eu show three inner sphere trflate anions, one of which is coordinated \(κ^2\)O,0 to the La\(^{3+}\) cation in 1-La.

The electrochemical properties of 1-La and 1-Eu were measured in acetonitrile using cyclic voltammetry (see SI for full experimental details). We previously described the bimolecular coupling of the oxidized Mn(VI) species to form two equivalents of the corresponding Mn(III) complex and \(N_2\), or an EC mechanism (electron transfer followed by a chemical step) (Figure 1b,i).\(^\text{52,56}\) In the prior study with the

Table 1. Summary of Thermodynamic Parameters

<table>
<thead>
<tr>
<th>Complex</th>
<th>(E_{1/2})</th>
<th>(pK_a)</th>
<th>N-H BDFE(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(^a)</td>
<td>0.43</td>
<td>8.0–9.4</td>
<td>76–78</td>
</tr>
<tr>
<td>1-Na(^a)</td>
<td>0.59</td>
<td>6.2–8.0</td>
<td>77–80</td>
</tr>
<tr>
<td>1-K(^a)</td>
<td>0.62</td>
<td>6.2–8.0</td>
<td>78–80</td>
</tr>
<tr>
<td>1-Ba(^a)</td>
<td>0.80</td>
<td>0.2–2.6</td>
<td>74–77</td>
</tr>
<tr>
<td>1-Sr(^a)</td>
<td>0.88</td>
<td>0.2–2.6</td>
<td>75–79</td>
</tr>
<tr>
<td>1-La(^b)</td>
<td>1.02</td>
<td><0.2</td>
<td><79</td>
</tr>
<tr>
<td>1-Eu(^b)</td>
<td>1.13</td>
<td><0.2</td>
<td><81</td>
</tr>
</tbody>
</table>

\(^a\)Values from ref 82. \(^b\)Values from this work. \(^c\)Mn\(^{VI/V}\)(N) couple vs. Fe(C\(_5\)H\(_5\))\(^2+/0\) in MeCN. \(^d\)Values from protonation of nitride complexes in MeCN-d\(_3\) at 20 ºC as determined by \(^1\)H NMR. \(^e\)Values in kcal/mol, calculated from experimentally measured \(E_{1/2}\) and \(pK_a\) data according to equation 1.
monoo- and di-cationic nitrido complexes, an increase in charge corresponded to a slower rate of bimolecular coupling. Consistent with this trend there is no evidence of bimolecular coupling upon oxidation of 1-La to Mn(VI) even at slow scan rates (10 mV/s) (Figure S17). The redox event is reversible and there is no reduction event corresponding to the Mn(III/II) couple at more negative potentials, which would be the expected product of bimolecular coupling. The scan-rate dependent cyclic voltammetry was collected for 1-La (Figure 2b). The current increases linearly with the square root of the scan rate, indicating electron transfer is under diffusion control (Figure S18).

Complex 1-Eu does not exhibit a strictly reversible oxidation event corresponding to the Mn(VI/V) redox couple (Figure S19); the cathodic wave is smaller than the anodic wave. Although analytically pure 1-Eu is used for cyclic voltammetry, there is evidence that upon oxidation adventitious Na+ ions (ionic radius of 102 pm) displaces the europium (III) ion due to the latter’s poor fit (ionic radius of 94.7 pm) in the crown. There is no evidence of any contamination by 1-Na prior to oxidation by elemental analysis. Additionally, the 1-Na oxidation peak is not observed in the initial oxidative scan. However, after several oxidation cycles, an additional cathodic redox feature appears at ~0.6 V (vs. [Fe(C5H5)2]3+/4+) (Figure S21), which matches the oxidation potential of the Mn(V) nitrido with Na+ in the crown cavity. Based on the oxidation event observed for 1-Eu, we estimate an E1/2 value of ~1.13 V for 1-Eu.

The E1/2 values for the Mn(VI/V) reduction potential of 1.02 V and ~1.13 V (vs. [Fe(C5H5)2]3+/4+) for 1-La and 1-Eu, respectively, corresponds to a shift of 600 and 730 mV more positive than that of the non-crown (salen)MnN (A). These values correspond to 14 and 16 kcal/mol changes, respectively, in the E1/2 contributions to the N-H BDFE (eq 1 in Chart 1 and Figure 3).

We investigated the protonation of the manganese(V) nitrido complexes in order to determine the pKa values and calculate the BDFE of the imido as a function of overall cationic charge (Figure 1b.i). The direct detection and isolation of electrophilic transition metal parent imido complexes is challenging because of accessible coupling, disproportionation, and nitrene transfer pathways. Acid titration experiments conducted at room temperature or ~35 °C in acetonitrile and were monitored by UV-vis spectroscopy by observing changes to two absorption bands associated with the manganese nitrido at ~380 and ~600 nm. No spectral features corresponding to a putative imido were observed by UV-vis.

Lau and coworkers previously discussed the instability of the imido formed following protonation of the nitrido. They postulate that, following protonation of the nitrido, 2 equiv. of the resulting imido complex couple to form a manganese(III) μ-diazene species, which rapidly decomposes to give the final Mn(III), N2, and NH3 (Figure 1b.i). Indeed, in our studies the UV-vis spectrum at the endpoint of acid titration corresponded to that of the Mn(III) complexes.

In an effort to observe the imido, we synthesized the 15N-labeled nitrido complex, 1-Ba(15N). Protonation of 1-Ba(15N) with 1 equiv. [H(OEt2)]2[BF4] in acetonitrile-d3 was performed in a J-Young tube and tracked by 1H and 15N NMR at ~30 °C. Only resonances corresponding to the starting material and Mn(III) product were observed. Additionally, analysis of the gas headspace following protonation of 1-Ba(15N) showed evolution of 14N15N and 15N2, further supporting the coupling pathway postulated by Lau. It is possible that instead of protonating on the nitrido, nucleophilic attack at the imine of the salen could occur. Alternatively, protonation of the crown ether could result in displacement of the bound cation. However, protonation at either of these sites is unlikely, as there is quantitative recovery of the manganese(III) complex following protonation, indicating the reactivity proceeds as shown in Figure 1b.i.

The instability of the manganese salen imidos precluded accurate establishment of an equilibrium following protonation of the nitrido. Therefore, we determined bounds for the pKa values by tracking protonation using 1H NMR in acetonitrile-d3 at room temperature. Protonation of the Mn(V)N with acids of known pKa values (see SI for full experimental details) resulted in effective bracketing of the pKa values for the imido intermediates. Notably, the pKa values span ~9 units, with the basicity of the Mn(V) nitrido decreasing with increasing charge of the bound cation. A linear correlation between the Mn(VI/V) reduction potential and pKa was also observed (Figure 3), indicating that a positive shift in reduction potential is largely compensated by acidification of the imido.

The BDFEs for the imido N–H bonds were then calculated according to the thermodynamic relation depicted in the square scheme in Chart 1 and equation 1. These values are also tabulated in Table 1. The change in pKa and positive shift in reduction potential serve to maintain a relatively constant BDFE across the series, encompassing four different overall charges. Although determination of N–H bond strengths is challenging due to the reactive nature of the intermediate imido, understanding these values is essential to predicting reactivity. In a recent computational study by Cundari and coworkers on these crown-appended manganese nitrido salen complexes, they determined that increase in charge at the bound cation resulted in an increase in N–H BDFE. Further, an increase in charge of the cation was correlated to lowering of the free barrier energy for hydrogen atom transfer (HAT) from methane, thus indicating that this process should be kinetically facilitated by the presence of bound cation. Therefore, we explored the hydrogen atom
Figure 3. Plot showing compensatory relationship between reduction potential and pK_a for complexes with incorporation of cationic charge, leading to similar BDFE values across the series. aAxis values calculated as 23.06($E_{1/2}$) as shown in equation 1. bAxis values calculated as 1.37(pK_a) as shown in equation 1.

abstraction (HAA) reactivity of the Mn(VI) complexes with a hydrogen atom donor, 9,10-dihydroanthracene (DHA, BDFE (DMSO) = 76 kcal/mol)17 (Figure 4). Through UV-visible spectroelectrochemical experiments as well as chemical oxidation, we determined that hydrogen atom transfer (HAT) reactivity was enhanced in the presence of the intramolecular cation.

UV-visible spectroelectrochemistry was used to monitor the reactivity of complexes A and 1-Ba in the presence of 100 equiv. DHA. Upon oxidizing A to the Mn(VI) species, only spectral changes that correspond to formation of Mn(III) were observed (Figure S13). Recovery of the solution following bulk electrolysis and analysis by 1H NMR spectroscopy showed no evidence for formation of anthracene, the expected product of hydrogen atom abstraction. For 1-Ba, however, absorption bands corresponding to anthracene (340-380 nm) were observed to increase in intensity during electrolysis (Figure S14). Analysis of the recovered solution following electrolysis by 1H NMR spectroscopy exhibited peaks corresponding to anthracene. Attempts to perform the spectroelectrochemical electrolysis of solutions of 1-La in the presence of 100 equivalents of DHA and monitoring by UV-Vis were unsuccessful. The positive potential required to oxidize 1-La resulted in direct oxidation of DHA, resulting in unreliable determination of whether 1-La was reacting with DHA directly. Therefore, we elected to perform the chemical oxidation of A, 1-Ba, and 1-La with tris(2,4-dibromophenyl)amidinium hexachloroantimonate (Magic Green) under an inert atmosphere in n-PrCN at -40 °C. Following in situ generation of the Mn(VI) nitrido and consumption of Magic Green, 10 equiv. of DHA were subsequently added and the reaction was allowed to stir at -40 °C until no further reaction was observed. Analysis of the products by 1H NMR was used to quantify the yield of anthracene (2) for each manganese complex (Scheme 1, inset table, Figure S15). Results of the chemical oxidation were variable due to issues with complete formation of the Mn(VI) intermediate prior to addition of 9,10-dihydroanthracene. However, the addition of cationic charge did have a slightly positive effect on C–H activation. The hydrogen atom abstraction exhibited by 1-Ba and 1-La may be due to the inhibition of bimolecular coupling following oxidation to the Mn(VI) due to charge.25 However, additional electrostatic interactions facilitating HAT cannot be ruled out.

Protonation and hydrogen atom transfer reactions were explored at a series of Mn-nitrido salen complexes with appended crown-bound cations. The effect of electrostatics imparted by the cation were investigated for their reactivity toward proton and electron transfer. Our results established BDFEs for the manganese imido N

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website.

Crystallographic data (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: lyang@uci.edu

ORCID

Nadia G. Léonard: 0000-0002-0949-5471
Teera Chantarojsri: 0000-0002-4951-9503
ACKNOWLEDGMENT

We thank J. L. Lee in Prof. Borovik’s group (UCI) for assistance in collecting EPR spectroscopy data. We also thank Dr. Felix Grun (UCI) for assistance with collecting mass spectrometry data.

REFERENCES

(28) Burns, K. T.; Marks, W. R.; Cheung, P. M.; Seda, T.; Zakharov, L. N.; Gilbertson, J. D. Undecoupled Redox-Inactive Lewis Acids in

Cationic charge transfer hydrogen atom transfer

$E_{1/2}$

$\Delta G(H^-)$

BDFE

pK_a

N-H BDFE stays the same

$0, 1, 2, 3+ \text{ Change} > 100 \text{ mV} \Delta E_{1/2}$

$\geq 9 \mathrm{pK}_a \text{ units}$