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Michael Bortz1

1Fraunhofer Institute for Industrial Mathematics (ITWM), Fraunhofer-Platz 1,
67663 Kaiserslautern, Germany

1Laboratory of Thermal Process Engineering, Institute of Chemical Engineering, Ulm
University, Albert-Einstein-Allee 47, 89081 Ulm, Germany

Abstract

In this work we present a new approach that we use to simulate and
optimize multiple dividing wall columns at the same time. Instead of
considering all model equations as constraints and all process variables as
optimization variables in a large and highly nonlinear optimization prob-
lem we only incorporate a subset of the model equations as constraints
and a subset of the process variables as optimization variables. The re-
maining process variables are calculated from this subset by a robust and
fast calculation procedure. This calculation procedure also ensures that
the remaining model equations are satisfied. A comparison with the com-
mercial process simulator Aspen Plus R© shows that with the new approach
multiple dividing wall columns can be optimized more stable and better
solutions are found. Moreover the time needed to find an optimal design
decreases significantly.

1 Introduction

In process design, the problem of finding a steady state can be formulated as a
system of nonlinear equations:

gi(xvar) = 0, i ∈ IMESH, (1)

where xvar = (xj)j∈Ivar
are the process variables and gi(xvar), i ∈ IMESH are the

model equations. In the case of distillation processes they are given by the so-
called MESH equations (material-balance, equilibrium-balance, summation-law
and heat-balance). Typically there are less equations than variables. The user
has to specify a value for each remaining degree of freedom. The simulation
software then tries to determine values for all process variables by solving the
underlying non-linear system of equations given in Equation (1). If not just
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any design is to be found, the specifications are modified until a good design is
found. This can for example be achieved using an optimization routine.

Many classic operating units such as distillation columns or reactors can be
modeled this way. They can be combined in a flow sheet and simulated safely.
Introducing an objective function, the resulting flow sheets can be optimized.
However there are operating units which still cause difficulties and can not be
simulated safely. In order to nevertheless find a design for such units, a lot of
effort is spent. For example one can try to find a thermodynamic consistent
flow sheet. Good starting values are needed to find a convergent simulation. If
an optimization has to be performed, the convergent area has to be explored
carefully and bounds have to be set in such a way that the optimization doesn’t
end up with non convergent simulations. An example for these more demanding
unit operations in terms of simulation are dividing wall columns

Generally dividing wall columns are intensified distillation processes. Con-
ventionally, multi-component mixtures are separated in sequences of simple dis-
tillation columns where the number of columns is one below the number of com-
ponents in the original mixture. Figure 1a shows an example for the separation
of a quaternary mixture using a conventional split sequence. In the figure the
placeholders A, B, C and D denote the components in the feed mixture sorted
according to their boiling temperature where A is the light boiler.

(a) (b) (c)

Figure 1: Distillation options for quaternary product splits. (a) Direct-direct
split sequence, (b) multiple dividing wall column, (c) simplified version of mul-
tiple dividing wall column.

Applying internal partition walls enables the separation of the same mixtures
in only one column shell Kiss and Bildea 2011; Halvorsen et al. 2013; Jiang et al.
2018. This way pure products can also be obtained from side flows. In Figure 1b
an example with three dividing walls to separate quaternary mixtures is shown.
A distillation column with one dividing wall (to split ternary mixtures) is called
simple dividing wall column. If more than one dividing wall is present, the
column is called multiple dividing wall column (mDWC). In both cases the
internal vapor and liquid flows have to be split at the partition walls. Like this,
remixing of intermediate boiling components, which usually occurs in column
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sequences, is avoided resulting in energy savings. For the simple dividing wall
the savings are around 30 % M. A. Schultz et al. 2002 and for the mDWC up
to 50 % Dejanović et al. 2011; Dejanović et al. 2014.

A quarternary mixture can also be separated in a simplified version intro-
duced in Figure 1c. It only requires two instead of three dividing walls, thus
less vapor and liquid splits at these dividing walls have to be known and two
sections are saved. Interestingly, this kind of column can be operated without
additional energy compared to the version with three dividing walls in Figure 1b
for a large set of systems Dejanović et al. 2014.

The above stated energy saving potential can only be totally exploited by
an optimally designed column. For this purpose, different possibilities have
been developed in the literature. The simplest way is as described above. First
specifications are added to Equation (1) such that all degrees of freedom are
fixed. A process simulator is used to solve the resulting system of equations. In
an outer loop the specifications are modified until a satisfactory design is found.
This is for example applied by Kurnatowski et al. 2017; Waltermann, Sibbing,
and Skiborowski 2019. However, due to this outer loop the procedure requires
significant calculation times.

An alternative to repeatedly solving the large nonlinear systems of equations
with a process simulator is to embed the process simulation into an optimization
problem. This can be done by incorporating all MESH equations (Equation (1))
as constraints whereas the process variables xvar serve as optimization variables
Biegler, Grossmann, and Westerberg 1997; Dowling and Biegler 2015. An ob-
jective (eg. minimal energy consumption) and further constraints (eg. purity
demands) can be added directly to the optimization problem. The optimization
solver finds a solution to the equations describing the simulation that mini-
mizes the objective. The main challenge of this approach is that the resulting
optimization problems are large and may be difficult to initialize and to solve.

To overcome these difficulties we follow in this work an approach described
recently Seidel et al. 2020. The idea is to not select all but a subset of the
process variables as optimization variables. Next, the structure of the MESH
equations is exploited to calculate values for all process variables and presolve a
part of the equations. This way one arrives at a comparably small optimization
problem with favorable convergence properties.

The approach exhibits a large flexibility in the choice of the optimization
variables and the choice of the MESH equations that are presolved. Indeed, both
approaches described above can be modeled. Either by presolving all MESH
equations and adding no equation to the optimization problem, or by using all
process variables as optimization variables and adding all MESH equations to
the optimization problem. But also other choices are possible. For example
Kravanja and Grossmann 1996 solved complete operating units by an external
function. Biegler and Hughes 1982 added only equations introduced by so-
called tear streams to the optimization problem. It is also possible to calculate
thermodynamic properties such as the vapor liquid equilibrium externally. This
has for example be done by Brusis 2003; Poth 2003; Skiborowski, Wessel, and
Marquardt 2014.
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Despite this flexibility, the goal is to choose a small subset of optimization
variables. For this reason, not only the equations describing the thermodynamic
properties but a majority of the model equations are presolved. This way only
a small subset of the model equations and of the original variables need to be
incorporated in the optimization problem which makes the problem small. In
addition, the mapping that determines all process variables from the optimiza-
tion variables must be evaluated multiple times. Thus, it must be possible to
do this quickly and robustly. For this reason, most, but not all, of the equations
describing a unit are solved by an external routine. The right choice depends
on the considered operating unit. Hoffmann et al. 2017 presented a routine for
a conventional distillation column. By Seidel et al. 2020 this was extended to
the interconnection of multiple distillation columns. The goal of this paper is
to develop a method for simple and multiple dividing wall columns.

The paper is organized as follows. In Section 2 we introduce the model
describing a mDWC in Detail. We describe the used MESH equations and in-
troduce an thermodynamically equivalent Petlyuk sequence. In the next section
we describe the new solution approach. We first describe the general procedure
and show how all process variables can be calculated from the chosen optimiza-
tion variables. At the end of this section we introduce conditions which ensure
that all values for the calculated concentrations remain positive. After a short
description of the implementation details we present numerical results for dif-
ferent use cases in Section 5. First considering simple dividing wall columns,
then for multiple dividing wall columns.

2 Equilibrium stage model for mDWC

In this section we introduce the MESH equations that describe a mDWC. For
simplicity we consider a given feed and a constant pressure p within the column.
However, the following can also be extended to a variable feed and pressure. We
use the equilibrium stage model widely applied to model conventional distillation
columns Biegler, Grossmann, and Westerberg 1997 and adjust it to the situation
where dividing walls are present. The column is modeled with a total hight
of Nh theoretical stages. Additionally, we model a total condenser with duty
Q̇C < 0 and a total reboiler with duty Q̇R > 0, which are not counted within the
theoretical stages. Throughout the following, stages are numbered from bottom
to top. We assume that a dividing wall starts and ends with a stage.

For a stage k in a conventional distillation column there is a liquid stream
(with molar flow rate Lk and molar concentrations xk) flowing from it to the
stage beneath and a vapor stream (with molar flow rate V k and molar con-
centration yk) flowing from it to the stage above. Likewise, there is a liquid
stream and a vapor stream flowing onto it. The equations used to describe their
dependency are the MESH equations stated in the following for NC components:

• Material-balance: for every i, 1 ≤ i ≤ NC

V kyki + Lkxki = V k−1yk−1
i + Lk+1xk+1

i . (2)
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• Equilibrium-condition: in this work extended Raoult’s law is used to
model the vapor-liquid equilibrium. This means that for every i, 1 ≤
i ≤ NC

pyki = pSi (T k)xki γi(x
k, T k), (3)

where T k denotes the temperature in stage k, pSi the vapor pressure of
the pure component i and γi the activity coefficient for component i.

• Summation-law:
NC∑
i=1

xki =

NC∑
i=1

yki = 1. (4)

• Enthalpy-balance:

V kv(yk) + Lkl(xk) = V k−1v(yk−1) + Lk+1l(xk+1). (5)

As we assume the equilibrium condition in each tray, the temperature can
be calculated by using extended Raoult’s law. Using this temperature the
enthalpy of the liquid phase only depends on the concentration x and is
denoted by l(x). Analogously the enthalpy of the vapor phase y is denoted
by v(y).

For the feed stage of the column the material and the enthalpy-balance have to
be adjusted accordingly.

Three additional types of stages need to be considered at the dividing walls
which are shown in Figure 2. A stage separated by a dividing wall is shown in
Figure 2a. We will assume that there is no heat transfer through the dividing
wall. This means that we can consider a separated stage as two independent
stages k and k̄ and formulate the MESH equations given above for each one of
them. Analogously a stage divided by more than one wall is modeled by more
than two independent stages.

We next describe stages beneath and above a dividing wall. A stage directly
above of a wall, shown in Figure 2b, has two instead of just one vapor stream
entering, one from the left of the dividing wall and one from the right. The
outgoing liquid stream is split into two streams, one going to the left of the
dividing wall and one to the right. Both outgoing liquid streams will have
the same concentrations. For convenience we model the two streams with two
concentration vectors but we add the equations

xki = x̄ki for 1 ≤ i ≤ NC (6)

to ensure that their composition is equal. In the material-balance and the
enthalpy-balance (Equations (2) and (5)) terms for the additional ingoing and
outgoing streams have to be added. The equlibrium-condition and the summation-
law (Equations (3) and (4)) do not need to be modified as Equation (6) ensures
that they also hold for x̄n.

A stage directly beneath a dividing wall has two ingoing liquid streams and
the outgoing vapor stream is split. A corresponding stage is shown in Figure 2c.
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L̄k+1, x̄k+1

(c)

Figure 2: Different types of stages effected by dividing wall. (a) Stage split by
dividing wall, (b) Stage above dividing wall, (c) Stage beneath dividing wall.

Terms for these streams are added to the material-balance and enthalpy-balance.
Again we model two concentrations for the outgoing vapor streams and add the
equations

yki = ȳki for 1 ≤ i ≤ NC . (7)

Besides the description of the MESH equations for each theoretical stage,
a mDWC can be described by a thermodynamic consistent flowsheet. There-
fore sections of the mDWC are represented by fully thermally coupled simple
columns without reboiler and condenser. Each of these columns has an ingoing
vapor and outgoing liquid stream at the bottom of the column and an outgoing
vapor and ingoing liquid stream at the top of the column. The feed stage corre-
sponds to a split stage above or beneath a dividing wall. The columns represent-
ing sections of the mDWC are interconnected by vapor and liquid streams. The
product streams are located at the top, or bottom of the representing columns.
Such a flowsheet is also called Petlyuk sequence (see for example Triantafyllou
and Smith 1993). An example for the separation of four components is shown
in Figure 3 for the mDWC introduced in Figure 1c. The column sections are
shown by dashed lines in Figure 3a. The corresponding columns in the thermo-
dynamic consistent flowsheet are shown in Figure 3b. The column sections Ci,j

are numbered from right to left and from top to bottom. We skip the second
index j if there is only one.
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Figure 3: Column sections of a mDWC. (a) Distillation column with two divid-
ing walls (b) corresponding Petlyuk sequence.

3 Embedding into an optimization problem

After introducing the model of a mDWC we now turn to the solution procedure.
As described in the introduction we formulate the solution of the simulation as
an optimization problem. Instead of considering all process variables xvar =
(xj)j∈Ivar

and all MESH equations gi, i ∈ IMESH in the optimization problem,
we select a subset of the process variables as optimization variables xopt =
(xj)j∈Iopt

with Iopt ⊆ Ivar. Using values for these optimization variables, all
process variables are calculated using a part of the MESH equations. This can
be described as a map

xopt 7→ xvar. (8)

The calculated process variables already satisfy all MESH equations used in this
calculation procedure, but a part of the MESH equations Iconstr ⊆ IMESH can
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be initially violated. They are incorporated in an optimization problem:

min
xopt

f(xvar(xopt)) (9)

s.t. gi(xvar(xopt)) = 0, i ∈ Iconstr,

sk(xvar(xopt)) = 0, k ∈ Seq,

sl(xvar(xopt)) ≤ 0, l ∈ Sineq

where f denotes an objective and sk, k ∈ Seq and sl, l ∈ Sineq denote further
constraints on the process such as purity specifications. A solution of the opti-
mization problem satisfies all MESH equations, all specifications and minimizes
the objective.

We start with an initial guess for the variables xopt (Step 0) and calculate
all process variables (Step 1). Using all process variables, the remaining MESH
equations, the specifications and the objective function can be evaluated (Step
2).Based on their values the optimizer will suggest new optimization variables
(Step 3). As the process variables depend on the optimization variables, the
map given in Equation (8) has to be evaluated again (Step 1). This is repeated
until all constraints are satisfied and optimality is reached. The steps of the
algorithm can be summarized as follows:

Step 0 : Choose initial values for xopt.

Step 1 : Determine all process variables xvar (Equation (8)).

Step 2 : Evaluate missing equations and objective function.

Step 3 : Are all equations fulfilled and is optimality reached?

no : Suggest new values for xopt and go to Step 1.

yes : Stop.

The suggestion of new values for the optimization variables is done by an op-
timization routine for constraint programming. Among others possible choices
are sequential quadratic programming (sqp) Powell 1978; Nocedal and Wright
2006 or interior point methods Wächter and Biegler 2006. As the resulting op-
timization problem is small, the time needed to suggest new values for xopt can
almost be neglected. The most time consuming work lies in Step 1 in which a
majority of the MESH equations is solved.

Initial values for the optimization variables can for example be obtained us-
ing a shortcut method. A possibility for multiple dividing wall columns has
been presented by Halvorsen and Skogestad 2003b and Ränger, Preißinger, and
Grützner 2018. In these works a Vmin diagram is used to approximate the min-
imal amount of vapor needed to achieve the separation of the substances under
consideration assuming an infinite number of stages. An improved approxima-
tion in the case of a finite number of stages has been developed by Ränger and
Grützner 2021. However, in Section 5.2 we investigate the influence of the start-
ing values on the result. The experiments show that the approach is very robust
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and often converges to an optimal solution even for a random choice of initial
values. Nevertheless a good choice of initial values can improve the convergence
rate.

For the algorithm, the evaluation of the map described in Equation (8)
is crucial. It must be possible to evaluate this map reliably and fast on a
large range of optimization variables xopt. Therefore, the optimization variables
and the mapping to all process variables have to be chosen carefully. In the
following Subsection 3.1, we will describe how to compute all process variables
knowing the values for the streams that connect the column sections Ci,j in
the Petlyuk sequence discussed in Section 2 and shown in Figure 3 for the
example of a column with two dividing walls. In Subsection 3.2 we will then
introduce conditions under which this procedure is guaranteed to succeed. Thus,
a suitable choice of optimization variables for multiple dividing wall columns are
variables that describe the interconnecting streams of the corresponding Petlyuk
sequence.

3.1 Calculation of all process variables using a stage-to-
stage procedure

As described before the optimization routine will suggest values for all streams
depicted in Figure 3 connecting the different column sections Ci,j . The theoret-
ical stages corresponding to one of these column sections is shown in more detail
in Figure 4. To simplify the notation in the following, we number the stages in
this column section again from 1 to n despite the stage index they already have
in the complete column.

The variables used as optimization variables describe the two streams at
the bottom, at the top and two streams at the split or feed stage ns (shown
in Figure 4 as thick lines). The type of the streams at stage ns vary between
the different column sections. In Figure 4 the stage ns corresponds to a stage
beneath a dividing wall where the outgoing vapor stream is split (compare
Figure 2c). This is why an outgoing vapor stream and an ingoing liquid stream
connect this column section to another column section. If stage ns describes
a stage above a dividing wall, it would be an additional ingoing vapor and
outgoing liquid stream. Finally, if ns corresponds to the column feed stage
there would be no additional vapor stream but only one ingoing liquid stream
(the column feed). These streams described by the optimization variables can
be considered to be known in this section. To receive all process variables, we
need to calculate all inner streams and the temperatures within the stages.

After the early work by Lewis and Matheson 1932 and Thiele and Geddes
1933 many methods have been described in the literature to determine all pro-
cess variables of a conventional distillation column. They include the so-called
θ-method Holland 1963; Billingsley 1970; Haas, Alejandro, and Holland 2007,
the sum rate method Sujata 1961; Burningham and Otto 1967; Lucia and Li
1992 and the relaxation method Rose, Sweeny, and Schrodt 1958; Ketchum
1979; Mori et al. 1990. Also Newton type methods have been used to solve the
corresponding MESH equations Naphtali and Sandholm 1971; Ishii and Otto
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Figure 4: Theoretical stages of one column section of a mDWC. Increasing con-
trol volumes (dashed rectangles). Streams described by optimization variables
(thick lines).

1973; Vickery and Taylor 1986. These works aim at solving all MESH equations
and determining all process variables.

An alternative to using the original MESH equation is to use shortcut meth-
ods. Various simplifying assumptions have been developed and repeatedly used
in the literature. These include the assumption of constant volatilities, as used
in the classic work of Underwood 1948 for a convential distillation column and
for dividing wall columns by Amminudin et al. 2001 and Halvorsen and Sko-
gestad 2003a; Halvorsen and Skogestad 2003b, or the assumption of constant
molar overflow used in the procedures presented in Levy, van Dongen, and Do-
herty 1985; van Dongen and Doherty 1985; Julka and Doherty 1990; Zhang and
Linninger 2004. These shortcut methods can either be used to approximate the
minimum required energy, or their results can be used to calculate initial values
for a rigorous optimization

In our approach, we aim to solve the original MESH equation directly and
make no simplifying assumptions. However, we do not need to solve all MESH
equations of the column section as a part of the equations can be included in the
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optimization problem given in Equation (9) and will be solved by an optimiza-
tion routine. Moreover, the process variables have to be determined multiple
times during the optimization of a mDWC. This means that the equations must
be solved reliably and fast. For a conventional distillation column it was pre-
viously shown that this can be done by stage-to-stage calculations based on
fixed point iterations (see Hoffmann et al. 2017). In the following we will show
how stage-to-stage caluclations can be used here to obtain all process variables
describing a column section.

As we already know the liquid concentration x1, we can use the equilibrium-
condition given in Equation (3) and the summation-law to calculate the vapor
concentration y1 and the temperature T1 in stage 1. We next consider the
control volume consisting only of the first stage (depicted in Figure 4 by a dashed
rectangle around stage 1). The variables that are still unknown in this control
volume are V 1, L2,x2. If we start with an initial guess of V 1 we can calculate
the liquid concentration using the material-balance in the control volume:

x2 =
L1x1 + V 1y1 − V 0y0

L1 + V 1 − V 0
, (10)

where we used L2 = L1 +V 1−V 0. Using the enthalpy balance of the considered
control volume and previously calculated values for x2 we can calculate a new
value for V 1:

V 1 =
V 0 · v(y0)− L1 · l(x1) + (L1 − V 0) · l(x2)

v(y1)− l(x2)
. (11)

Applying Equation (10) and Equation (11) can be repeated until convergence is
reached. Using this fixed point iterations we thus obtain values for V 1, L2 and
x2 that satisfy both the material-balance and the enthalpy balance for stage 1.
As we obtain a value for x2 we can continue with the next stage and calculate
again y2 with the use of the equilibrium-condition. We can extend the control
volume by one stage (depicted in Figure 4 by a dashed line around stage 1 and
2). This way we receive fixed point iterations for the variables V 2, L3,x3. In
general for a stage k with 1 ≤ k < ns the fixed point iteration is given for
s ∈ [0,∞) by:

φUp(s) =
V 0 · v(y0)− L1 · l(x1) + (L1 − V 0) · l(xk+1(s))

v(yk)− l(xk+1(s))
,

where

xk+1(s) :=
L1x1 + syk − V 0y0

L1 − V 0 + s
. (12)

After the fixed point iterations converge to a fixed point s∗ the missing values
can be calculated as follows: V k = s∗, Lk+1 = L1−V 0+s∗ and xk+1 = xk+1(s∗).

If the control volume in Figure 4 is extended to include the stage ns the
material-balance and the enthalpy-balance change, as the control volume then
includes two further streams. The fixed point iteration can be adjusted ac-
cordingly. We will see in the next subsection that an easy condition can be
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formulated that guarantee that the calculated values in Equation 12 for the
next concentration xk+1 are non- negative. This is not the case for the adjusted
fixed point iteration. If the values for the liquid concentrations become large
negative values the solution of the equilibrium-condition may fail and with it
the complete stage-to-stage calculations. To avoid this we stop after stage ns−1
and calculate the remaining streams downwards instead of continuing upwards.

In the downwards calculation we consider a stage index k with ns < k ≤ n.
We know already the value of yk. Solving the equilibrium-condition provides
values for the liquid concentrations xk. It remains to determine values for
yk−1, V k−1, Lk. Analogously to the above described upwards calculations a
fixed point iteration for the downwards calculations determining Lk in stage k
with ns < k ≤ n is given for s ∈ [0,∞) by:

φDown(s) =
Ln+1 · l(xn+1)− V n · v(yn) + (V n − Ln+1) · v(yk−1(s))

l(xk)− v(yk−1(s))
,

where

yk−1(s) :=
V nyn + sxk − Ln+1xn+1

V n − Ln+1 + s
.

Again after the fixed point iterations converge to a fixed point s∗ the missing
values can be calculated: Lk = s∗, V k−1 = V n−Ln+1+s∗ and yk−1 = yk−1(s∗).

The convergence of the fixed point iterations for the upwards and the down-
wards calculation have been studied for conventional distillation columns in
detail by Hoffmann et al. 2017.

While the upwards stage-to-stage calculations solve all MESH equations in
the stages 1 to ns − 1, the downwards calculations solve all equations in the
stages ns + 1 to n. The equations corresponding to stage ns haven’t been
considered yet. Also Equation (6) and (7) that guarantee that the vapor or
liquid outgoing streams of a split stage have the same concentrations are not yet
considered. These equations are included in the optimization problem described
at the beginning of this section and are solved by the optimization routine. After
convergence of the optimization all MESH equations describing the multiple
dividing wall column are fulfilled.

3.2 Ensuring positivity constraints

Before we turn to the numerical examples we discuss a property that is impor-
tant for the stage-to-stage calculations. In every stage of the upwards calculation
we compute values for a liquid concentration. To continue with the next stage
we have to solve the equilibrium-condition. But so far the fixed point iteration
can not guarantee that the calculated values for the liquid concentrations are all
positive. If they become large negative values, the equilibrium-condition may
not have a solution and we cannot continue with the next stage. This means
that the stage-to-stage calculations can fail in the case of negative values for the
concentrations. In the remainder of this section we will discuss properties that
ensure positiveness of these values.
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In the upwards calculation values for the liquid concentrations are given by
Equation (12). If we assume that for a stage index k the values for the liquid
concentrations xk are non-negative, the values for the vapor concentrations
yk calculated using extended Raoult’s law are also non-negative. If we now
additionally assume that for every component i

L1x1
i ≥ V 0y0

i (13)

we also have L1 ≥ V 0 and the values calculated with Equation (12) are for
every s ∈ [0,∞) non-negative. This means that non-negative values for the
concentrations can be guaranteed in every iteration and thus also for the limit.
Inductively the same follows for all k with 1 ≤ k ≤ ns − 1. Analogously, under
the assumption that:

V nyni ≥ Ln+1xn+1
i (14)

all values for concentrations calculated in the downwards procedure will be non-
negative.

The inequalities above guarantee that for any choice of the optimization
variables all calculated values for the concentrations are non-negative. There
is a second possibility to ensure non-negative values. The equations used to
derive the fixed point iterations hold for process variables that satisfy all MESH
equations, including the equations that were added to the optimization prob-
lem. If we start with the corresponding optimization variables, the upwards an
downwards calculations will reproduce the process variables. This means that
for this optimization variables all values are non-negative. Now, as long as the
upwards and downwards calculation are evaluated not too far away from process
variables that satisfy all MESH equations, no negative values will occur.

These consideration motivate to use a two step procedure. In a first step
both inequalities given in Equations (13) and (14) are added to the optimiza-
tion problem given in Equation (9). During the optimization the up and down-
calculations can always be performed. This means that all functions can be
evaluated and the optimization routine can find a solution. As we have added
two additional inequalities, the calculated solution is in general not optimal for
the original problem without these two additional assumptions. This is why a
second step is performed in which we solve the optimization problem without the
additional inequalities. As a starting point we use the optimization variables cal-
culated in the first step. These variables already satisfy all MESH equations and
the up and down-calculations can be evaluated at this starting point. Whenever
a point is reached for which any of the up and down-calculations fails a smaller
step can be taken. This way the optimization routine stays close to a feasible
point. In our experiments presented in Section 5 the approximation calculated
in the first step was always already close to the overall optimal solution.

4 Details of implementation

To solve the problems described in the next section the new approach has been
implemented. As a comparison a black box simulation software and an outer
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loop for optimization has been implemented.

New Approach: The thermodynamic models, the stage-to-stage calculations
and the optimization have been implemented using MATLAB R©, version 9.3
2017. More information about the used models and the parameters for the
examples can be found in the A. For the models (enthalpy, vapor pressure, ac-
tivity coefficients) implemented in MATLAB R© the parameters are taken from
the commercial flowsheet simulater Aspen Plus R©, version 11 2019. The mod-
els have been validated using example data obtained with Aspen Plus R©. The
calculations with the new method. have been performed on a 64-Bit Windows
computer with 16 GB of RAM and an Intel R© CoreTMi7- 8665U processor. The
time was measured using the MATLAB R©-function timeit.

To solve the optimization problems we used sequential quadratic program-
ming (sqp) (see for example Nocedal and Wright 2006). More precisely the
implementation provided by the MATLAB R© Optimization ToolboxTM, version
8.0 and the function fmincon was used. The algorithm was run with the de-
fault settings. The accuracy demanded for the final constraint violation was
set to 10−6. Optimization algorithms can benefit, if clean analytic derivatives
are provided and they do not have to be calculated using finite differences. In
the stage-to-stage calculations presented in Section 3.1 the MESH equations
for a control volume are solved and the dependent variables are calculated.
Derivatives for the dependent variables can thus be calculated using the im-
plicit function theorem Königsberger 2002.

In MATLAB R© the code is compiled after the calculations are started. This
can make the calculations slower than necessary. To avoid this loss in speed, the
stage-to-stage calculations have been precompiled using MATLAB R© CoderTM,
version 3.4. This decreases the time needed for each evaluation in the optimiza-
tion routine.

Aspen Plus R© as simulation software: The calculations presented in the
following are compared with results obtained using Aspen Plus R©, version 11
2019. In these calculations the software Aspen Plus R© is considered as a black
box simulator solving all MESH equations. The simulation was optimized in an
outer loop. This means that in each iteration the optimizer sets all specifications
which serve as optimization variables and the simulation is evaluated for these
specifications. After a converged simulation the objective function (reboiler
duty) and the constraints (purity demands) can be evaluated. Depending on
their values the specifications are modified until a satisfying result is found. The
procedure is explained in more detail in the works by Kurnatowski et al. 2017
and Ränger et al. 2020.

In the present work we used the reboiler duty, the flowrates of the top stream
and side product streams as well as the ratio of the splits at the dividing walls
as specifications. We again used sequential quadratic programming to solve the
optimization problems. Here we worked with two implementations from the
Schittkowski optimization suite. Namely the solvers NLPQLP Schittkowski 2009
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and MISQP Exler and Schittkowski 2007. The demanded final accuracy was set
to 10−3. Unfortunately the simulation software Aspen Plus R© does not provide
derivatives which is why we used derivatives obtained using finite differences.
The calculations with Aspen Plus R© have been performed on a 64-Bit Windows
computer with 16GB of RAM and an Intel R© CoreTMi5-6500 processor.

5 Numerical Results

In this section we apply the developed methods to two examples. In a first
example we optimize a column with a simple dividing wall splitting a ternary
mixture. We will compare the results with Aspen Plus R© and show that our
implementation is very close to the implementation of Aspen Plus R©. The second
example is more challenging, since it is about the separation of a quaternary
mixture. We demand higher purities and consider two dividing walls. For this
example the benefits of the new method become more apparent.

5.1 Simple dividing wall column

As a first example we consider the separation of the mixture Benzene, Toluene
and p-Xylene. The vapor liquid equilibrium is modeled using the NRTL-model.
The corresponding parameters are given in Appendix A. As there are three
components this mixture can be separated with one dividing wall. We consider
a column with a height of 40 theoretical stages. The dividing wall reaches from
stage 11 to stage 30. The feed is located on stage 21, where the stages are again
counted from bottom to top starting with 1. We consider a feed flow rate of
3 kmol/h and the concentration of each component is 1

3 mol/mol. We assume
a constant pressure of 1 bar within the column. We try to minimize the heat
duty Q̇R and demand the purities of 0.95 mol/mol in the product streams. The
corresponding Petlyuk sequence is shown in Figure 5. The product streams are
denoted by A-C. The streams connecting the different sections of the column
are numbered by 1 to 10. We will first present the results obtained with the
new approach and then compare them to results obtained with Aspen Plus R© as
black box simulation software.

Originally the problem has around 550 process variables and MESH equa-
tions. For a given feed and constant pressure in the column, there remain 5
degrees of freedom. As described in Section 3 the optimization variables need to
describe the streams connecting the different sections of the distillation column.
For the streams 3, 4 and 7-10 we used the molar flow rates of each component to
describe the streams. Instead of describing streams 1, 2 and 5, 6 we considered
the molar flow rates of each component of the product streams A and C, the
reboiler duty and the condenser duty. From these the streams 1, 2 and 5, 6 can
be calculated using the material and enthalpy-balance. Finally, we chose the
percentage of product withdrawn at stream B as optimization variable. This
way we can also compute the liquid input stream at the top of section C1,2 from
stream 3. Using the new approach the number of variables are reduced to 27
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Figure 5: Petlyuk sequence corresponding to a distillation column with one
dividing wall.

and the number of equations to 22.
For the optimization starting values are needed. An approximation of the

internal flow rates and concentrations of these streams can be obtained using a
Vmin diagram presented by Halvorsen and Skogestad 2003a; Ränger, Preißinger,
and Grützner 2018. The initial values used are given in Table 1. An initial heat
and condenser duty can be calculated using the enthalpy-balance around the
reboiler and the condenser respectively. As pure components are assumed in
the product streams, the flow rate for each product stream must be 1 kmol/h.
In the optimization routine we used very rough bounds on the optimization
variables. The flow rates for each component of a stream are bounded from
below by 0 and from above by 100 kmol/h. Finally, the heat duty and the
condenser duty were assumed to lie in the intervals [10 kW, 1000 kW] and
[-1000 kW, -10 kW] respectively.

As described before in Section 3.2, the optimization was performed in two
steps. First, we added the inequalities described by Equation (13) and Equa-
tion (14) as constraints to the optimization problem. The algorithm terminated
after 41 iterations which took 9.48 seconds. The results are summarized in Ta-
ble 2. In the table the flow rate ṅ and the concentrations of all product streams
are given. Furthermore, we give the values for the heat duty and the liquid
and vapor split ratios at the dividing wall ls, vs. The value ls denotes the ratio
of liquid that flows to the right of the dividing wall on the top of the dividing
wall. The value vs denotes the ratio of vapor that goes to the right side of
the dividing wall on the bottom of the dividing wall. The results show that
the initial values are a good guess for the optimized values. The initial heat
duty is approximately 4% higher than the final heat duty. The vapor and liquid
split are smaller than predicted. Which means that in an optimal solution a
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Table 1: Initial values for internal streams

Stream index 1 2 3 4 5
ṅ / (kmol/h) 4.5311 3.5311 1.9041 1.6297 2.5311
xBe /(mol/mol) 0 0 0 0 1
xTo /(mol/mol) 0 0 1 1 0
xpX /(mol/mol) 1 1 0 0 0

Stream index 6 7 8 9 10
ṅ /(kmol/h) 3.5311 3.62696 1.90136 0.62696 1.90136
xBe /(mol/mol) 1 0 0 0.7847 0.7847
xTo /(mol/mol) 0 0.4205 0.4205 0.2153 0.2153
xpX /(mol/mol) 0 0.5795 0.5795 0 0

smaller percentage of liquid and vapor flows to the right of the dividing wall.
The smallest flow rate of a product stream is attained for the product stream B.

After this first run we dropped the additional inequalities and optimized
again starting from the solution found so far. The algorithm terminated after
16 additional iterations which took 4.27 seconds. The results are also shown in
Table 2. As removing an additional inequality increases the size of the search
space, a better solution is found in the second step. One can see in the table
that the flow rate at the top stream becomes a little bit smaller and the purity
of the head-product increases. The split ratios differ slightly, the difference in
the heat duty is almost negligible. This means that both solutions differ not
too much and the solution found in the first step is a good starting point for
the second step in which the full search space is explored.

The performed two step procedure was motivated in Section 3.2 to ensure
that the stage-to-stage calculations can always be performed. If the optimiza-
tion problem is directly solved without additional iequalities, the stage-to-stage
calculations may be unstable. If they fail too often, the solver may not converge
to an optimal or even feasible solution. In this easy example the initial values
calculated with the Vmin diagram are already quite close to the final solution.
This is why we tried to solve the optimization problem directly without the
additional inequalities. The solver had some difficulties but converged after 102
iterations (65.25 seconds) to the same optimal solution. In 29 of the iterations
the stage-to-stage calculations failed which was handled by a forced step back in
the line-search of the sqp-algorithm. In this example, it is in principle possible
to avoid the two step procedure. However, the solver needed more iterations
and more time. The failures in the evaluations show that it is more difficult to
solve the problem directly and it can beneficial to follow the proposed two step
procedure.

We next compare the results of the new method with results obtained with
Aspen Plus R© and an optimization in an external loop. As described before there
are 5 degrees of freedom left, which can be chosen as optimization variables.
We chose the flow rates of the product streams A and B (both ranging from
0.5 to 1.5 kmol/h), the reboiler duty (25 to 200 kW) and the two split ratios ls
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Table 2: Initial and final values of product streams, heat duty and split ratios
in optimization with additional inequalities and without.

Variable initial values with add. inq. without add. inq.

Q̇R /kW 35.1992 33.8062 33.7680
vs 0.4615 0.3190 0.3391
ls 0.7523 0.6365 0.6574
Product stream A:
ṅ /(kmol/h) 1 1.0501 1.0159
xBe /(mol/mol) 1 0.9500 0.9815
xTo /(mol/mol) 0 0.0500 0.0185
xpX /(mol/mol) 0 4.47 · 10−7 1.21 · 10−7

Product stream B:
ṅ /(kmol/h) 1 0.9444 0.9800
xBe /(mol/mol) 0 0.0026 0.0030
xTo /(mol/mol) 1 0.9500 0.9500
xpX /(mol/mol) 0 0.0474 0.0470
Product stream C:
ṅ /(kmol/h) 1 1.0055 1.0041
xBe /(mol/mol) 0 3.61 · 10−8 4.79 · 10−8

xTo /(mol/mol) 0 0.0500 0.0500
xpX /(mol/mol) 1 0.9500 0.9500

(0.2 to 0.9) and vs (0.15 to 0.9) as optimization variables. The objective was
again to minimize the reboiler duty Q̇R and we demanded the same purities
of 0.95 mol/mol in each product stream. The optimization routine needed 18
iterations which took 534.74 seconds. This is about 39 times more time than the
new approach needed. Both results, the one obtained with the new approach
and with Aspen Plus R© as simulation software, are shown in Table 3. Again we
list the product streams, the heat duties and the split ratios.

Comparing both solutions several observations can be made. First both so-
lutions are close together. The reboiler duty calculated with the new approach
is smaller, but only by 0.29%. The difference in the reboiler duties is larger
than the difference between both solutions calculated with and without addi-
tional inequalities (see Table 2). The purity demands are slightly violated in the
solution with the Aspen Plus R© simulation. The largest violation in the solution
calculated with the new approach is in the order of 10−16. In the new approach
the purity demands can be calculated as a linear constraint on the optimiza-
tion variables. These linear constraints are respected by the sqp-algorithm up
to a numerical precision. The situation is different using a simulation software
together with an external optimizer. The concentrations are outputs of the sim-
ulation and their dependency to the optimization variables is highly nonlinear.
The largest difference in the solutions can be observed for the split ratios. This
means that in this example the solution is not very sensitive to changes in the
split ratios, which is known from literature Halvorsen and Skogestad 2001.
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Table 3: Optimal values calculated with new and old approach and simulation
error of own implementation

Variable New approach Aspen Plus R©

Q̇R /kW 33.7680 33.8663
vs 0.3391 0.2716
ls 0.6574 0.6006
Product stream A:
ṅ /(kmol/h) 1.0159 1.0479
xBe /(mol/mol) 0.9815 0.9500
xTo /(mol/mol) 0.0185 0.0500
xpX /(mol/mol) 1.21 · 10−7 4.38 · 10−7

Product stream B:
ṅ /(kmol/h) 0.9800 0.9444
xBe /(mol/mol) 0.0030 0.0047
xTo /(mol/mol) 0.9500 0.9499
xpX /(mol/mol) 0.0470 0.0453
Product stream C:
ṅ /(kmol/h) 1.0041 1.0077
xBe /(mol/mol) 4.79 · 10−8 2.23 · 10−8

xTo /(mol/mol) 0.0500 0.0501
xpX /(mol/mol) 0.9500 0.9499

There are two possible reasons for the different results found by both ap-
proaches. First, the optimization performed with an outer loop terminates ear-
lier with a slightly sub-optimal solution. Second, the implemented models differ.
If the models differ by too much the results are not comparable. To exclude the
second possibility we determined the difference between a simulation in Aspen
Plus R© and our own implementation. After the new approach converged we can
calculate with the final optimization variables all process variables by evaluat-
ing the map given in Equation (8). This includes values for the reboiler duty,
the split ratios and flowrates of the product streams. These values can then be
used as specifications in a simulation performed with Aspen Plus R©. This way
we obtain process variables for the same specification once calculated with the
new approach and once calculated using Aspen Plus R©. Comparing the differ-
ent set of process variables show that they are very close together. The largest
difference for one of the product concentrations is 4.69 · 10−6. This means that
the difference in the implementations is negligible. The solution found with the
new approach has indeed a smaller violation of the purity specification and has
a better objective value than the solution found by an outer optimization.

One of the reasons for the slightly worse solution is the lack of clean analytic
derivatives. Close to the optimal solution the derivatives calculated numerically
suggest the solver, that he cannot come closer to the solution anymore. This
first example already shows that it is possible to optimize dividing wall columns
with less iterations than using the simulation software Aspen Plus R© and an
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optimization in an outer loop. Because of the availability of analytic derivatives
numerically cleaner solutions can be calculated.

5.2 Multiple dividing wall column

We next consider an example that is more difficult to solve. We want to sep-
arate a quaternary mixture consisting of Ethanol, n-Propanol, i-Butanol and
n-Butanol in a dividing wall column with two dividing walls as shown in Fig-
ure 1c. This system was suggested in literature to be suited for the considered
mDWC Preißinger, Ränger, and Grützner 2019. Again the vapor liquid equilib-
rium is modeled using the NRTL-model and the corresponding parameters are
given in A. The distillation column has a total height of 78 theoretical stages
and is operated at a constant pressure of 1 bar. The separation is performed in
a distillation column with two dividing walls. The first dividing wall splits the
stages 14 to 52 an the second splits the stages 40 to 65. The second dividing
wall is located to the right of the first dividing wall. The feed is located on stage
40. We consider a feed of 100 mol/h and molar concentrations of 1/4 mol/mol
for each component. We try to minimize the reboiler duty Q̇R and demand
the purities of 0.98 mol/mol in the product streams. The different sections of
the column organized as Petlyuk sequence are shown in Figure 5. The prod-
uct streams are denoted by A-D. The streams connecting the different sections
are numbered by 1 to 16. As in the previous example, we will first present
the results obtained with the new approach and then compare them to results
obtained with Aspen Plus R© as black box simulation software.

In the presented approach the optimization variables describe the streams
connecting the different sections of the distillation column. Analogous to the
previous example we chose the following process variables: the flow rates of each
component in the streams 3-6 and 9-16; the flow rates in the product streams A
and D; the reboiler and the condenser duty and the percentage withdrawn in the
side streams B and C. In total with the new approach we obtain an optimization
problem with 60 optimization variables and 52 equality constraints that remain
to be solved. As an comparison the original simulation problem has around
1600 process variables and MESH equations.

Again starting values for the optimization variables are needed. A possibility
would be to use again streams obtained from a Vmin diagram. In our numerical
experiments we were able to find solutions using the new approach starting with
these streams. Unfortunately, the optimization using Aspen Plus R© as simulator
did not converge. The Vmin diagrams assume an infinite number of stages. In
the current example the number of stages is too small so that the approximation
made with an infinte number is not very close. The initial simulation performed
with values of the Vmin diagram predicted purities of around 60% in some of the
product streams. This is why, it was suggested to adjust the initial flowrates of
the internal streams Ränger and Grützner 2021. The flow rates are sufficient
to calculate the initial specifications used in the simulation with Aspen Plus R©.
However, initial values for the concentrations are needed for the new approach.
The new approach is not too sensitive to the choice of initial values for the

20



Figure 6: Petlyuk sequence corresponding to a distillation column with two
dividing walls.

optimization variables, so we did not adjust the concentrations and simply kept
the concentrations predicted by the Vmin diagram. The initial values for the
connecting streams used for the results in the following are given in Table 4.
As pure components are assumed in the product streams, the flow rate for each
product stream must be 25 mol/h. The flow rates for each component of a
stream are again bounded from below by 0 and from a above by 10 kmol/h.
The heat duty and the condenser duty are assumed to lie in the intervals [1 kW,
10 kW] and [-10 kW, -1 kW].

Using the improved starting values, we can proceed with the actual opti-
mization by introducing the minimization of the reboiler duty as an objective.
As before we first used the additional inequalites given in Equations (13) and
(14). The calculation terminated successfully after 56 iterations (25.23 seconds).
The product streams of the obtained solution are given in Table 5. Additionally,
values for the reboiler duty as well as the split ratios are given. Where vs,1 and
vs,2 are the ratios of vapor that flows to the right of the first and the second
dividing wall. The ratios of liquid that flows to the right of the dividing walls
is denoted by ls,1 and ls,2.

To explore the full search space we removed the additional inequalities and
ran the optimization again using the previously calculated values as starting
point. The optimization needed 12 iterations (5.31 seconds). The results are
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Table 4: Initial values for internal streams

Stream index 1 2 3 4 5 6
ṅ /(mol/h) 408.72 383.72 246.15 234.07 46.63 28.09
xEt /(mol/mol) 0 0 0 0 0 0
xPr /(mol/mol) 0 0 0 0 1 1
xIs /(mol/mol) 0 0 1 1 0 0
xBu /(mol/mol) 1 1 0 0 0 0

Stream index 7 8 9 10 11 12
ṅ /(mol/h) 383.72 383.72 224.51 205.98 312.09 355.63
xEt /(mol/mol) 1 1 0 0 0.58 0.58
xPr /(mol/mol) 0 0 0.43 0.43 0.42 0.42
xIs /(mol/mol) 0 0 0.57 0.57 0 0
xBu /(mol/mol) 0 0 0 0 0 0

Stream index 13 14 15 16
ṅ /(mol/h) 187.57 149.65 87.57 149.65
xEt /(mol/mol) 0 0 0.42 0.42
xPr /(mol/mol) 0 0 0.42 0.42
xIs /(mol/mol) 0.39 0.39 0.16 0.16
xBu /(mol/mol) 0.61 0.61 0 0

given in Table 5. In contrast to the first example studied in Subsection 5.1 the
solution with and without additional inequalites differ more. The objective value
in the second run is around 7.08% smaller. The difference in the product streams
is very small. The results show that in an optimal solution less is withdrawn in
the side product streams than in the bottom and distillate stream.

We again compare the results of the new approach to results obtained with
an external optimization routine and Aspen Plus R© as simulation software. As
specifications that are varied by the external optimizer we used the reboiler duty
Q̇R (4.4 to 5 kW), the total molar flow rates of the product streams A, B, C
(24.5 to 25.5 mol/h) and the four split ratios vs,1, vs,2, ls,1, ls,2. All of them are
limited by 0.1 from below and 0.95 from above, except for vs,2 the lower bound
was set to 0.2. The external optimization routine needed 189 iterations which
took 11.77 hours. Both results, the one obtained with the new approach and
with Aspen Plus R© as simulation software, are shown in Table 5. Again we list
the product streams, the heat duties and the split ratios. Both solutions are
similar. The split ratios only differ slightly this time. The maximal violation of
the purity specification for the solution calculated with Aspen Plus R© is 0.01%.
The new approach found a solution with a reboiler duty that is 1.73% smaller.

In the above calculations we used initial values calculated with Vmin dia-
grams and adapted as described in Ränger and Grützner 2021. These values
give a good initial estimate and, as shown in Table 5, are already close to the
final optimal solution. The main reason for the need of good initial values was
the comparison with the calculations performed with Aspen Plus R©. To get
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Table 5: Initial and final values of product streams and duties and splits for
new approach and using Aspen Plus R© as simulation software.

new approach Aspen Plus R©

Variable initial value with add. inq. without add. inq.

Q̇R /kW 4.6000 4.9015 4.5545 4.6348
vs,1 0.60976 0.4812 0.4514 0.4581
vs,2 0.1200 0.1622 0.2188 0.2110
ls,1 0.1304 0.1401 0.1749 0.1732
ls,2 0.7197 0.5588 0.5164 0.5188
Product stream A:
ṅ /(mol/h) 25 25.4169 25.4189 25.4088
xEt /(mol/mol) 1 0.9800 0.9800 0.9800
xPr /(mol/mol) 0 0.0200 0.0200 0.0200
xIs /(mol/mol) 0 3.17 · 10−7 7.21 · 10−7 7.41 · 10−7

xBu /(mol/mol) 0 1.44 · 10−13 2.73 · 10−13 3.47 · 10−13

Product stream B:
ṅB /(mol/h) 25 24.8683 24.9007 24.9109
xEt /(mol/mol) 0 0.0037 0.0036 0.0040
xPr /(mol/mol) 1 0.9800 0.9800 0.9799
xIs /(mol/mol) 0 0.01632 0.01640 0.0161
xBu /(mol/mol) 0 2.42 · 10−7 3.50 · 10−7 4.36 · 10−7

Product stream C:
ṅC /(mol/h) 25 24.5832 24.5812 24.5907
xEt /(mol/mol) 0 3.90 · 10−11 2.50 · 10−11 2.25 · 10−11

xPr /(mol/mol) 0 0.0049 0.0036 0.0033
xIs /(mol/mol) 1 0.9800 0.9800 0.9800
xBu /(mol/mol) 0 0.0151 0.0164 0.0168
Product stream D:
ṅ /(mol/h) 25 25.1316 25.0992 25.0896
xEt /(mol/mol) 0 5.09 · 10−20 5.16 · 10−20 1.87 · 10−20

xPr /(mol/mol) 0 3.78 · 10−6 4.13 · 10−6 3.29 · 10−6

xIs /(mol/mol) 0 0.0200 0.0200 0.0200
xBu /(mol/mol) 1 0.9800 0.9800 0.9800
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good values with Aspen Plus R©, good initial values are needed. In the rest of
this section, we want to investigate the impact of these initial values on the
convergence of the new approach. Therefore, instead of initial values computed
with Vmin diagrams we consider random initial values constructed as follows:

• The reboiler and condenser duty are chosen uniformly distributed in the
interval [1, 10 ] kW.

• The molar flow rate of the product streams A and D are chosen uniformly
distributed in the interval [0,100] mol/h. The concentrations for these two
streams are chosen as in Table 4.

• The molar flow rate of each component in the internal streams 3-6 and 9-16
which have a concentration larger than 0 in Table 4 are chosen uniformly
distributed in the interval [0,250] mol/h.

The bounds were chosen in such a way that the intervals contain the values
computed with the Vmin diagrams with and without the modifications. The
random initial points are reasonable in the sense that concentrations are set
to 0 which are expected to be close to 0 in a feasible solution, but otherwise
the random initial values can vary very roughly and can be far away from a
solution. With these new initial values we followed the two step procedure by
first adding the inequalities given in Equations (13) and (14) and then solving
the full optimization problem. We repeated this for 100 randomly chosen initial
values. The results are summarized in Table 6. For each run, we checked
whether the optimality conditions were met for the final values. The number
of these runs divided by the total number of runs performed gives the success
rate. We also collected the final objective value and the time needed for each
successful run. As a comparison we used ten times the starting values proposed
by the Vmin diagrams (orig. Vmin) and the values obtained by the modification
introduced by Ränger and Grützner 2021 (mod. Vmin).

Table 6: Influence of initial values on the proposed approach

Initial values best obj. value average time success rate
random (100 rep.) 4.5545 kW 134.85 s 96 %
mod. Vmin 4.5545 kW 30.55 s 100 %
orig. Vmin 4.5545 kW 47.51 s 100 %

As expected, due to the high non-linearity of the MESH equation, the calcu-
lations do not converge from all possible choices of initial values. However, the
results show that even if the starting values are chosen randomly, convergence
can be achieved for a majority of the test runs. The success rate with random
initial values can be further increased with a multi start strategy. For exam-
ple, the probability of not finding the optimal solution decreases to a value less
than 0.01% for 3 independent repetitions. With all three different strategies,
we found the same optimal solution. In fact, all successful runs converged to
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the same solution. This means that although the problem formulation is highly
non-linear, no different local solutions were found. Despite the fact that conver-
gence can often be achieved with random initial values, the use of good starting
values is still beneficial. First, in our experiments, the good initial values always
converged. Second, fewer iterations were needed, resulting in less computation
time.

In the calculations with the multiple dividing wall column the benefits of
the new approach become evident. First, the stability of the calculations is
improved. To obtain the results using Aspen Plus R© quite some effort had to be
taken. The initial values had to be adjusted, bounds for the specifications had
to be chosen carefully in order to avoid non converging simulations and to find
an optimal solution. The stage-to-stage calculation used in the new approach
converge on a large range of variables. This is why rough bounds could be
used. We could show that even with random initial values convergence can be
achieved in the majority of cases. Second, with the new approach solutions of
a higher numerical quality could be found. The found solution shows a smaller
violation of the purity specification and has a smaller objective value than the
solution calculated with Aspen Plus R© and an external optimization. Finally, the
reduction in the calculation times is significant. In total the calculations with
the new approach only took 30.55 seconds while the calculation with an external
optimizer took more than 11 hours. This means that the new calculations were
more than 1000 times faster.

6 Conclusion

Instead of solving the MESH equations repeatedly and performing the optimiza-
tion in an outer loop, the presented approach embeds the process simulation into
an optimization problem. In this way, the MESH equations are solved only once
and the optimization is performed simultaneously. To avoid a large and very
non linear optimization problem, not all MESH equations are considered as con-
straints and not all process variables are considered as optimization variables.
A subset of the process variables is chosen as optimization variables. From this
subset, the remaining process variables are calculated by a robust and fast cal-
culation procedure. This procedure guarantees that a large subset of the MESH
equations is already satisfied.

To reduce the number of variables for multiple dividing wall columns we
introduced robust stage-to-stage calculations for sections of the distillation col-
umn. In each section all process variables are calculated from top and bottom
towards the middle until the splitting or feed stage is reached. In each stage the
MESH equations are solved using fixed-point iterations.

In two examples we were able to present the benefits of the new method. In
both examples the new method converged easily towards an optimal solution.
For the second example we demonstrated the robustness of the proposed ap-
proach by using random initial values. The optimality could be confirmed by a
calculation performed by the commercial flowsheet simulator Aspen Plus R© in
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combination with an external optimization routine. Comparing both solutions
showed that the new approach found a solution of a higher quality and more
stable. In terms of the needed time to find an optimal solution, the new ap-
proach totally outperformed the classical approach. For a distillation column
with two dividing walls the new approach was 1000 times faster.

The developed approach is not limited to multiple dividing wall columns,
but can in principle also be applied to other operating units and flowsheets
consisting of several operating units. The determination of suitable optimiza-
tion variables and the reduction of the descriptive system of equations must
be done individually for each different type of operating unit. The approach is
particularly powerful and outperforms the state of the art by far when there is a
large number of process variables and a strongly nonlinear system of equations
present.

The gained stability and the speed improvement will allow further investi-
gation in the design of multiple dividing wall columns in future work. With the
new approach one does not need to carefully set bounds to avoid non convergent
areas. The presented method converges on a large range of variables. Instead
of waiting almost half a day for results the time needed for solving one opti-
mization problem, the time needed with the new approach is reduced to around
one minute. This means that much more calculations and different optimization
problems can be solved in a shorter time.
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A Thermodynamic models

A.1 Enthalpy

The models from the DIPPR project DIPPR Project 801 2005 were used to
predict the vapor and vaporization enthalpy for pure components:

Hv(T ) = av · T +
bv · cv

tanh( cv
T )
− dv · ev

tanh( ev
T )

,

H∆(T ) = a∆ ·
(

1− T

f∆

)b∆+c∆· T
f∆

+d∆

(
T
f∆

)2
+e∆

(
T
f∆

)3

.

All units are in J/mol. The liquid enthalpy of a pure component can then be
calculated as:

Hl(T ) = Hv(T )−H∆(T )
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The used parameters for the different components are given in Table 7 and
Table 8. The parameters are taken from Aspen Plus R©, version 11 2019.

Table 7: Parameters for vapor enthalpy

Substance av bv cv dv ev
Benzene 55238 173380 764.25 72545 2445.7
Toluene 58140 286300 1440.6 189800 650.43
p-Xylene 75120 339700 1492.8 224700 675.1
Ethanol 49200 145770 1662.8 93900 744.7
n-Propanol 61900 202130 1629.3 129560 727.4
i-Butanol 87940 241600 1718 165400 798.7
n-Butanol 74540 259070 1607.3 173200 712.4

Table 8: Parameters for vaporization enthalpy

Substance a∆ b∆ c∆ d∆ e∆ f∆

Benzene 50007 0.65393 -0.27698 0.029569 0 562.05
Toluene 54643 0.76764 -0.62056 0.25935 0 591.75
p-Xylene 66475 1.1739 -1.2812 0.54229 0 616.2
Ethanol 65831 1.1905 -1.7666 1.0012 0 514
n-Propanol 68988 0.6458 -0.5384 0.3317 0 536.8
i-Butanol 90005 0.81066 -0.11028 -0.17759 0 547.8
n-Butanol 71274 0.0483 0.8966 -0.5116 0 563.1

For the liquid enthalpy of a mixture with molar concentrations x the mixing
enthalpy is added, which is given by:

Hmix(T,x) = −R · T 2 ·
Nc∑
i=1

xi · γ′i(T ),

where R is the gas constant and γi the activity coefficient of the i-th component.

A.2 Vapor pressure

The vapor pressure has been calculated using extended Antoines equation:

pSi (T ) = exp

(
ap +

bp
T + cp

+ dp · T + ep · log(T ) + fp · T gp

)
The units are in Pa. The parameters are given in Table 9.

A.3 Activity coefficients

The ctivity coefficients have been calculated using the NRTL-model Renon and
Prausnitz 1968 with τij = aij + bij/T and the non-randomness parameters αij .
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Table 9: Parameters for vapor pressure

Substance ap bp cp dp ep fp gp
Benzene 83.107 -6486.2 0 0 -9.2194 6.9844·10−6 2
Toluene 76.945 -6729.8 0 0 -8.179 5.3017 · 10−6 2
p-Xylene 88.72 -7741.2 0 0 -9.8693 6.077 · 10−6 2
Ethanol 73.304 -7122.3 0 0 -7.1424 2.89 · 10−6 2
n-Propanol 84.664 -8307.2 0 0 -8.5767 7.51 · 10−18 6
i-Butanol 121.78 -10504 0 0 -13.921 1.69 · 10−17 6
n-Butanol 106.29 -9866.4 0 0 -11.655 1.08 · 10−17 6

The parameters are taken from Aspen Plus R©, version 11 2019. For the first
mixture they are given in Table 10. For the second mixture they are given in
Table 11

Table 10: NRTL-model parameters for the description of the vapor-liquid equi-
librium in the ternary system Benzene, Toluene and p-Xylene.

Component i Benzene Benzene p-Xylene
Component j Toluene p-Xylene Toluene
aij -2.8852 0 0
aji 2.1911 0 0
bij 1123.9501 122.6854 -91.1458
bji -863.7308 -136.4814 75.8978
αij 0.3 0.3 0.3
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Table 11: NRTL-model parameters for the description of the vapor-liquid
equilibrium in the quaternary system Ethanol, n-Propanol, i-Butanol and n-
Butanol.

Component i Ethanol Ethanol Ethanol n-Propanol
Component j i-Butanol n-Butanol n-Propanol i-Butanol
aij -0.347 0 8.261 -0.991
aji -0.833 0 -9.721 0.725
bij 167.914 -85.219 -2846.683 110.275
bji 252.533 128.502 3409.686 69.232
αij 0.3 0.3 0.3 0.3

Component i n-Propanol i-Butanol
Component j n-Butanol n-Butanol
aij 0 -5.775
aji 0 5.649
bij 112.946 1959.376
bji -88.318 -1817.563
αij 0.3 0.3
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