
Lignin Biorefinery Optimization Through Machine Learning
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Lignin is an abundant biomaterial that currently emerges as a low value byproduct in the pulp
and paper industry but could be repurposed for high-value products as part of the ongoing global
transition to a sustainable society. To increase lignins value, rational and efficient approaches to
optimizing lignin biorefineries to produce high value bioproducts are required. Here, we report
the optimization of the AquaSolv Omni (AqSO) Biorefinery, a newly introduced biorefinery con-
cept based on hydrothermal pretreatment and solvent extraction. We employ a machine-learning
framework based on Bayesian optimization, to provide sample-efficient and guided data collection
as well as surrogate model building. The surrogate models allow us to map multiple experimental
outputs, including the extracted lignin yield and main structural properties obtained by 2D NMR,
as functions of the hydrothermal pretreatment reaction severity and temperature. Our results show
that with Bayesian optimization, predictive models can be converged with only 21 data points to
within a margin of error comparable to the underlying experimental error. By applying a Pareto
front analysis, we demonstrate how the predictive models can be used in tandem to identify optimal
extraction conditions for concrete applications in lignin valorization.

I. INTRODUCTION

To achieve a sustainable economy, efficient and green
utilization of natural resources is of paramount impor-
tance. Lignin, as a part of lignocellulosic biomatter, is an
example of a naturally abundant, but under-utilized, re-
source. Lignin is currently produced in large quantities as
a residual in pulp and papermaking as well as in biorefin-
ery processes. Valorization of lignin into, e.g., materials
[1–3] or chemicals, [4, 5] can therefore substantially in-
crease both the sustainability and revenue of biorefineries
[6]. The development or refinement of lignin valorization
approaches, however, requires effective techniques for en-
gineering lignin with targeted structures and properties.

Recently, we have suggested a green, lignin-first biore-
finery process for the integrated utilization of all biomass
components, with special focus on the lignin-containing
streams (Tarasov et al., in preparation). [7] Our process
consists of hydrothermal treatment (HTT) of biomass
followed by a solvent wash of the resulting solids and
is accordingly named AquaSolv Omni (AqSO). HTT
is a facile and flexible biorefinery process, [8, 9] that
has traditionally been used for cost-efficient extraction
and valorization of hemicelluloses from biomass [10, 11]
leaving the lignin component as a by-product. One of
the foremost advantages of HTT is the use of water,
which removes the need for extra chemicals in the re-
action medium and renders the process environmentally
friendly. The AqSO biorefinery couples highly tunable
processing conditions with output versatility in terms of
lignin composition, structure, and physicochemical prop-
erties. To take full advantage of the flexibility, the AqSO
process needs to be tailored and optimized, in terms of
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its processing conditions, for specific end-products such
as high value biomaterials or chemicals.

In industry, experimental optimization tasks are often
approached with design of experiment (DOE) methods,
[12, 13] which provide general strategies for planning data
collection and modeling the experimental output. Since
experiments are often time consuming and costly, DOE
methods benefit from efficient sampling of the design
space. Conventional approaches to DOE include space-
filling designs, [14, 15] factorial designs, [16] and response
surface methods, [17, 18] where the latter category is of-
ten regarded as an industry standard. A shortcoming of
these approaches is that they largely employ a sampling
of design space that is pre-determined. Since experiments
must typically be performed sequentially or in batches,
however, information from new measurements cannot be
utilized to optimize the sampling strategy. Another issue
concerns complex processes where many design variables
lead to a high-dimensional design space that cannot be
efficiently explored using traditional DOE methods.

The last decade has seen machine learning methods
enter a variety of natural science domains to solve chal-
lenging optimization and modeling problems [19–21].
For applications in DOE, Bayesian optimization (BO)
is a promising machine learning method that couples
model building, data collection and global optimization
of black-box functions. [22, 23] A key feature of BO is
an integrated data collection policy, known as the acqui-
sition function, which ensures that the new samples are
selected to be as informative as possible given the current
state of the model. Consequently, BO is sample efficient
and provides better scaling with the dimension of the
design space than traditional DOE methods. The BO
process can also incorporate experimental errors, prior
knowledge as well as batch experiments, [24] further in-
creasing its potential for DOE tasks. BO can be extended
to deal with a large category of design problems including
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both constraints and multiple objectives. [25]
Recently, BO has become a popular tool in computa-

tional materials science, where it has been used both as a
means of efficient optimization [26–28] and to guide ma-
terials discovery. [29] BO is also increasingly being used
for DOE, [30–34] although the overall number of studies
remains modest. This holds true in particular for applica-
tions in the biomaterials community, where the adoption
of machine learning methods is still in its infancy. Exist-
ing applications of BO to experiments tend furthermore
to focus on optimization problems rather than mapping
experimental outputs to design variables. As a result,
limited attention is paid to BOs potential for predictive
modeling and the insight into experiments and materials
this can yield.

In the present work we evaluate the use of BO as a
tool for guiding and modeling in the chemical engineer-
ing field by applying it to lignin extraction through the
AqSO biorefinery process. Specifically, we aim to use
BO to establish predictive models that map lignin prop-
erties as a function of the extraction conditions, namely
the hydrothermal pretreatment temperature and reaction
severity. As a part of the design process, we explore how
to perform informative batch acquisitions for multiple
output properties. We furthermore demonstrate, using
a Pareto front analysis, how the resulting models can
be used to simultaneously optimize sets of lignin prop-
erties for applications in lignin valorization. Our work
describes a holistic approach to BO-based experimental
design that emphasizes model building and interpretation
and is suitable for a wide variety of design problems.

II. EXPERIMENTAL MATERIALS AND
METHODS

A. Materials

We debarked, chipped, and ground a Birch wood (Be-
tula sp.) stem into sawdust (0.55-0.125 mm particle were
size selected). Prior to the HTT, we subjected the saw-
dust to acetone extraction to remove the lipophilic ex-
tractives.

B. Chemicals

We purchased acetone (C3H6O, 95 vol %) from Sigma-
Aldrich and used it without purification. We also pur-
chased sulfuric acid (H2SO4, 98 wt%), xylose, arabi-
nose, rhamnose, glucose, galactose, mannose for ion
chromatography analysis and chromium (III) acety-
lacetonate, (Cr(acac)3), endo-n-hydroxy-5-norbornene-
2,3-dicarboximide, 1,3,5-Trioxane and 2-chloro-4,4,5,5-
tetramethyl-1,3,2-dioxaphospholane (TMDP) (all ana-
lytical grades) for nuclear magnetic resonance (NMR)
spectroscopy from Sigma-Aldrich.
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FIG. 1. A schematic illustration of the experimental setup
employed for the AqSO biorefinery. A mixture of birch chips
and water is subjected to hydrothermal treatment (HTT) in
a reactor whose state can be described by the reactor temper-
ature (T ), liquid-to-solid ratio (L : S = 1) and P-factor (Pf ).
The reaction produces a hydrolysate and HTT-solids. Addi-
tion of acetone to the HTT-solids results in acetone-extracted
lignin and extracted solids. The structural properties of the
acetone extracted lignin are finally characterized by 2D NMR.
The hydrolysate and extracted solids are not used in this
study.

C. Hydrothermal Treatment

A qualitative overview of the entire HTT process is
shown in Fig. 1. We carried out the HTT of the
extractive-free sawdust (4g) in a swing reactor at a liquid
to solid (L/S) ratio of 1. The swing reactor was equipped
with temperature control both in the heating block and
inside the reactor. As the heating period has a signifi-
cant effect on the extraction process, we chose to work
with reaction severity instead of the residence time. HTT
severity can be expressed in terms of the P-factor, which
is calculated according to [35]

Pf =

∫ t

0

k(T (t′))

k(100◦)
dt′ =

∫ t

0

exp

(
40.48 − 15106

T (t′)

)
dt′.

(1)
Here, k is the rate constant, t the residence time (in
hours) and T the reaction temperature (K). Once the
desired severity was reached, we immediately transferred
the reactor into cold water. We subsequently separated
the HTT solids and hydrolysate by filtration using a glass
crucible (pore size 3 µm) and exhaustively washed the
solids with deionized water. We then extracted lignin
from the washed HTT solids with 90% (v/v) aqueous
acetone. We rotary-evaporated the solution (at 40 ◦C)
to produce acetone-extractable lignin, which we finally
vacuum-dried at 40 ◦C to constant weight to determine
the yield.

D. 2D HSQC NMR analysis

We recorded the 2D Heteronuclear Single Quan-
tum Coherence (HSQC) NMR spectra using a Bruker
AVANCE 600 NMR spectrometer equipped with a Cry-
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oProbe. We dissolved about 80 mg of each sample in 0.6
mL dimethyl sulfoxide-d6(DMSO). We set an acquisition
time of 77.8 ms for the 1H-dimension and collected 36
scans per block using 1024 complex data points. For the
13C-dimension, we set the acquisition time to 3.94 ms,
and recorded 256 time increments. We then processed
2D HSQC NMR data (1024 × 1024 data points) by ap-
plying a QSINE window function to both the 1H and
13C dimensions. We used the DMSO peak at δC/δH
39.5/2.49 ppm/ppm for calibration. To quantify the spe-
cific lignin moieties, we carried out volume integration of
the HSQC spectra of the acetone-extractable lignin (Fig.
S2). We describe this procedure in greater detail else-
where (Tarasov et al. in preparation). The intensity of
the signals is expressed in mol%, i.e., per 100 aromatic
units (Ar) assuming the sum of the signals of G- and S-
units as 100% from their characteristic CH signals at G2

and S2,6 positions, correspondingly: G2 +S2,6/2 = 100%.

E. Bayesian Optimization

For brevity, we provide only a short overview of
Bayesian optimization and refer readers to Sect. I of the
SI and the literature [23, 36] for more detailed accounts.
BO involves two main components, namely a surrogate
model that approximates the objective function and an
acquisition function that provides a data collection pol-
icy. During a BO iteration, the surrogate model is fit to
the current data set using Gaussian process regression.
The posterior mean of the Gaussian process represents
the most probable approximation of the objective, and
the posterior variance provides a measure of the model
uncertainty. By minimizing the acquisition function, a
new sampling location is subsequently determined and
used to augment the existing data set. Acquisition func-
tions come in many flavors and provide trade-offs be-
tween exploitation and exploration. Here, the former
refers to the sampling regions of design space where the
objective is likely to achieve a minimum or maximum,
while the latter refers to the sampling of regions where
model uncertainty is high and where data has not been
sampled before. Common choices of acquisitions func-
tion include the lower confidence bound (LCB) function
[37] and expected improvement (EI) function. In this
work we also consider acquisitions made from the model
standard deviation, which we shall refer to as the pure
exploration function.

We carried out the BO using the recently released
BOSS code [28], which provides a Python-based im-
plementation of BO. Among a large selection of fea-
tures, BOSS implements the exploration-modified lower
confidence bound (eLCB) function used in this study.
[36, 38] BOSS has previously been applied successfully to
a range of different problems in materials modeling [39–
42]. We defined the Gaussian processes by uninformative
zero priors for the mean functions, and radial basis set
(RBF) kernels to reflect the smoothness of the objectives.

FIG. 2. Workflow for optimizing and planning AqSO biore-
finery experiments using machine learning. The Bayesian Op-
timization program (right) suggests new lignin extraction con-
ditions in terms of new values for the HTT reactors temper-
ature and P-factor. After performing an extraction at these
conditions, the lignin yield and structural properties are mea-
sured and fed back to the program. The new data (extrac-
tion conditions and measured properties) is used to update
the program and the cycle starts over.

We initialized the kernel hyperparameters using inverse
gamma priors and subsequently updated them during the
BO process by maximizing the marginal likelihood. To
initialize the surrogate models, we employed a batch of 5
Sobol points. To account for measurement errors in our
objectives, we incorporated Gaussian noise terms with
zero mean into the surrogate models.

F. Applying Bayesian Optimization to Experiments

The interplay between experiment and BO during the
data collection process is illustrated in Fig. 2. In an ex-
perimental context, the objective can be any measurable
output from the experiment such as the yield or a 2D
NMR peak. The objective depends on several design
variables that represent adjustable factors of the exper-
iment, including precursor properties, processing condi-
tions and apparatus settings. In the present work, we
considered two design variables relevant for the HTT-
treatment of the birch sawdust: the final reactor tem-
perature (T), and the P-factor (Pf ) . The liquid to-
solid ratio of the birch biomass and water (L:S) in the
HTT-reactor also plays an important role in determin-
ing the experimental output. When investigating a new
experimental setup described by a high-dimensional de-
sign space, however, it is often convenient to limit the
initial search to a smaller subspace. In this spirit, we
employed a fixed liquid-to-solid ratio L : S = 1 and in-
vestigated the two-dimensional (Pf , T ) design space, for
which predictive models can be easily visualized. The
decision to fix L:S was further motivated by a prelimi-
nary investigation of the AqSO biorefinery, which indi-
cated that L : S = 1 optimal for the yield and proper-
ties of the lignin-containing stream (Tarasov et al., in
preparation). The design space was then determined
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based on feasible operating ranges for the two variables:
500 ≤ Pf ≤ 2500, 180 ≤ T ≤ 210 (◦C).

For the objectives, we considered the yield of acetone
extractable lignin and several structural properties ob-
tained through 2D NMR characterization. From the
large number of different lignin structural characteristics
revealed by 2D NMR, we chose to model the most impor-
tant ones that provide information transferable to other
lignin characteristics. The modelled structural properties
include the content of β-O-4 linkages, the ratio syringyl
and guaiacyl (S/G) units and the carbohydrate content
as a part of lignin-carbohydrate complex. β-O-4 linkages
are the main reactive centers of the native lignin; their
amount after the process characterize the degree of lignin
transformation. In addition, good correlation between
the amounts of β-O-4 linkages and other lignin character-
istics have previously been reported for the AqSO process
(Tarasov et al. in preparation). To account for the exper-
imental error in measuring these objectives, the standard
deviations of the noise terms incorporated into the surro-
gate models was chosen to reflect estimated measurement
errors of 5% for lignin yield and 5-10% for the structural
properties.

A key feature of our approach is that the experimen-
tal data collection was performed by applying BO to two
objectives, namely the extracted lignin yield and β-O-4
content. After the data collection is concluded, it is then
possible to train surrogate models for any other objec-
tives that were measured, even if those objectives were
not actively employed to generate new acquisitions.

Since the experimental sample preparation and char-
acterization typically takes several days, acquisitions
were made in batches to make the process more effi-
cient. Rather than obtaining multiple acquisitions from
the same acquisition function, we acquired once from
the exploration-modified lower confidence bound (eLCB)
function and once from the pure exploration function.
Here, the term pure exploration to refers to acquisi-
tions made using the model standard deviation as ac-
quisition function. The four-fold split of acquisitions
between eLCB and pure exploration acquisitons func-
tions as well as two different objectives emphasizes explo-
ration of the design space and ensures that the collected
data can be used to train predictive models for the re-
maining objectives. Note, however, that the presence of
eLCB acquisitions in our approach means that our ap-
proach is not purely exploratory. This is motivated by
our aim to quickly identify extremal regions, e.g., with
high lignin yield, to efficiently design the AqSO biorefin-
ery. With two different objectives and two different ac-
quisition functions, each batch of acquisitions comprised
four suggested experiments in total. The straightforward
strategy for proceeding with the BO would then be to
simply conduct two separate, isolated, BO processes, one
for the lignin yield and one for the β-O-4 content. We
shall refer to this as the pure acquisitions (PA) strategy
(Fig. 3a). With this strategy, however, we do not make
use of the fact that each sample yields a measured value
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FIG. 3. Two strategies for updating surrogate models for
different objectives. (a) In the pure acquisitions strategy, only
acquisitions (red and blue circles) made for a certain objec-
tive are used to update the surrogate model for that objective.
(b) In the combined acquisitions strategy, acquisitions for dif-
ferent objectives are pooled together so that each surrogate
model is updated using the same pooled set of acquisitions.

for both objectives, and we might as well perform the
two separate BO processes consecutively rather than si-
multaneously. Therefore, it is worthwhile investigating if
a more efficient acquisition strategy can be obtained by
sharing acquisitions between two simultaneous BO pro-
cesses. To this end, we consider a strategy where data
acquired from different surrogate models are combined
and used to update all existing surrogate models at ev-
ery BO iteration. This means that the final surrogate
models for the two objectives are constructed using the
same set of acquisitions and consequently we refer to this
as the combined acquisitions (CA) strategy (Fig. 3b).

G. Pareto Front Analysis

In this work we also consider the simultaneous opti-
mization of several experimental outputs that have been
mapped as functions of the design variables via BO. In
general, a single solution does not exist for such a multi-
objective optimization problem, rather we must look
for optimal trade-offs between the objectives involved.
Mathematically, the notion of an optimal trade-off is for-
malized by the concept of Pareto optimality (see SI for
an extended description). The theory tells us that a com-
bination of objective values that can be feasibly obtained
constitutes an optimal trade-off if an improvement in one
objective is always detrimental to at least one other ob-
jective. We refer to an optimal trade-off as a Pareto
point, and the set of all Pareto points is known as the
Pareto front. The extraction conditions corresponding
to a Pareto point is known as a Pareto optimal solution.
Once the Pareto front is known, a particular Pareto point
can be chosen as the preferred solution to the optimiza-
tion problem, e.g., based on the relative importance of
the design criteria.
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III. RESULTS AND DISCUSSION

The presentation of our results is organized as follows:
We start from a machine learning perspective and give
a high-level illustration of the BO-driven data collection
and its most salient features, such as the iterative process
acquisitions and surrogate model updates. We then con-
sider in greater detail the acquisition strategy and how
it can be tuned to select informative data points when
we are interested in more than one objective. To con-
clude the machine learning-focused parts of the results,
we study the convergence of the surrogate models and
assess their predictive power. We then turn to surro-
gate model predictions for the extracted lignin yield and
key structural properties and the insight that these can
provide into the extraction process and lignin chemistry.
Finally, we show how to simultaneously optimize combi-
nations of the yield and structural properties to meet a
given set of design criteria for high-value applications in
lignin valorization.

A. Data Collection Driven By Bayesian
Optimization

The experimental data collection was carried out iter-
atively in five batches of acquisitions, until convergence,
to train two surrogate models representing the extracted
lignin yield and the β-O-4 content, respectively. For con-
venience, we label the batches 0, 1, 2, 3, 4, where 0 cor-
responds to the initial batch. To visualize a surrogate
model, we use 2D contour plots of the design space vari-
ables (Pf , T ) versus the predicted objective values and
refer to such plots as landscapes. The evolution of the
extracted lignin yield and β-O-4 content landscapes as
new batches of data are acquired using the CA strat-
egy is visualized in Fig. 4. The figure also includes the
predicted standard deviation, which quantifies the uncer-
tainty in the objective value predictions. We note that
for the CA strategy, the standard deviations of all ob-
jectives are identical, up to differences in scale, since the
surrogate models are all based on the same acquisition
set. Hence, one set of contours is sufficient to represent
both the evolution of the lignin yield and β-O-4 content
standard deviation (Fig. 4, bottom).

The initial batch of Sobol points yields landscapes
that, due to the overall data scarcity, is dominated by
the mean of the observed values, and the surrogate mod-
els have essentially no predictive power. The lack of data
is, at this stage, also reflected in the predicted standard
deviation, which is uniformly high away from the Sobol
points. As the dataset is further extended in batches
two to four, the landscapes become smoother and the
surrogate models predictive power, i.e., ability to accu-
rately interpolate between acquisitions increases. Indeed,
already in batch one, where four new acquisitions have
been added to the initial data, both the lignin yield and
β-O-4 content landscapes have resolved into two regions

of predicted high and low values. This qualitative feature
remains in the next three batches, but the size and shape
of the regions, including the extrema, shift in the process.
The refinement of the landscapes is accompanied by a
corresponding decrease in the predicted standard devia-
tion. In batch four a uniformly low standard deviation
is obtained where the lower limit set by the experimen-
tal error built into the surrogate model. At this stage,
the landscapes are converging as suggested qualitatively
by the relatively small feature changes between the third
and fourth batch. We furthermore observe that locations
of the acquisitions in batches one to four are quite differ-
ent from, e.g., what a space-filling design would yield in
the sense that the sampling density of the design space
is much less uniform. This is due to the exploitation-
exploration trade-off in the acquisition strategy, which
means that regions of potentially high objective values
or high variance are preferentially sampled to maximize
the relevant information contributed towards the design
process. The result is a rapid improvement of the sur-
rogate models with added data, which is one of the key
features that makes BO an effective approach to DOE
problems.

B. Choosing Informative Acquisitions

In the previous section we focused on the overarch-
ing picture of using BO to guide and model experiments.
We demonstrated what the BO process looks like for the
lignin yield and provided qualitative arguments for why it
works. The fact that Fig. 4 was based on CA acquisition
strategy was only briefly mentioned, however, and no de-
tailed analysis of the acquisitions was given. In this sec-
tion, we therefore compare the CA and PA strategies in
terms of the informativeness of their respective generated
acquisitions. In this context, an informative acquisition
is one that provides the surrogate model which useful in-
formation, i.e., information on objective values in regions
that have not been probed (exploration) or where a max-
imum is likely to be found (exploitation). We carry out
the comparison between the strategies by studying the
batch-by-batch development of the landscapes, as well as
the locations of acquisitions made with the eLCB and
pure exploration acquisition functions.

A comparison of the two strategies for selected snap-
shots from the evolution of the lignin yield landscape is
shown in Fig. 5. Note that for β-O-4 acquisitions we only
show the CA strategy, since in the PA scheme they are
not considered for the purpose of constructing the lignin
yield surrogate model. In Fig. 5, acquisitions are labeled
according to whether they are (1) acquired for the lignin
yield or β-O-4 content and (2) generated by the eLCB or
pure exploration functions. Corresponding snapshots for
the evolution of the β-O-4 content are shown in Fig. S3.
For both strategies, the lignin yield eLCB acquisitions
are primarily exploitative in nature and probe the region
where Pf ≥ 1500. Similarly, the β-O-4 eLCB acquisi-
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FIG. 4. Successive improvement of the surrogate models for the lignin yield (top) and β-O-4 content (middle) as new acquisitions
(green circles) are added to the existing dataset (black circles). As the landscapes evolves, the model’s capability of predicting
the yield in unknown regions of design space increases. The prediction uncertainties are quantified by the model standard
deviation (bottom) which simultaneously decreases as more data is collected. The acquisition strategy balances exploitation of
regions where the yield is large and exploration of regions with high uncertainty.

tions all occur in the vicinity of the Pf ≈ 500 region with
high β-O-4 content. As expected, the batch 2 and 4 land-
scapes reveal that the CA-generated surrogate model is
more developed compared to its PA equivalent, since it
utilizes more of the available data points.

While Fig. 5 clearly illustrates how acquisitions from
the eLCB and pure exploration functions relate to fea-
tures in the landscape, it does not allow us to directly
compare the performance of the CA and PA strategies
since the PA surrogate models use fewer data point than
their CA counterparts. To accomplish this, we instead
need to compare surrogate models constructed from the
entire PA dataset, including β-O-4 acquisitions (Figs. S4
and S5). When comparing these landscapes, the differ-
ences between the strategies then lie solely in the location
of the acquisitions, rather than their number. The com-
parison reveals that CA does indeed yield a more accu-
rate surrogate model, as evidenced by the fact that the
PA model fails to predict the region surrounding max-
imum yield obtained for high Pf and T . This can be
attributed to the fact that in the CA strategy, new ac-
quisitions always take the full set of previous acquisitions
into account, allowing for more informative points to be
picked during both exploitation and exploration. We can

thus conclude that the CA is a more effective acquisition
strategy for BO-driven DOE targeting multiple objec-
tives than PA.

In generating eLCB acquisitions for more than one ob-
jective, our results further highlight the importance of
choosing objectives with dissimilar landscapes to guide
the data collection. In the case of lignin yield and β-O-4
content, we see that their respective eLCB acquisitions
tend to have little overlap since high objective values are
attained for high and low Pf , respectively (Fig. 5). In
contrast, a high degree of similarity between the land-
scapes would lead to a high degree of overlap between the
eLCB acquisitions generated for the different objectives
and consequently less informative batches. Using either
strategy, a significant fraction, 62% for CA, of the acqui-
sitions are made on the design space boundary. This is a
result of the increased exploration and non-periodicity of
the problem, since points close to the design space bound-
ary have, on average, fewer neighboring acquisitions that
can be used by the surrogate model to effectively interpo-
late. In applications of BO to experiments, design space
bounds thus need to be chosen carefully such that experi-
ments are still feasible for any, potentially more extreme,
processing conditions implied by a boundary acquisition.
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exploration. Triangles/crosses: β-O-4 content eLCB/pure exploration. In the CA scheme, combining acquisitions from different
objectives before the model updates leads to more informed acquisitions in subsequent batches and more rapid exploration of
relevant regions of the design space. Notably, PA fails to discover the region of high yield around Pf = 2500 and T = 210 K.

C. Surrogate Model Validation

Model validation refers to the process of assessing how
well the model can make predictions for a set of test data
that was not included in the model training and is there-
fore a crucial part of any machine learning application.
To this end, we compiled a set of test data from seven
experiments that were conducted independently from the
CA acquisition strategy. We note that the size of the
test set is restricted by the significant cost of perform-
ing additional experiments. The predictive power of the
surrogate models for lignin yield and β-O-4 content was
subsequently evaluated for both the test set as well as
the acquisitions used to train the model. A compari-
son of the predictions with the experimentally measured
values is displayed in Fig. 6. It can be seen that, qualita-
tively, both surrogate models perform well on the test set
and that the measured values all fall within one standard
deviation from the predicted values (Fig. 6b,d). We show
the corresponding results for the PA strategy in Fig. S6.

Based on the validation data, several quantitative per-
formance metrics were also calculated (I). One important
metric is the mean absolute percentage error (MAPE),

which measures the mean prediction error on a data set.
For the acquisitions set, the MAPE is 6.8% and 11.0% for
the lignin yield and β-O-4 content, respectively. These
numbers reflect the estimated experimental error, which
was encoded into the surrogate models as a fixed Gaus-
sian noise. This noise ensures that the surrogate models
are not overfitted to the acquisition data since this typi-
cally is detrimental to the predictive power of the models.
The corresponding MAPEs for the test data are 7.8% for
the lignin yield and 8.6 for the β-O-4 content. The fact
that these numbers are comparable to the MAPEs for
the acquisitions set, and thus by extension the estimated
experimental error, implies that the surrogate models are
well converged and can provide accurate predictions.To
assess the convergence of the predicted maxima of the
lignin yield and β-O-4 content were also monitored (Fig.
S7).

We emphasize the role of exploratory acquisitions in
obtaining this level of surrogate model accuracy over all
of design space despite using small dataset consisting of
only 21 points. Incorporating additional exploration is
crucial since traditional improvement-based acquisition
functions are constructed to preferentially converge the
surrogate model in regions around extrema. An addi-
tional benefit of promoting exploration is that the fi-
nal dataset is better suited for fitting surrogate models
for other objectives that were measured during the BO-
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FIG. 6. Validation of the surrogate models trained for the lignin yield (a-b) and β-O-4 content (c-d). To assess the accuracy
of the models’ predictions, the measured objective values for a set of independently collected test data is used (right). The
predictions for the test set are contrasted to the predictions for the set of acquisitions used to train the models (left). The
errorbars indicate the predicted standard deviations. Both models provide accurate predictions that are comparable across the
acquisitions and test data, indicating that the models strike a good balance between generalizing to new data and reproducing
the training data.

TABLE I. Summary of model validation metrics for the lignin yield and β-O-4 content. The estimated experimental error is
followed by the root mean square error (RMSE), mean absolute error (MAE), mean average percentage error (MAPE) and
mean predicted standard deviation (MPSD). The MAPE obtained for test set is similar to the MAPE of the acquisitions and
comparable to the estimated experimental error, indicating that the surrogate models are able to make accurate predictions.

Objective Exp. error Data set RMSE MAE MAPE MPSD

Lignin yield 5% Acquisitions 4.7 3.8 6.8 11.8

(%) Test 6.0 4.8 7.8 11.7

β-O-4 content 5–10% Acquisitions 2.0 1.6 11.0 2.6

(per 100 Ar) Test 1.1 0.9 8.6 2.6

guided data collection, since exploration, unlike exploita-
tion, is not inherently objective-specific.

D. Model Predictions for Key Lignin Properties

Up until this point, we have studied the surrogate mod-
els and data collection process from a machine learning
perspective. Now, we consider how the surrogate model
can be used to learn about the experimental process. To
this end, we consider the surrogate model predictions for
a selected set of the measured lignin properties that are
of key importance for lignin chemistry and valorization.
To complement the already established surrogate models
for lignin yield andβ-O-4 content we fit additional surro-
gate models for the S/G ratio and the total carbohydrate
content.

For the lignin yield, the general trend is that a higher

P-factor and a higher temperature leads to increased
yield, with a predicted maximum yield of 98 ± 13% at
(Pf , T ) = (2500, 207 ◦C). The increase in lignin yield
with P-factor is related to formation of more acetone-
soluble lignin fragments, as well as cleavage of lignin-
carbohydrate linkages under more severe reaction con-
ditions. The average measured lignin yield of 108% at
(Pf , T ) = (2500, 210 ◦C) also indicates the formation of
polyfurans from xylan degradation products (furfural)
that is quantified as lignin [7] (so-called pseudo-lignin
[43, 44]) . We note that the measured yield at these
conditions exceeds the predicted maximum yield. The
deviation is due to the inclusion of experimental error
in the surrogate model, and the measured value is still
within one standard deviation of the predicted maximum.
The β-O-4 content exhibits a behavior antagonistic to
the lignin yield in the sense that high β-O-4 content can
only be achieved at low P-factor. Indeed, at lower reac-
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FIG. 7. Predicted landscapes for key lignin properties. a) The lignin yield increases with both temperature and P-factor. b)
The β-O-4 content exhibits an antagonistic relationship with the lignin yield and is large when the P-factor is low. c) The
ratio of syringyl to guaiacyl units is also large when the P-factor is low but is less sensitive to changes in P-factor at higher
temperatures. d) Significant amounts of carbohydrates can only be obtained at low to intermediate temperatures and low
P-factors. Large measurement uncertainties relative to the local landscape corrugation leads to fitting issues for surrogate
model.

tion severity, we can generally expect that the moieties
which are rich in native lignin, such as β-O-4, are broken
down to a lesser extent.

Another important property is S/G ratio, which is im-
portant in specific high-value lignin applications. The
highest S/G ratio was found at low process severity, likely
due to higher reactivity of S-units in lignin fragmenta-
tion and therefore their predominant release (extraction
with the solvent) at the initial stage of the process. We
see that while the (Pf , T )-dependence of these proper-
ties can to some extent be qualitatively explained by ba-
sic lignin chemistry considerations, the surrogate models
provide the quantitative predictions which are necessary
for large-scale applications in lignin valorization.

E. Tailoring Extraction Conditions for Different
Lignin Applications

Having established surrogate models for a range of ob-
jectives of interest, we have all the information required
to derive optimal extraction conditions for arbitrary de-
sign criteria associated with lignin-based products. De-
sign criteria generally take the form of a set of constraints
on the physicochemical properties of the lignin imposed
by the application. In the present case, we only consider

the structural properties for which we have trained surro-
gate models. In addition to constraints on the properties,
the yield of the extracted lignin also needs to exceed some
minimum threshold for an application to be financially
viable. Thus, we are looking to find extraction condi-
tions that give a high yield and match one or more other
design criteria relating to the lignin properties. To solve
this problem, a Pareto front analysis can be employed
to find optimal trade-offs between the lignin yield and
properties. The practical implication of having multiple
optimal trade-offs is that changing the extraction condi-
tions to bring one objective closer to its design criteria
will result in at least one other objective having a less
optimal value.

As a concrete example of how to apply a Pareto front
analysis, we consider optimizing the AqSO biorefinery for
extracting lignin suitable as a feedstock in the production
of aromatic platform chemicals. For this purpose, most
processes require a maximal number of β-O-4 linkages to
maximize the yield of the targeted monomers. [4] Hence,
the maximal revenue (per the original biomass, e.g.,
AqSO feed) correlates with both high AEL yield, and
high β-O-4 content. Using our surrogate models we can
determine the feasible combinations of yield and β-O-4
content, which form a two-dimensional area (Fig. 8a). By
subsequently calculating the Pareto front, we see that it
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FIG. 8. Optimizing the AqSO biorefinery for production of aromatic platform chemicals by simultaneously attempting to
maximize lignin yield and β-O-4 content. The Pareto front (a) and corresponding Pareto optimal solutions (b) represent
optimal trade-offs for the objectives. A single point on the Pareto front can be selected by assigning a desired value to one of
the objectives. The corresponding Pareto optimal solution then provides the optimal extraction conditions for the valorization.

constitutes part of the feasible points boundary (Fig. 8a).
We observe from the shape of the Pareto front that high
values of the AEL yield are correlated with low β-O-4
content, in agreement with Fig. 7a-b). The corresponding
Pareto optimal solutions, i.e., (Pf , T )-pairs correspond-
ing to optimal trade-offs are then found from the projec-
tion of the Pareto front in (Pf , T )-space (Fig. 8b). We
notice that all trade-offs involving high yield are obtained
at high temperature, whereas trade-offs involving high
β-O-4content are obtained a low P-factor. To determine
the processing conditions, we should perform the lignin
extraction at, we need to narrow down the Pareto front
to a single point by imposing an additional constraint.
For instance, we might accept a slightly smaller yield of
say 60%, in return for a higher β-O-4content. We can
then determine from Fig. 8 that this trade-off results in
17.5 β-O-4 linkages per 100 Ar and can be achieved by
extracting at (Pf , T ) = (1227, 210 ◦C). We note that this
modeling-based design process is completely general and
can be applied to any application with an arbitrary num-
ber of different properties, as long as the corresponding
surrogate models have been obtained. We could envi-
sion an application where a high amount of phenolic OH
groups is beneficial, e.g., for the use of lignin as an antiox-
idant. As phenolic OH is a typical product of β-O-4-unit
cleavage, one should expect the highest phenolic OH con-
tent at the lowest number of β-O-4-linkages. By Fig. 8, a
high phenolic OH content would then correlate positively
with the lignin yield, and we can consequently expect
to obtain trade-offs with high values for both quantities.
Similar examples could be given for the optimal S/G ratio
and amounts of carbohydrate in lignin (present as lignin
carbohydrate complexes). For example, higher propor-
tion of S-units should be beneficial for post-processing
lignin depolymerization due to the higher reactivity of
S-units compared to that of G-units. In contrast, S-
units are not suitable for various crosslinking reactions

as both ortho-positions to the phenolic OH (typical re-
action centers in crosslinking) in the aromatic ring of S-
units are occupied by OMe-groups. The presence of hy-
drophilic carbohydrates moieties (as lignin-carbohydrate
complexes) can be advantageous in surfactant applica-
tions, but other lignin applications (e.g., production of
aromatic monomers) require high purity lignin.

It is important to keep in mind that there is no all-
purpose lignin; different applications call for optimiza-
tion of different properties. In future work, we aim to
establish surrogate models that correlate lignin structure
with optimal product properties for specific applications.
This would allow us, using the surrogate models pre-
sented here, to establish predictive models that link the
entire value chain, starting from the effect of the pro-
cessing conditions on lignin structure and properties, to
the effect of these properties and their effect on lignin
performance in specific applications.

IV. CONCLUSIONS

The AqSO biorefinery provides a flexible framework
for obtaining lignin-based products in a facile and sus-
tainable manner. To properly utilize AqSOs versatility,
we have presented a machine learning approach to de-
signing and optimizing the biorefinery based on BO. The
BO approach to DOE can be distinguished from classical
methods by the coupled model building and data col-
lection policy, which ensures that planned experiments
are always chosen to provide as much useful information
as possible given the current state of the model. While
previous studies on applying BO to experimental work
focused largely on optimizing for a pre-determined de-
sign criterion, our approach also highlights capability of
BO to provide predictive modeling.

We showed that predictive models with an accuracy
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comparable to the experimental error could be obtained
for the yield of the extracted lignin and structural proper-
ties such as the β-O-4 content and S/G ratio using only
21 data points. An important feature of our approach
was the use of parallel exploratory and exploitative acqui-
sitions performed simultaneously for multiple objectives
to take advantage of batched experiments. The extra
emphasis on exploration was crucial in obtaining models
that are predictive over all of design space rather than
just in the vicinity of a maxima as is commonly observed
for conventional acquisition strategies. When splitting
acquisitions between multiple objectives we furthermore
demonstrated that models converge faster when the ac-
quisitions are combined before the models are updated
(CA strategy) compared to the baseline acquiring new
data separately for the objectives (PA strategy).

Significant effort was also put toward model interpre-
tation and analysis. Our models predict that lignin yield
and several structural properties such as β-O-4 content,
S/G ratio and carbohydrate content cannot simultane-
ously be obtained in high quantities. In addition to pro-
viding new insights, our findings bring a quantitative
dimension to previously observed trends for the AqSO
biorefinery. We furthermore describe how to use predic-
tive models to find optimal extraction conditions corre-
sponding to a set design criterion, expressed in terms of
the objectives, using a Pareto front analysis. The pro-
cess is illustrated for the case of breaking lignin down
into value-added chemicals, which requires a both a high
yield and S/G ratio. The result is a set of optimal trade-
offs between the yield and S/G ratio where a single solu-
tion can subsequently be chosen based on a quantitative
requirement on either property.

In the larger context of experiment design, our work in-
dicates that BO can play a bigger role than indicated by
previous efforts focusing on global optimization. Indeed,
new experimental methodology and material processing
techniques are not always developed with a straightfor-
ward optimization problem in mind. In these cases, one
should arguable focus more on obtaining globally predic-
tive surrogate models that can later be used to a solve

specific design problems via a Pareto analysis. While the
underlying mathematics of BO remains relatively com-
plex, newly developed codes such as BOSS are paving
the way for more stream-lined and user-friendly applica-
tions of BO to experiments.
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Joakim Löfgren: 0000-0001-6968-5966
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