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Abstract

The recently proposed Genetic expert guided learning (GEGL) framework has

demonstrated impressive performances on several de novo molecular design tasks. Despite

the displayed state-of-the art results, the proposed system relies on an expert-designed

Genetic expert. Although hand-crafted experts allow to navigate the chemical space

efficiently, designing such experts requires a significant amount of effort and might

contain inherent biases which can potentially slow down convergence or even lead

to sub-optimal solutions. In this research, we propose a novel genetic expert named

InFrag which is free of design rules and can generate new molecules by combining

promising molecular fragments. Fragments are obtained by using an additional graph

convolutional neural network which computes attributions for each atom for a given

molecule. Molecular substructures which contribute positively to the task score are

kept and combined to propose novel molecules. We experimentally demonstrate that,

within the GEGL framework, our proposed attribution-based genetic expert is either

competitive or outperforms the original expert-designed genetic expert on goal-directed

optimization tasks. When limiting the number of optimization rounds to one and

three rounds, a performance increase of approximately 43% and 20% respectively is
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observed compared to the baseline genetic expert. Furthermore, we empirically show

that combining several experts that share a fixed sampling budget at each optimization

round generally improves or maintains the overall performance of the framework.

1 Introduction

The ability to discover and design de novo molecules with desired properties is of great interest

in a wide range of applications ranging from drug discovery1 to materials engineering.2,3

This high-dimensional optimization task can be addressed via the inverse molecular design

paradigm2 which tries to find suitable candidate compounds given some target properties.

This task is non-trivial considering the size of the molecular space; the drug-like chemical

space alone is estimated to be about 1060.4 To tackle this challenge, one has to design a model

that is computationally tractable and feasible. This optimization challenge can be framed

broadly into several classes. Coley et al. 5 divides these classes into physical matters, which

encompasses most drug discovery efforts on the output of the compound. These compounds

are potentially used as part of a therapeutic. The second class is the process, which is seen

as an important step to transition from in silico to a real-world experimental phase. The

final class is defined as the model itself, which is the core engine driving the design choices

behind each generation of de novo molecules.

In this paper, we shall focus our effort towards modeling of de novo molecules. The key

challenges of seeking a de novo design is the process of (1) molecule generation, (2) the

scoring function of the molecules, and (3) an optimization process for training the model with

respect to the scoring function.6 Each of these components have their own set of challenges.

For instance, the process of generating de novo molecules requires models that are capable

of ensuring structural fidelity (i.e., generated molecules should be sensible) and structurally

valid (i.e., molecules are stable). The scoring function plays an important role to guide the

model during the optimization process. A trivial scoring function might explore undesired or

obvious parts of the chemical space. In contrast, an over-complicated scoring function, in
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terms of imposed constraints, could cause instability during optimization as the model might

not be able find suitable solutions. Finally, the optimization process should inherently reduce

the training complexity from an enormous search space to circumvent the difficulty of an

intractable computation problem.

1.1 Generative Models

Generation of de novo molecules can be achieved through several means. There are three

distinct strategies that can be used by methods proposing novel molecules, each tackling

the generative problem at a different level of granularity.7 Atom-based strategies construct

molecules atom by atom, while fragment-based strategies consider molecular structure

combination with more than one atom. The third type of strategies are reaction-based ones

which utilize a set of reactants and reaction rules to produce new molecules.

The simplest approach to molecular generation is to consider it in terms of manipulating

molecules in the SMILES strings format.8 Gómez-Bombarelli et al., Segler et al. 9,10 perform

interpolation of SMILES string in the latent space with GrammarVAE11 such that new

SMILES strings can be sampled. Since SMILES strings are brittle representations of molecules,

these models have the potential to generate invalid SMILES that are unparsable and therefore

cannot be generated. As an alternative, Dai et al. 12 introduced a decoder with syntactic and

semantic constraints of SMILES via context-free and attribute grammars. On the other hand,

techniques such as active learning13 and reinforcement learning14 are popular approaches

to constrain the model towards generating valid SMILES through label signals and valid

representation states during training. These approaches may further be refined with transfer

learning to ensure a reasonable search space is first established before an applied learning

regime is performed.15

In addition, models that induce structural constraints are among popular approaches

which are able to ensure validity of the generated molecules. For instance, Simonovsky and

Komodakis 16 represented molecules with their corresponding graph structure in terms of
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adjacency matrices. The model is then trained to reconstruct these matrices while preserving

one-to-one matching from the input graph. The outcome is a trained variational distribution

that allows new samples to be drawn, in order to produce novel molecules. However, this

approach is extremely costly due to complexity of the graph-matching algorithm; requiring a

time complexity of O(n4), where n denotes the number of nodes in a single molecular graph.

From a different perspective, You et al., Li et al. 17,18 considered a node-by-node generation

approach in attempt to alleviate the aforementioned problem. This specific approach is largely

seen as successful up to a certain degree, but perfect validity for all generated molecules was

not demonstrated. You et al. 19 combined reinforcement learning and a graph convolutional

neural network to construct molecular graphs one node at a time.

In terms of fragment-based methods, Jin et al. 20 showed that using node by node generation

could lead to invalid intermediate states. Instead, generating structure by structure is a

preferable approach with which the aforementioned pitfall can be circumvented. The proposed

solution, called Junction Tree Variational Autoencoder (JTVAE),20 enforces structure by

structure generation through means of tree decomposition before projecting to a latent space.

A similar choice of strategy is proposed in ChemTS21 which presents a simpler algorithm

utilizing Monte Carlo Tree Search (MCTS) instead of a Variational Autoencoder (VAE). This

approach ensures that functional groups are preserved while mutations are induced via a

Recurrent Neural Network (RNN). Since the algorithm employs a MCTS strategy alongside

a RNN, it is one of the fastest generative model capable of generating approximately 40

molecules per minute. In contrast, CVAE9 with Bayesian Optimization (BO) which employs

a VAE architecture was the slowest, generating approximately 0.1 molecules per minute.

Polishchuk 22 recently proposed a simple framework called CReM which memorizes structures

as well as their atomic context within the molecule they originated from. New valid molecules

are generated by swapping structures with other structures sharing the same context.

In terms of practicality, reaction-based methods are arguably the most common choice

to generate a set of new molecules. These approaches utilize a model that predicts the
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forward reaction in silico. SYNOPSIS23 is one of the earliest methods that considers applying

virtual reactions iteratively to maximize the objective function. AutoGrow424 used genetic

algorithms and a set of reaction libraries derived from robust organic reactions to mutate

molecules in a population. Jin et al. 25 proposed RexGen which utilizes a Weisfeiler-Lehman

Network to predict reactions using a highly popular reaction-product dataset, USPTO.26

Bradshaw et al. 27 proposed MoleculeChef that optimizes the latent space via VAE and utilizes

a reaction-prediction model like Molecular Transformer28 to approximate the forward reaction

while ensuring synthesizability. ChemBO29 approaches the same problem in a black box

optimization manner where Bayesian Optimization is leveraged as the optimization algorithm.

The oracle, in particular, is the RexGen forward reaction-prediction model.

1.2 Interpretability Methods for Graph Neural Networks

Interest in interpretability methods has surged in recent years. Explainability methods

like gradient-based saliency maps,30,31 Class Activation Mapping (CAM),32 and Excitation

Backpropagation (EB)33 are widely applicable to the computer vision domain. These methods

are the most common explainability methods originally designed for Convolutional Neural

Networks (CNN). Recently, Pope et al. 34 extended these methods to Graph Convolutional

Neural Networks (GCNN).35 However, their ablation study was limited to visualization only.

Adding interpretability to graph-based deep neural networks is currently an active research

field.

To the best of our knowledge, there is a limited number of work utilizing interpretability to

explicitly guide the generative optimization process. In an attempt to exploit interpretability,

Jin et al. 36 proposed RelationaleRL. The proposed method tries to solve multi-objective

problems by first identifying molecular substructures for which the desired property is

highly probable and subsequently combining these structures using a graph generative model.

Although our proposed method is similar in its fundamental idea, our work is distinct in

several ways to this prior work: 1) Our method is significantly simpler compared to the above
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work as it does not require a parameterized graph generative model as well as a fine-tuning

phase. We ensure simplicity in our fragment-based genetic expert by randomly sampling and

combining the extracted fragments without needing to fall back to reinforcement learning

methods such as MCTS; 2) The molecular representation to manipulate the fragments is both

string-based when generating molecules as well as during the generation of novel candidate

molecules. The graph-based representation of molecules is only used during the creation of

the atom-wise attributions.

1.3 Genetic Expert Guided Learning

Our work is heavily inspired and builds upon the recently introduced Genetic Expert Guided

Learning (GEGL) framework proposed by Ahn et al. 37 which combines meta-heuristic

optimization with reinforcement learning. GEGL has demonstrated strong capabilities and is

at the time of writing the state-of-the-art in deep molecular optimization. The framework is

composed of 4 distinct components: a neural apprentice, two reward priority queues and a

genetic expert.

TheNeural Apprentice is a long short-term memory network tasked with reasoning over

and generating high-rewarding molecules in SMILES representation. At each optimization

step, the neural apprentice first generates novel candidate molecules token-by-token. These

molecules are then passed and processed by the first reward priority queue. Formally, the

neural apprentice is represented by its apprentice policy, π(x; θ), with x denoting the molecule

x and θ denoting the trainable parameters. The apprentice policy is then expected to generate

a new set of molecules xnew that maximizes the reward r(x). The reward is a function that

scores the generated molecules xnew. In this work, we follow the original work by Ahn et al.,

utilizing molecular properties as the reward.

Reward Priority queues function as a long-term memory storage as they first score

the candidate molecules, add them and finally rank them against previously memorized

high-rewarding molecules. Each priority queue has a limited memory capacity such that
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molecules with lower scores are dropped out of the memory if better candidates are present.

The best performing molecules generated by the neural apprentice are extracted from the

priority queue related to the neural apprentice. These molecules are utilized as the mating

pool for the genetic expert. Formally, the queue Q and Qex can store up to K generated

molecules. Here, Q and Qex is used to define the reward priority queue for the neural

apprentice and the genetic expert respectively.

Genetic Expert. The original GEGL work made use of the graph-based genetic expert

proposed by Jensen.38 Genetic experts allow methods to rapidly traverse the chemical space

and drive exploration. The child molecules from the expert are passed and processed in a

separate priority queue (denoted by Qex) in the same manner as described above. The last

step consists of combining all high performing molecules from both queues and to improve

the neural apprentice via imitation learning. As noted in the original work, GEGL can

be interpreted as a Reinforcement Learning method with a Markov decision process where

the episode length is fixed to one and actions correspond to the sampled molecules. The

framework setup ensures that the performance is either maintained or increased over time.

The combination of a genetic expert, which is capable to rapidly propose a diverse set of

novel molecules, with a neural apprentice, which is able to reason over and steer generation

towards a desirable molecular distribution, explains the displayed performances by the base

framework.

The framework can be summarized in the following steps:

Step I: The neural apprentice with apprentice policy π(x; θ) generates a new set of

molecules xnew and is stored in a priority queue Q, ordered according to the

reward.

Step II: The priority queue is passed to the genetic expert and the expert policy πex

generates a new set of molecules using the initial priority queue as seed molecules.

These molecules are added to a new priority queue Qex.
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Step III: Using both queues, Q and Qex, the apprentice policy update its trainable

parameter θ via imitation learning, such that molecules are sampled from the

union of the priority queues Q ∪Qex.

The above framework has several considerable advantages. We note that each component is

purposefully kept modular, allowing to exchange them with more sophisticated components if

desired. In addition, the neural apprentice policy and expert policy are both computationally

efficient generator functions.

In this research, we propose a novel genetic expert which makes use of the SELFIES39

representation of fragments extracted from high-rewarding molecules. The fragments are

randomly recombined and a mutation operation is applied with some predefined probability.

A graph convolutional neural network is trained to imitate a given scoring function of interest,

allowing us to compute atom-wise attributions with respect to the predicted score for any

queried molecule. Substructures of molecules where the sum of the atom-wise attributions

contribute positively to the predicted score are kept in a fragment library from which the

genetic expert samples and recombines fragments. We apply selection pressure on the fragment

library by only keeping fragments from high-scoring molecules.

The proposed framework’s contribution can be summarized as follows:

1. We propose a fragment-based genetic expert that requires no handcrafted rules. Frag-

ments are extracted from molecules using an explainability method and a graph

convolutional network.

2. We present an in-depth ablation study to investigate the importance of different genetic

experts and their combination.

More specifically, we show that (1) the proposed genetic expert is much more robust and

could circumvent certain pitfalls proposed by Ahn et al. and (2) the proposed framework is

able to leverage beyond a single genetic expert, leaving higher possibility for the model to

explore and exploit certain genetic experts.
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2 Methods

In this section, we discuss the overall framework as well as our proposed InFrag expert and

other mechanisms in further details. We first discuss how the method extracts fragments

from arbitrary molecules based on the computed attribution for each involved atom. Next,

we show how the obtained fragments are recombined to propose novel candidate molecules.

Finally, we demonstrate how this expert can be integrated into the GEGL framework to either

replace or alternatively be combined with other genetic experts. We denote the complete

framework as eGEGL for enhanced GEGL. The extended framework is depicted in Figure 1.

Neural apprentice  Priority Queue Genetic experts 

Interpretability 
GCN

Priority Queue 

Fragment library Fragment 
recombination

InFrag expert

Sampling 
strategy 

Target sampling from priority queues

Imitation 
learning

o

HO HO

Figure 1: Complete depiction of the eGEGL framework. The original framework is enhanced
with a fragment-based genetic expert denoted as InFrag. InFrag consists of a GCN model
which creates attribution for queried molecules from which fragments are extracted. The
extracted fragments are then randomly recombined to obtain novel candidate molecules. In
addition, we include the possibility to leverage several experts via a chosen sampling strategy
R which determines how the sampling budget is to be allocated to each expert.

2.1 Molecular representation

Molecules are represented as undirected graphs G = (V , E) with a total number of N nodes

vi ∈ V representing the atoms and edges between nodes denoted as ei,j ∈ E representing the
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bonds. Furthermore, we extract the binary Adjacency matrix A ∈ RN×N from the edges.

Each node is represented as a 74-dimensional vector ni ∈ R74 containing multiple distinct

features. More details about the meanings of the used features can be found in supplementary

material Table S2.

2.2 Attribution-based fragment generation

We are motivated by understanding which parts of a molecule are contributing towards its

property score. Attribution-based model interpretability methods allow us to reason between

model input features and predicted scores. Such attributions cannot be directly computed

from the optimization scoring function which is assumed to be an available but black-box

function used to evaluate the fitness of candidate molecules. To overcome this issue, we train

a pseudo-scoring function that is encouraged to imitate the original black-box scoring function

of the optimization task, hence allowing us to obtain the desired attributions through this

surrogate model. We implement a Graph Convolutional Network (GCN)35 that takes the

above-mentioned node features and adjacency matrix as inputs and is trained to predict task

scores. Please refer to supplementary materials Table S1 for a detailed description of all used

hyperparameters and their values.

To generate attributions, we use the Class Activation Maps (CAM)32 method due to its

implementation simplicity and performance. More precisely , we compute the attribution for

each atom via

attribution(atomi) = wT
out · hi, (1)

where wout corresponds to the weights of the final dense layer of the GCN after the average

pooling layer and hi represents the latent node features of the node corresponding to atom i just

before the pooling layer. Sanchez-Lengeling et al. demonstrated that CAM is able to perform

relatively well, especially when combined with GCN, compared to other interpretability

methods in the context of graph neural networks.40 We note that although we did not
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experiment with other attribution methods and graph neural networks, other methods and

models can be used to generate the necessary attributions.

Fragments of interest are identified by comparing the sign of the attribution for each atom

involved in a given bond. In the case where the signs are found to be opposite, we fragment

the molecule along that bond. To preserve complex substructures, we only consider and

fragment single bonds and bonds which are not aromatic (as determined by RDKit41). We

then proceed to sum up the individual attributions of all the atoms in the fragment. If that

sum is greater than 0.0, we consider the fragment to contribute positively to the predicted

score and keep that fragment. Otherwise, the fragment is discarded.

Our objective is to keep and recombine fragments from high-rewarding molecules only.

After processing all of the queried molecules as described above, we end up with fragments

contributing positively to the predicted score regardless of its value. In order to sort and

only consider high-rewarding fragments, we associate each fragment with the score from the

black-box scoring function of the molecule it originated from. All fragments are added to a

data-structure we call the fragment library. The fragment library allows to memorize the

best scoring fragments and we impose uniqueness of the fragments in the library. When a

new fragment is being added, we first check if the fragment is already present in memory. In

case the fragment is already present, we set the score associated with the fragment to the

maximum score between the original in-memory fragment and the new duplicate fragment.

We apply selection pressure on the fragment library by limiting it’s memory size to 1,000

fragments. This operation allows to remove low-rewarding fragments and leads the memory

to only contain high-rewarding fragments which can be used in future optimization rounds.

The complete process of fragment generation is graphically depicted in Figure 2.

Like the neural apprentice, the GCN model is trained every epoch such that it can reason

over newly discovered and potentially better molecules. We also experimented with the

setting where the weights of the GCN model are fixed and not updated during optimization.
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Figure 2: Generation of fragments using interpretability methods. A molecule is first processed
to extract the adjacency matrix and node features. A graph convolutional network is used
to calculate the last latent node embedding and final dense layer weights to compute the
atom-wise class activation maps. The molecule is then fragmented along bonds where the
sign of the attributions are opposite to each other. Only fragments contributing positively to
the score, as determined by taking the sum over all involved atoms, are kept (depicted by the
green arrow) and considered in further steps.

12



2.3 Fragment recombination

To generate novel candidate molecules with our genetic expert, we first collect all fragments

of the fragment library which are in SMILES format. New molecules are generated by

randomly sampling 2 to 5 fragments and translating the sampled fragments into a SELFIES

representation. Selfies representations posses the convenient property to always be valid,

making their use very convenient for the fragment-crossover operation. The sampled fragments

are randomly shuffled and combined to obtain a novel candidate SELFIES string from this

fragment-crossover procedure. With some predefined probability, we furthermore apply a

mutation operation on the obtained string in order to increase exploration and diversity

of the generated molecules. Mutations include deletion, insertion or exchange of one of

the SELFIES token on the currently operated string. Each type of mutation has the same

probability of occurrence. This generative process is repeated until the number of desired

molecules is reached. We note that the SELFIES representation makes use of an internal

state when translating from the conventional SMILES representation. This implies that one

might require a more complex recombination strategy compared to the one described above

to obtain better crossover molecules from the sampled fragments. We empirically found that

the simple recombination strategy as described above performs competitively, regardless of

the fact that the number of atoms is not necessarily preserved during the crossover operation

as illustrated in Figure 3. This representation-blind recombination strategy could be used

in other problem settings since no assumptions are made about the task or the underlying

representation. In addition, it does not require us to define complicated recombination rules

and include expert knowledge on how fragments should relate to each other. This minimizes

the potential for biases induced by such expert rules.

2.4 GEGL with multiple genetic experts

An additional proposal we make to improve overall performance is to simultaneously leverage

multiple genetic experts during molecular optimization. We motivate this approach by the
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Figure 3: Recombination method for high-rewarding fragments. Fragments are sampled from
the fragment library which contains high-rewarding fragments only. The fragments are first
translated into their respective SELFIES representation, randomly shuffled and recombined.
The final SELFIES token string is translated back to a SMILES representation and the
resulting string is the new candidate child molecule resulting from the fragments. Please note
that the proposed crossover rule is highly general and unbiased as it makes no assumptions
about the used molecular representation.

observation that it is not readily obvious what type of genetic expert, and hence inductive

biases related to it, is going to perform well on a given optimization task. Therefore, we

allow for multiple genetic experts to be queried while maintaining the total sampling budget

for a fair comparison. We evaluate several sampling strategies, denoted as R in Figure 1, to

determine the sampling proportion for each expert in each optimization round:

• Fixed: We keep the proportion for each expert fixed and equal for each expert. The

obtained distribution is essentially a discrete uniform distribution u.

• Softmax: This strategy first computes the ratio of each expert in the expert memory

ri and passes these values through a softmax function to squeeze preference towards

high-performing experts. The probability of choosing expert i out of all K experts to

sample a new candidate molecule is calculated via

prob(i) =
exp(ri)∑K
j=0 exp(rj)

(2)
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• Rebalancing: In this method, we first determine the improvement or deterioration of

each expert compared to the previous optimization round which we denote δi. The new

distribution for each expert i at time t is calculated as:

prob(i, t) = (prob(i, t− 1) + δi) + 0.2 ∗ (ui − (prob(i, t− 1) + δi)) (3)

where ui is the discrete uniform probability mass. This method ensures that no expert

dominates the sampling process for too many optimization rounds and as the name

implies re-calibrates the sampling proportions back to a uniform distribution. The

shift back to a uniform distribution can easily be seen if the change in best performing

experts δi is set to a value of 0.

A pseudo-code algorithm of this multi-expert framework and the differences to the original

GEGL-framework are provided in algorithm 1. We furthermore illustrate the complete

eGEGL framework (InFrag + multiple genetic experts) in Figure 1.

Algorithm 1 Multi-expert Genetic expert-guided learning pseudocode. Differences to the
original algorithm are shown in red.
Require: Number of genetic experts N , Sampling budget M , sampling strategy R
1: Set Q← ∅, Qex ← ∅ . Initialize the max-reward priority queues
2: Set S ← uniform(n) = 1

N
. Initialize the sampling distribution for experts

3: for t = 1, ..., T do . Optimize for T rounds
4: for m=1,..,M do . Samples from neural apprentice
5: Update Q← Q ∪ x where x ∼ π(x; θ)
6: If |Q| > K, update Q← Q \ {xmin}, where xmin = argminx∈Qr(x)
7: end for
8: for m=1,...,M do . Sample from the genetic experts
9: id ∼ S . Determine from which expert to sample from

10: Update Qex ← Qex ∪ x where x ∼ πex,id(x; θ)
11: If |Qex| > K, update Qex ← Qex \ {xmin}, where xmin = argminx∈Qexr(x)
12: end for
13: Update S ← R(S) . Update sampling distribution according to strategy
14: Maximize

∑
x∈Q∪Qex

log π(x; θ) over θ
15: end for
16: return Q ∪Qex . Output best generated molecules
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3 Results and Discussion

3.1 Baselines and benchmarks

We benchmark and report performances of the enhanced framework against the original

framework. In addition, we also add a baseline consisting of a simplified version of the

STONED genetic operators proposed by Nigam et al. 42 which we will denote as simplified-

STONED henceforth. More precisely, we limit the number of sampled chemical paths between

any two parent molecules to a single one for this genetic expert. For other tasks, we include

and compare against results obtained for selected baselines as reported in the original GEGL

paper unless noted otherwise.

As for benchmarks, we follow the original GEGL work and compared the trained models

on the penalized logp task and a subset goal-directed Guacamol benchmarks which we will

describe in more details below. Furthermore, we used the same pretrained neural apprentice

LSTM model as described in the original work.

Penalized logp is a standard benchmark to evaluate de novo generative methods. The

objective is to maximize the penalized octanol-water partition coefficient score defined as:

PenalizedLogP (x) = LogP (x)− SyntheticAccessibility(x)−RingPenalty(x) (4)

where LogP is the unpenalized octanol-water partition coefficient,9 SyntheticAccessibility is a

penalty term accounting for synthesizability43 and RingPenalty is a penalty for rings with a

size larger than 6. We impose a constraint onto the generative model by limiting the number

of SMILES characters to 81 following previous work.

Goal-directed Guacamol benchmarks are a set of 20 benchmarks proposed by Brown

et al. 44 which were specifically designed for comparing generative models. The benchmarks

evaluate a set of molecules to account for molecular diversity. More specifically and following

the notation in Ahn et al.,37 the final benchmark score for a given molecule set X is computed
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as

Guacamol(X) :=
∑
S∈Q

S∑
s=1

r(xΠ(s))

S|Q|
for s = 1, ..., |X| − 1 (5)

where Q is a list of integers and Π is a permutation function which ensures that the molecules

x ∈ X are sorted in descending order with respect to their respective scores. The goal-

directed benchmarks contain a variety of tasks such as rediscovery, similarity or multi

property optimization. We refer readers to either the original Guacamol and GEGL papers for

a more detailed description of each task type.37,44 For the tested tasks, we limit the number

of characters to 100 for all generated SMILES strings.

3.2 GCN pretraining

One core assumption and requirement of our fragment-based genetic expert is that it is

possible to leverage a GCN model which is able to approximate an arbitrary scoring function

of interest. Therefore, we start by first designing a simple experiment to ensure that the

GCN model which functions as a pseudo-scorer is able to mimic the true scoring function and

thus can be used as as proxy model for it when calculating the atom-wise attributions. For

each of the tasks described below, we checked the capability of the scoring function model to

imitate the oracle function.

Similar to the neural apprentice in the original GEGL framework, the GCN model is

first pretrained either on the ZINC45 or ChEMBL46 dataset. We formulate the problem

as a regression task where the model is tasked to predict the oracle score given by the

original scoring function. Hyperparameters for the model and training can be found in the

supplementary material Table S1. We did not tune the hyperparameters of the model or

other training parameters as the model empirically is reasonably able to predict the true

scores as shown below. Figure 4 displays the comparison between the predictions by the

trained model versus the ground-truth for the plogp task and the Guacamol goal-directed

benchmark Median molecule 1 as described in sections 3.3 and 3.4. Figures for additional
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tasks can be found in the supplementary material Figures S1-S9.

The obtained results indicate that the learning of useful representations is heavily task-

dependent. For example, the graph neural network model wasn’t able to learn meaningful

representations for both Isometry tasks of the Guacamol benchmark. Results shown below

demonstrate that the eGEGL framework making use of the fragment-based genetic expert is

nonetheless able to achieve competitive performances compared to the best method.

(a) Penalized logp task (b) Median Molecules 1

Figure 4: Comparison between the groundtruth score and predicted score by a pretrained
GCN model.

3.3 Penalized logP task

Table 1 summarizes the mean and standard deviation comparison between several reported

baselines and the enhanced GEGL framework we propose. We ran 5 independent experimental

runs for each of our models where each round consists of 200 optimization rounds following

previous work. The results demonstrate that there is no gain or decrease in performance by

swapping out the genetic expert. This is remarkable because it indicates that expert-designed

genetic experts can potentially be replaced with simpler and bias-free genetic-experts without

loss in performance.
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Table 1: PenalizedLogP results. Results are displayed as mean and standard deviation.

Algorithm Objective

JT-VAE20 4.90± 0.33
ChemTS21 5.60± 0.50
GCPN19 7.86± 0.07
GB-GA38 15.76± 5.76
DA-GA47 20.72± 3.14

GEGL (GB-GA expert)37 31.40± 0.00

GEGL (simplified-STONED expert) 31.40± 0.00
GEGL (InFrag expert) 31.40± 0.00

We furthermore note that the InFrag genetic expert is able to extract useful information

from the pretraining phase of the GCN which can be leveraged from the start of the

optimization process. To demonstrate this, we additionally compared the different genetic

experts in the setting where obtaining and evaluating candidate molecules is assumed to be

undesirable. Concretely, we limit the optimization process to a single and three optimization

rounds respectively and evaluate the generated molecules. As can be seen in Table 2, our

InFrag genetic expert is able to generate higher-rewarding molecules in this setting, even

surpassing the JT-VAE and ChemTS baselines as can be seen from Table 1 and achieving

similar results to the reinforcement learning based GCPN method. These results indicate

that our genetic expert is appropriate in settings where obtaining additional labels for novel

candidate molecules is expensive or difficult, as is usually the case in real-world applications.

This is to be expected as the GCN is able to leverage the learned representations from

the pretraining phase and therefore can reason and propose high-rewarding novel molecular

candidates from the beginning of the optimization process.

3.4 Goal-directed guacamol benchmarks

Finally, we evaluated the proposed enhancements and genetic expert on a subset of the

goal-directed benchmark tasks proposed in the Guacamol benchmark. More precisely, we

excluded all Rediscovery and all Similarity tasks for which multiple baselines are able to
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Table 2: One- and Three-round PenalizedLogP results. Entries are displayed as mean and
standard deviation.

Algorithm 1-round optimization 3-round optimization

GEGL (GB-GA expert)37 5.44± 0.17 7.92± 0.42

GEGL (simplified-STONED expert) 4.29± 0.14 6.82± 0.25
GEGL (InFrag expert) 7.81± 0.61 9.50± 0.24

Improvement over baseline 43.6% 19.9%

obtain a perfect score of 1.0. Table 3 summarizes the obtained experimental results.

Table 3: Results for the goal-directed Guacamol benchmarks for different genetic experts
leveraging the GEGL framework. We show selected baselines for comparison as reported by
the original GEGL work.37

Baselines GEGL-based models

Task GB-GA38 MSO48 CReM22 GB-GA37 simplified-STONED InFrag

C11H24 0.971 0.997 0.966 1.000 1.000 1.000
C9H10N2O2PF2Cl 0.982 1.000 0.940 1.000 1.000 1.000
Median molecules 1 0.406 0.437 0.371 0.455 0.455 0.455
Median molecules 2 0.432 0.395 0.434 0.437 0.419 0.427
Osimertinib MPO 0.953 0.966 0.995 1.000 1.000 1.000
Fexofenadine MPO 0.998 1.000 1.000 1.000 1.000 1.000
Ranolazine MPO 0.920 0.931 0.969 0.958 0.981 0.959
Perindopril MPO 0.792 0.834 0.815 0.882 0.886 0.882
Amlodipine MPO 0.894 0.900 0.902 0.924 0.905 0.905
Sitagliptin MPO 0.891 0.868 0.763 0.922 0.958 0.952
Zaleplon MPO 0.754 0.764 0.770 0.834 0.840 0.840
Valsartan SMARTS 0.990 0.994 0.994 1.000 1.000 1.000
Deco Hop 1.000 1.000 1.000 1.000 1.000 1.000
Scaffold Hop 1.000 1.000 1.000 1.000 1.000 1.000

We observe that the genetic experts can be exchanged with each other without significant

loss or increase in performance. Furthermore, the empirical results show that no expert

dominates across all of the tested tasks. This indicates that combining and sampling several

experts simultaneously to leverage the best of all experts can potentially lead to better overall

results. Next, we present the results for the GEGL framework when using multiple experts as

explained in section 2.4 in table 4. Experiments were conducted with the described sampling

strategies. We furthermore report results for freezing the GCN model weights versus updating
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them during the optimization process.

Table 4: Results for non-trivial goal-directed Guacamol benchmarks and different sampling
strategies when using multiple experts.

GCN type Frozen Updating

Sampling strategy Fixed Softmax Rebalancing Fixed Softmax Rebalancing
Task

C11H24 1.000 1.000 1.000 1.000 1.000 1.000
C9H10N2O2PF2Cl 1.000 1.000 1.000 1.000 1.000 1.000
Median molecules 1 0.455 0.455 0.455 0.455 0.455 0.455
Median molecules 2 0.423 0.429 0.422 0.426 0.427 0.427
Osimertinib MPO 0.996 1.000 1.000 1.000 1.000 1.000
Fexofenadine MPO 1.000 1.000 1.000 1.000 1.000 1.000
Ranolazine MPO 0.976 0.977 0.962 0.967 0.967 0.962
Perindopril MPO 0.882 0.886 0.886 0.886 0.886 0.886
Amlodipine MPO 0.924 0.924 0.905 0.905 0.905 0.905
Sitagliptin MPO 0.969 0.967 0.956 0.965 0.957 0.956
Zaleplon MPO 0.840 0.840 0.834 0.840 0.834 0.834
Valsartan SMARTS 1.000 1.000 0.999 0.999 1.000 0.999
Deco Hop 1.000 1.000 1.000 1.000 1.000 1.000
Scaffold Hop 1.000 1.000 1.000 1.000 1.000 1.000

We observe that generally there is no significant difference between each experimental

setting. Moreover, the obtained results demonstrate that it is possible for multiple experts

to maintain and even retrieve performances from the single genetic expert setting. Notably,

the Softmax-sampling/frozen GCN is able to perform well across all tasks and only shows

lower performances compared to the original GEGL framework in the Median molecules 2

benchmark.

4 Conclusions

We have shown in this work that it is possible to pretrain and utilize an attribution-based

genetic expert to propose novel molecules. The expert we called InFrag is able to leverage

a pretraining phase to reason over the potential score of candidate molecules and produces

atom-wise attributions to generate high-rewarding fragments. Our genetic expert which is
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capable of expert- and bias-free fragment-level crossover operations is able to produce high-

rewarding molecules and performs comparable to other genetic experts when embedded into

the GEGL framework. Furthermore, we demonstrated that InFrag significantly outperforms

other genetic experts when the number of optimization rounds is limited. This implies that

InFrag is a good choice for real-world optimization cases were evaluation of novel generated

molecules might be difficult or expensive. We have not yet experimented with different genetic

experts, attribution methods, graph neural network architectures or sampling strategies,

leaving a potentially large room for improvement. We leave this area of research for future

work.

5 Data and Software Availability

The source code to replicate the experiments is available at https://github.com/elix-tech/

infrag. The README-file of the repository contains instructions on how to download the

ZINC and Guacamol datasets as well as running optimization scripts.
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