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Abstract: Predicting and proposing the reaction mechanism, as well 

as speculating the reaction intermediates are great challenges among 

the development of modern organic chemistry. Herein, a model from 

Natural Language Processing (NLP) was firstly employed to learn and 

perform the task of intermediate prediction, which is served as a 

language translation task. Radical cascade cyclization is prevalently 

used in life science and pharmaceutical projects, while the 

regioselectivity of radical attack is difficult to predict. The model is 

trained on self-built dataset to tackle the challenge. And transfer 

learning was used to surmount the restriction of limited amounts of 

data. The NLP transformer model performs well with remarkable 

accuracy, providing an efficient instruction for mechanism 

understanding. Manual encoding of rules is not required, thus, 

providing a favorable tool towards solving the challenging problem of 

computational organic chemical mechanism inference. 

Introduction 

The molecules and materials design significantly depend on 

the understanding the exact mechanism of a reaction, such as the 

order of bonds formation and cleavage. For decades, chemists 

have picked apart chemical reactions to have an in-depth 

understanding of each steps involved with the aim of discovering 

new chemistry[1], and optimization of chemical reactions[2]. 

However, determination of a reaction mechanism usually needs 

integrate a variety of information from indirect observation, whose 

intermediates are hardly to be observed during the transformation. 

Significant efforts have been made on the journey to explore 

the mechanism of chemical reactions.[3-4] The inference of 

mechanism using manually composed transformation rules have 

been developed along the years, and can be applied in reaction 

prediction.[5] However, these methods require manual encoding, 

as long as new reactions are discovered, old projects have been 

already outdated. Other methods are based on the physical 

calculations, such as density functional theory (DFT).[3,6] However, 

these approaches usually require high computational cost and 

rely on experienced chemists. 

Recently, chemist has witnessed several successful 

applications of artificial intelligence (AI) algorithms.[7-17] As an 

important area of AI, Natural Language Processing (NLP)[18] 

models emerged as robust and effective approaches in the field 

of organic chemistry, showing promising results in reaction 

prediction[19-22], retrosynthesis[23-27] planning. However, in the field 

of chemical reactions mechanism inference, relevant studies are 

rarely reported.  

The mechanism inference of organic chemistry is more like 

an art: the intermediate formed in each transformation varies a lot, 

and is difficult to be characterized. Thus, in face of a complex 

organic reaction, it seems that there are a thousand “Hamlets” in 

a thousand chemists’ eyes. The domain complexity and lack of 

sufficiently curated data hindered further technological 

developments of NLP model in this field. Encouraged by the 

breakthrough of artificial intelligence, the feasibility of application 

of NLP model in speculating mechanism of organic chemistry was 

discussed in this work. 

Herein, radical cascade cyclization was selected as the 

object to explore the reaction mechanism by NLP transformer 

model. Recently, radical chemistry has become a heavily 

investigated research field, and radical cascade cyclization is 

highly valuable for preparation of cyclic compounds since the 

processes are performed in a single preparation step to construct 

carbo- and heterocycles,[28-30] which often show interesting 

biological properties with potential use in medicinal chemistry (Fig 

1).[31-33] In this work, there are two additional reasons for choosing 

the topic of radical cascade cyclization. Firstly, the regioselectivity 

of radical attack in radical cascade cyclization is difficult to predict 

even for experienced chemists, therefore, a convenient method to 

explore the reaction process is urgently needed. Secondly, 

comparing with the double-electron reaction, the intermediate of 

radical reaction can be captured and verified. Accordingly, the 

correct data for training is more likely to be gathered from 

literatures. 

The quality and scale of data play a key role in the model. 

Information about chemicals can be found in databases such as 

PubChem,[34] ChEMBL,[35] Reaxys,[36] SciFinder[37] databases and 

so on.[38] Unfortunately, to the best of our knowledge, information 

about intermediate is not recorded in above databases. Therefore, 
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we gathered data from related literature and constructed a data 

set with intermediate involved. Besides the shortage of original 

experimental data, chemical data collection is sophisticated and 

time-consuming, leading to the dilemma of small data volume. To 

our delight, our research group has carried out some prediction 

work based on small data set via transfer-learning strategy, which 

proved a better accuracy of prediction.[39-42] We believe that the 

approach would expand the application for NLP model with limited 

data sets in the field of chemistry. 

 

 

 

Figure 1． (a) Radical cascade cyclization is highly valuable for preparation of 

cyclic compounds since more than two bonds can be formed by a single 

preparation step. (b) Pharmaceuticals and complex natural products can 

synthesis via radical cascade cyclization. 

In this study, NLP transformer model was firstly applied to learn 

and perform the intermediate prediction subtask (Fig 2). The 

general chemical reaction data set was used to pre-train the 

transformer model to learn general chemical knowledge. 

Afterwards, the transformer model is trained end-to-end on a self-

built data set of radical cascade cyclization with corresponding 

intermediate from literature. Finally, for a given reaction equation, 

the model output the most reasonable intermediate. The result 

indicates that NLP transformer model performs well to predict 

intermediate, with a total accuracy up to 93.5%, and provides an 

effective direction for mechanism inference. 

Results and Discussion 

To begin with, key intermediate was defined for a better 

understanding of the reaction mechanism. With the help of the 

definition, radical cascade cyclization data set was established. 

Finally, NLP transformer model was trained for predicting key 

intermediate. 

Radical cascade cyclization generally involves four key 

stages[29] (Fig. 3a). (i) radical formation: the process of single-

electron transfer (SET). (ii) radical addition: the formation of a 

radical intermediate with radical attack on an unsaturated bond. 

(iii) radical cyclization: the formation of carbon-carbon/hetero-

atom bond. (iv) radical quenching: radical intermediate is 

quenched by another radical donor or hydrogen abstraction. In 

this work, the intermediate generated after the first radical addition 

was defined as “Key intermediate Ⅰ ”, which can show the 

regioselectivity of the first radical addition. Subsequently, the 

intermediate which was formed after the cyclization was defined 

as “Key intermediate Ⅱ” if the cascade reaction constructed only 

single carbo-/heterocycle. In the case of multiple rings 

constructed, the intermediate before the last cyclization step was 

defined as “Key intermediate Ⅱ ”. Key intermediate Ⅱ  can 

reflect important information whether rearrangement, hydrogen or 

aryl migration and other transformation occurred during the 

reaction (further information in section 1 of the ESI). 

Figure 2. A proof-of-concept methodology for predicting intermediates of radical cascade cyclization. For a given reaction equation, the model simulated observation 

device in an indirect way that can assist chemists to speculate organic chemical reaction mechanism. In reaction prediction and retrosynthesis, artificial intelligence 

has done an excellent job on end-to-end prediction (from reactant to product and its inverse process). However, the same importance should be attached to figuring 

out what happened during a reaction for understanding the entire reaction.
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In this work, speculating mechanism of radical cascade 

cyclization can be regarded as a maze game. In the maze game, 

if there is a “road sign”, players can quickly walk through the maze  

(Fig. 3b). Moreover, if there are multiple possible routes, the exact 

“road sign” can indicate the most reasonable route. The “key 

intermediate” serves as the “road sign” in the maze game of 

mechanism inference. 

Figure 3. (a) The definition of key intermediate Ⅰ & Ⅱ of radical cascade 

cyclization in the background of four key stages. (b) Key intermediate Ⅰ & Ⅱ 

can effectively navigate organic chemical reaction mechanism inference. 

Hundreds of literatures were collected and careful attention was 

paid to the latest achievement in the development of radical 

cascade cyclization methodologies, especially the synthesis of 

carbo- and heterocycles in this rapidly growing research field. 

Subsequently, we analyzed the mechanism inference in these 

literatures, especially focused on the mechanism verified by 

calculations (such as DFT), or based on experimental verification 

(kinetic isotope effect (KIE) or radical capture). In the following 

work, simplified molecular-input line-entry system (SMILES) was 

used to represent reaction equation collected with intermediate 

involved. Finally, all data were standardized utilizing RDkit 

(version 2019.03). The stereo-configuration information of 

reactant, product and intermediate were all retained. By this 

strategy, the data set of radical cascade cyclization is established 

manually (further information in section 2 of the ESI).  

The self-built data set contains a diverse of information, 

including 874 radical cascade cyclization chemical equations and 

corresponding 1,748 key intermediates. Specifically, the number 

of newly constructed rings by radical cascade cyclization varies 

from single to multiple: 428 reactions construct single ring, 321 

reactions construct 2 rings, and 125 reactions construct more than 

3 rings (Fig 4a). Furthermore, the radical center varies in carbon-

centered radicals (356 reactions), sulfur-centered radicals (266 

reactions), phosphorus-centered radicals (104 reactions), 

nitrogen-centered radicals (92 reactions), and Tin-centered 

radicals (56 reactions) (Fig. 4b). At last, the formation of radical-

Figure 4 Diverse reactions in self-built data set. Distribution of (a) count of newly formed rings (b) types of radical center. (c) The most common way to generate 

radical center. (d) The most common radical acceptor with its possible site for radical attack. 
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Figure 5. Schematic of the approach to predict radical cascade cyclization intermediate. (a) Comparison of transformer-transfer learning model and transformer 

baseline model. The transformer-transfer model is a plus version of transformer baseline model with knowledge learned from pre-training. Note that data features 

in pre-trained data set and in self-built data set are distinct. (b) The workflow of transformer model. With chemical equation inputted, transformer model predicts two 

key intermediates which would help chemist propose the most reasonable mechanism. 
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center varies because a donor can provide radical by different 

ways of SET (Fig 4c). As for radical acceptors, 1,n-diynes, 1,n-

enynes, alkynyl (hetero) arenes are commonly used (Fig 4d). 

The data set for pretraining, named general chemical 

reaction data set, contains approximately 380,000 chemical 

reactions. These reaction examples were originally sourced from 

Lowe’s data set[43], which was extracted from United States Patent 

and Trademark Office (USPTO) patents, and then the reagents, 

solvent, temperature and other reaction conditions were deleted. 

Filtering work was done to clean duplicate, incorrect and 

incomplete reactions. Note that every single record in the general 

chemical reaction data set represents a reaction without 

intermediate, which is different from the self-built data set (Radical 

cascade cyclization and key intermediate). If we consider the 

intermediate as a special “product” containing radical, the forms 

of two data sets exist a huge similarity. 

We try to treat intermediate prediction as a machine 

translation problem between simplified molecular-input line-entry 

system (SMILES) strings (a text-based representation) of 

chemical reaction equation and the key intermediates. 

Transformer model, a recent addition to Natural language 

processing (NLP) family, is the state-of-the-art model for reaction 

prediction and retrosynthesis.[20, 27, 44-45] Self-attention mechanism, 

feed forward network as well as multi-head attention makes 

transformer model an excellent tool for NLP tasks. Therefore, 

transformer model was applied to accomplish the task of 

predicting reaction intermediates (further information in section 3 

of ESI). 

Transfer learning, is generally exploited to adapt well-

established source knowledge for learning tasks in weakly labeled 

or unlabeled target domain.[43-44] In this study, the process of 

pretraining on the general chemicals fulfill the initialization or 

feature extraction task in traditional machine learning. The basic 

chemical information and characteristics are applied to complete 

the target mission of predicting the key intermediate of radical 

cascade cyclization by the pretrained process (Fig 5a). After that, 

the self-built data set was randomly split into training, validation 

and test data set at a ratio of 8:1:1. To verify the improvement of 

fine-tuning, the performance was compared between transformer-

baseline model without transfer learning and the one with transfer 

learning. 

To measure the performance, we used accuracy over the 

predicting task, which was estimated with 10-fold cross-validation. 

Fig 6 and Table 1 show the accuracies of transformer-baseline 

and transformer-transfer learning models for radical cascade 

cyclization in different views. Transformer-transfer model exhibits 

the accuracy of 94.5% for key intermediate Ⅰ and 92.5% for key 

intermediate Ⅱ, which is much greater than the 29.7% and 26.6% 

for the transformer-baseline model (details can be found in Table 

S1-3 of ESI). Significantly, transformer-transfer learning model 

exhibited a much better performance. With the aid of the general 

chemical reactivity rules and knowledge obtained in the 

pretraining process, the transformer-transfer learning model was 

more accurate and be well used to cope with radical cascade 

cyclization’s intermediate prediction. The result is consistent with 

our vision that the intermediate of radical cascade cyclization is 

special “product” of the reaction, while logic and knowledge of 

general chemical reactions are interlinked. 

To figure out factors that affect the accuracy of intermediate 

prediction, we set a further exploration on different types of 

intermediate. For the convenience of analysis and understanding, 

Figure 6. Comparison of the transformer-baseline and transformer-transfer 

learning model with accuracy of predicting key intermediate Ⅰ (a) and key 

intermediate Ⅱ (b). The result of 10 experiments indicated that transformer-

transfer learning model has a significant advantage. 

Table 1. The average accuracies of the transformer-baseline and transformer-

transfer learning models for predicting key intermediates. 

Model 

Accuracy (%) 

Key intermediate Ⅰ Key intermediate Ⅱ 

Transformer 

baseline model 
29.7 26.6 

Transformer 

transfer learning model 
94.5 92.5 

reactions were classified according to the number of newly 

constructed rings. Experiment 1 (refers to entry 1 in table S1 of 

the ESI) was selected as a representative example for analysis 

(99 reactions). The detailed accuracies of the transformer-transfer 

learning of different number of newly constructed rings are 

described in Table 2. In general, with the increasing of the 

constructed rings, the accuracy decreases. For key intermediate 

Ⅰ, as the number of rings increases, the prediction accuracy 

rates could be obtained with 94.2%, 92.5% and 83.3%, 

respectively. In some degree, the accuracy depends on the 

complexity of regio- or stereo-selectivity, and the training data 

decrease as the number of newly construct rings increases. 
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Table 2. The detailed accuracies of the transformer-transfer learning of different 

number of newly constructed rings. 

Type of 

reaction[a] 

Accuracy (%) 

Key intermediate 

Ⅰ 

Key intermediate 

Ⅱ 

Key intermediate 

Ⅰ&Ⅱ[b] 

1 94.2 93.8 90.4 

2 92.5 82.5 77.5 

≥3 83.3 66.7 66.7 

Total 92.9 88.8 81.6 

[a] Based on the number of newly constructed rings. [b] Predict two key 

intermediates simultaneously. 

A similar result was obtained with respect to the intermediate Ⅱ, 

and the accuracy was 93.8%, 82.5%, and 66.7% as the number 

of rings increase. The accuracy of key intermediate Ⅰ is slightly 

higher than that of intermediate Ⅱ with accuracy of 92.9% and 

88.8%, respectively. The possible reason is that the key 

intermediate Ⅱ is more complicated than the intermediate Ⅰ, 

increasing the difficulty of recognizing the reaction site. Moreover, 

we also trained the transformer model to predict two key 

intermediates simultaneously. Although the difficulty increased, 

the results showed no significant decrease on the performance 

with the prediction accuracy rate up to 81.6%. Expectedly, the 

accuracy decreased as the number of ring increase, furnishing 

the accuracy with 90.4%, 77.5%, and 66.7%, respectively. This 

showed the same orderliness as predicting key intermediate Ⅰ 

or key intermediate Ⅱ separately. 

According to the Curtin-Hammett principle[48], the order of 

priority of attacking unsaturated bonds mainly depends on the 

structure of the radical acceptor. For the 1,n-enynes with non-

terminal double bonds, the radical regioselectively attacked the α 

position of the alkyne, which may be due to the self-sorted kinetic 

process via the subsequent favored exo-trig radical cyclization 

(Fig 7a). Meanwhile, for this radical acceptor with the terminal 

alkenes, radicals underwent the selective addition to the activated 

alkene moiety of the enyne acceptor component (δ position) (Fig 

7b), despite of a few special examples.[49] The regioselectivity is 

proposed by the fact that alkyne π-bond is stronger and less 

reactive than the π-bond of alkene, leading to the lower kinetic 

barrier of radical addition to the double bond.[50-51] Though it is 

difficult to summarize the rules for complex reaction, it can be 

learned by deep-learning model with suitable dataset in an 

indirect way. 

Interpretability is essential for users to effectively understand, 

trust, and manage powerful artificial intelligence applications. [52-55] 

Specific functional groups, have an impact on the outcome of a 

reaction, even if they are far from the reaction center in the 

molecular graph (three-dimension) and therefore also in the 

SMILES string (one-dimension). It is worth mentioning that the 

transformer-transfer learning model exhibits a similar “thinking 

mode” to chemists’. A representative instance of correct 

predicting intermediates with the attention weights were shown in 

Fig 8a. Attention is the key to take into account complex long-

range dependencies between multiple tokens.[56] On the way to 

predict key intermediate Ⅰ  (Fig 8b), the transformer-transfer 

model initially focused on the structure of both reactants and pro- 

Figure 7. Plausible mechanism of radical cascade cyclization to 1,n-enynes. (a) 

For the radical acceptors 1,n-enynes with non-terminal double bonds, selective 

radical attacking at the α position of the alkyne. (b) For the terminal alkenes, 

regioselective addition of radical species at the δ position occurs firstly. 

Figure 8 Attention weight interpretation. (a) Example randomly chosen from 

reactions in self-built data set. The visualization of attention weights for (b) key 

Intermediate Ⅰand (c) key Intermediate Ⅱ. 

duct. Then the radical location focused on the unsaturated bonds 

of the radical attack and the nearby functional group structure and 

location, especially focus on the position of double bonds, since 

terminal alkene and non-terminal alkene will result in different 

intermediate. In this example, the token “!” (represent “start” or 

“end”) prior to the “C=C” express the existence of terminal alkene, 

leads to radical attack at the terminal alkene. 

The visualization of attention show radical location (“[ ]” 

represent radical) of the intermediate Ⅰ connect to this token 

coincidentally, which is similar to chemist’s mental journey. While 

in the mission of predicting key intermediate Ⅱ, almost the same 

rule can be found that the structure of intermediate based on both 

reaction and product, and the function group nearby the alkyl (Fig 

8c). More reaction predictions together with the attention weights 

detail, are found in the ESI.  
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Figure 9. A representative example. (a) Regioselective attack at a disubstituted 

alkyne in the presence of electronically and sterically similar alkene is a great 

challenge. (b) With the aid of NLP transformer-transfer learning model, path 2 

is inferred as the most reasonable pathway. The results exhibit a consistent 

result with computational analysis. 

Intermediate predicted can provide direction for mechanism 

inference. In the self-built dataset, enynes is the most common 

radical acceptor. There are two unsaturated bonds in enynes that 

participate in the radical cascade cyclization, which have at least 

four possible sites for radical attack. The Bu3Sn-mediated radical 

cascade cyclization of aromatic enynes was taken as a 

representative example (Fig 9a), where the regioselectivity of 

radical addition is a great challenge in the presence of 

electronically and sterically similar alkene. Even for such complex 

prediction, the transformer-transfer learning model still achieved 

a good performance. After inputting chemical equation, the deep-

learning model output two key intermediates, and suggested that 

the path 2 is the most reasonable route of this reaction (Fig 9b). 

Meanwhile, Alabugin et al.[57] reported a reasonable reaction path 

with the tool of equilibrating pool, and the result was in 

concordance with the prediction by NLP transformer model. 

However, comparing to complex calculation, our data-driven 

strategy is much more convenient.  

In addition, we also found an interesting phenomenon that 

the transformer-transfer learning model can also revise some 

mechanism inference work in the reported literature. For instance, 

Li et al. reported an interesting radical cascade cyclization of 1,6-

enynes with aryl sulfonyl chlorides by using visible-light 

photoredox catalysis (Fig 10 a).[58] A possible mechanism they 

proposed was shown in Fig 10b. They described that an aryl 

radical is firstly formed by a single-electron transfer from the 

excited state [Ru(bpy)3]2+ to an aryl sulfonyl chloride, and 

subsequent addition of the aryl radical to the triple bond result in 

radical intermediate Ⅰ . Then intermediate Ⅰ  underwent the 

cyclization reaction with the alkene to yield intermediate Ⅱ. After 

intramolecular cyclization process of intermediate Ⅱ, the cyclic 

radical was oxidized to the corresponding cyclic cation and 

subsequently transformed into the target product after  

Figure 10. The NLP transformer-transfer learning model can revise some 

mechanism inference work in the reported literature. (a) Radical cascade 

cyclization of alkynes with alkenes and ArSO2Cl. (b) Possible mechanism 

inferred by Li et al. (c) Another possible mechanism proposed by NLP 

transformer-transfer learning model, which is proved to be more reasonable by 

the further literature exploration. 

deprotonation, accompanied with regeneration of the active 

[Ru(bpy)3]2+ species. However, our transformer-transfer learning 

model output another key intermediate Ⅰ  & Ⅱ  (Fig 10c), 

implying that the reaction may proceed via another pathway, 

which is quite 

different from the mechanism proposed above. With the excited 

[Ru(bpy)3]2+, sulfonyl radical is formed by the selective cleavage 

of the S–Cl bond.[59-60] Subsequently, sulfonyl radical adds to the 

terminal alkene to generate the tertiary alkyl radical. 5-exo-

cyclization leads to a vinyl radical that further undergoes a 1,5-

aryl migration and subsequent releasement of SO2 to give the 

primary alkyl radical intermediate. The following process is as the 

same as Li’s inference. And subsequent researches also 

indicated that free aryl radical is not generated in the previously 

reported visible light-induced cyclization of 1,6-enynes with aryl 

sulfony.l[61-63] Furthermore, in view of the difference in reactivity  

between alkyne and alkene, alkyne π-bond is stronger and less 

reactive than the π-bond of alkene.[50-51] Thus, the addition of 

sulfonyl radical into the terminal activated alkene to provide the 

tertiary alkyl radical is more reasonable. In this controversial 

mechanism inference, the mechanism directed by our model is 
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more reasonable, which was confirmed by Studer’s 

investigation.[64] 

Conclusion 

Overall, NLP transformer model was applied to solve the task 

of speculating reaction mechanism, where similar cross-

disciplinary studies is rarely reported. A data set of radical 

cascade cyclization reaction was established manually for training 

the model. Transfer learning was used to surmount the limitation 

of small data set, and the observed improvement in performance 

demonstrated the power of the integrated transfer learning and 

transformer model. The analysis of attention weights indicated 

that the transformer-transfer learning model exhibited a similar 

“thinking mode” to chemists’. Applying NLP model to the 

prediction of radical cascade cyclization reaction intermediates, 

which is convenient and effective, expands the concept of end-to-

end prediction. With the accumulation of data and the continuous 

upgrading of algorithms, we hope that this work will empower the 

broader chemical community to engage with this burgeoning field 

and foster the growing movement of AI accelerated chemistry. 
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