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Abstract 
This work describes synthesizable water-soluble Triazine-derivatives computationally crossbinding the S spike helices of Severe Acute 
Respiratory Syndrome coronavirus (SARS)-CoV-2. The "spring-loaded switch-folding” (S-SLSF) α-helices included in the S  homotrimer top-
to-bottom cavity and implicated in viral-host membrane fusion were targeted by star-shaped Trihydroxyl-Triphenyl-Triazines (TTT) leads at 
subnanomolar binding-scores. Exploration of in silico leads among millions of molecular candidates, included several similar searches, core-
replacement, fragment extensions, or convolutional neural network deep-screening combined with hundreds of water-soluble lead-derivatives 
identified by manual iterations and commercially available building-blocks for chemical synthesis. The lead-derivatives are briefly discussed 
for in vitro validation and possibilities of fusion inhibition substituting mutations.    
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Introduction 
 The "spring-loaded switch-folding" (SLSF) of  wild-type S spikes of 

SARS-CoV-2 was previously defined as one of the in silico predicted targets for 

fusion inhibition with drugs instead of PP mutations1. The optimal SLSF-residues 

targeted for binding were defined from the 960 to the 1010  amino acid sequences 

located in the upper part of the S2 homotrimer central top-to-bottom cavity of 7-20 

Å of diameter 2. In the wild-type prefusion state, the SLSF-residues and the S-

SLSF (SLSF residues at the S trimer) included 3x3 α-helices (Figure 1).  

Computational screening of hundred thousands of natural compounds 

predicted Tinosorb as the top subnanomolar binding lead to SLSF-residues 1. The 

Tinosorb's preferential binding to SLSF-residues, 3-arms-star-shaped molecular 

structure3 and crossbinding the inner part of the SLSF-residue α-helices, together 

with the existence of side and central top-to-bottom surface-accessible cavities to 

SLSF-residues at the S wild-type prefusion state, suggested that Tinosorb may 

experimentally crossbind S-SLSF in vitro and show binding-dependent biological 

activities. Tinosorb's crossbinding of the inner space of the S-SLSF 3x3 α-helices 

could stabilize prefusion states blocking fusion and infection, similarly to what has 

been previously described for PP mutations of the 986KV residues 4-6. However, 

computational studies could not predict Tinosorb's S-SLSF binding, nor in vitro 

fusion by S-pseudotyped VSV-infectivity could be inhibited by Tinosorb1. 

Tinosorb's low solubility in aqueous media together with its relatively large 

molecular size compared to the narrow surface-accessibility to the S-SLSF 

binding-pocket, may have contributed to those failures. This work computationally 

explores Tinosorb-like star-shaped-like molecules among more water-soluble 

alternatives to best apply possible validation assays. Because whole S trimers may 

be best targeted to stabilize virions at their prefusion states and/or to interfere with 

the earliest prefusion steps, the S-SLSF wild-type trimer model (6xr8 ID in the 

RCSB protein data bank) was preferentially selected for this work. 

The SLSF-residues contained part of the HR1 heptad-repeat  (910 to 

988) and part of the CH central helix (986-1033) of the S2 subunit of the S spike of 

SARS-CoV-2. Each SLSF-residue monomer contains two amino-terminal aligned 

small α-helices, one elbow-like disorderly bended loop (975-987) and one carboxy-

terminal large α-helix. All those 3x3 α-helices are implicated in one spring-loaded 

mechanism (Figure 1, Bottom). During viral-cellular membrane fusion, the spring-

loaded mechanism unfolds/folds by converting the elbow-like disordered loops to 

α-helices elongating the S-SLSF. After elongation, one coiled-coil bundle involving 

the newly formed HR1-CH and previous S HR2 α-helices, originates the much 

larger linear rigid conformation typical of active fusion and postfusion states. 

Similar spring-loaded mechanisms are common to many other enveloped viruses 7, 

8. The mutations to prolines (PP mutations) at the tip of the S-SLSF 3x3 α-helices 

mentioned above, stabilize the loops at their earliest prefusion state blocking viral-

host membrane fusion and inhibiting viral infectivity 4-6. 

 Previous and abundant experimental and computational search for 
anti-coronavirus molecules has been focused on approved drugs (drug 
repurposing)9, 10 to protein targets on either cell hosts or coronavirus particles. For 
instance, recent experimental screening for in vitro inhibitors of coronavirus-
infection, identified 90 compounds with EC50 < 96000 nM 11 among ~ 12000 drugs 
from the Repurposing, Focused Rescue and Accelerated MedChem (ReFRAME) 
bank (https://reframedb.org). New enhancers of inhibitors of RNA-dependent RNA 

polymerase (RdRp) such as remdesivir (EC50  of 123 nM) or amilimod (11 nM), 
were experimentally identified. Other coronavirus computational work on their 
protein targets have been focused to the  S2 HR1-HR2 coiled-coil bundle 12, 13, 14,15, 

16 , the surface interphase of S1 with the ACE2 human receptor 17 , and/or  the 
active sites of viral proteases 10, 18, 19. Although targeting the coronavirus HR1-HR2 
coiled-coils bundle with synthetic peptides reported nanomolar inhibitors of in vitro 
infectivity12, 13, 14,15, 16, search for more potent ligands among Tinosorb-like star-
shaped molecules targeting S-SLSF may be justified by both computational and 
experimental methods.  

  Efforts to predict crossbinding possibilities of S-SLSF with ligands rather 
than with mutations have been explored here by combining computational 
strategies previously developed by others20. These included searches among 
similars, core replacement, fragment extensions 21-24,  convolutional neural 
networks (CNN)25, de novo manual generation of compounds with drug-like 
properties 26-29, filtering for synthetic feasibility,  ligand presence in catalogs 22, 30, 31, 
purchasable building-blocks and available chemical synthesis paths.  

SLSF-docked leads predicted subnanomolar binding ranges with 

common Triazine-cores branched by Trihydroxyl-Triphenyls (TTT). Deconstruction 

of TTT and S-SLSF docking predicted a few more core alternatives (TTX). Further 

explorations by small fragment extension (F+TTX) and combination of different 

attachment positions, generated new leads that maintained low their binding-

scores. Newly developed CNN models using 2D molecular images 25  allowed the 

screening of larger compound libraries including those for maximal diversity among 

purchasable chemicals29, and the latest CHEMBL chemical data collection.   

Taken together, the results predicted ~ 50 star-shaped leads with 

lower S-SLSF binding-scores and improved drug-like characteristics compared to 

the initial Tinosorb molecule. Additional Triazine-derivative leads were then 

obtained that were water-soluble and can be synthesized from available building-

blocks to increase their possibilities for successful in vitro validation. Whether 

some of the Triazine-derivative leads  would experimentally crosslink the 

homotrimer cavity α-helices and inhibit coronavirus fusion, remains to be 

demonstrated.  

 
Materials and Methods 

 
Molecular characteristics and properties of Tinosorb 

Tinosorb (PubMed ID 135487856, CHEMBL 2104956, CAS 187393-
00-6), chemically known as bemotrizinol (2,2'-[6-(4-methoxyphenyl)-1,3,5-Triazine-
2,4-diyl]bis{5-[(2-ethylhexyl)oxy]phenol}), has a star-shaped structure with a 
molecular weight of 627.8 Dalton (Figure S1). Tinosorb adsorbs ultraviolet UV-AB 
from 280 to 400 nm preventing tissue oxidation by free radicals induced by sun 
exposure. Due to its low water solubility (0.00033 mg/ml, logP of 10.4), Tinosorb is 
used in oiled topical creams. Tinosorb's LD50 oral/dermal toxicities are >2g/Kg.  

 
Libraries of ligands used in this work 

 Tinosorb-similar 1746 molecules were downloaded from PubChem 
https://pubchem.ncbi.nlm.nih.gov/#query =smiles=similarity). PubChem 
Trihydroxyl-Triphenyl-Triazine (135616181 ID), and Triazine (9262)-similar 
searches resulted in 599 and 279689 molecules, respectively. Triazine-similars 
were downsized to 4346 drug-like molecules  <700 Dalton and < 6 logP.  

https://reframedb.org/
https://www.ncbi.nlm.nih.gov/pcsubstance/?term=%222%2C2%27-%5B6-(4-methoxyphenyl)-1%2C3%2C5-triazine-2%2C4-diyl%5Dbis%7B5-%5B(2-ethylhexyl)oxy%5Dphenol%7D%22%5bCompleteSynonym%5d%20AND%20135487856%5bStandardizedCID%5d
https://www.ncbi.nlm.nih.gov/pcsubstance/?term=%222%2C2%27-%5B6-(4-methoxyphenyl)-1%2C3%2C5-triazine-2%2C4-diyl%5Dbis%7B5-%5B(2-ethylhexyl)oxy%5Dphenol%7D%22%5bCompleteSynonym%5d%20AND%20135487856%5bStandardizedCID%5d
https://pubchem.ncbi.nlm.nih.gov/#query =smiles=similarity
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Core-replacement was performed on each of the seeSAR's fragment 

libraries (pdb and zinc data bases, containing ~20 million of fragments each). 
Fragment extension screened the seeSAR's library of 100 small fragments 
enriched with home-designed 10 fragments of 5-7 non-hydrogen atoms. 
 The SuperNatural II SNII library (http://bioinf-applied.charite.de 
/supernatural_new/index.php) was splitted in nineteen *.sdf files each containing 
different molecular weights < 380 Daltons, as described before 1, 32. Those sdf files 
were randomly sampled for 10 high-binding-score negative ligands per file to 
contribute to the design of a training-set to develop 2D deep-learning models. A 
0.5 million library of maximized chemotype diversity among the purchasable 
space29 and the ~ 2.5 million Chembl28 latest library, filtered to drug-like 
compounds between 250-500 Daltons to ~1.5 million ligands 
(http://ftp.ebi.ac.uk/pub/databases/chembl/ ChEMBLdb/ releases/chembl_28/), 
were screened by the developed DEEPscreen25 CNN T13 model.  
 The infiniSee extremely large libraries provided by BioSolveIt 
(CHEMriya_11bn_2021-05  1.1x1010 compounds , GalaXi_2.1bn_2020-11 2.1x109, 
KnpwledgeSpace_290tr_2019-05  2.9x1014, and REALSpace_19bn_2021-04  
1.9x1010) were screened for 10000 compounds with 0.9-1.0 target TTT similarities 
and 80-90% minimum thresholds. 

Commercially-available compounds were searched through the ZINC 
data base by supplying their smiles (http://zinc15.docking.org/) and/or searched in 
chemical catalogs (Sigma, BLDpharm). Commercially-available building-blocks for 
chemical synthesis were searched among the data bases developed by Enamine 
(https://www.enaminestore.com/search) and SigmaAldrich  
https://www.aldrichmarketselect.com/). The duplicates of compounds retrieved 
from several sources were eliminated by OpenBabel gui 3.1.1.  
(https://sourceforge.net/projects/openbabel/postdownload). 

 
3D wild-type 6xr8 S trimeric spike model 

The whole SARS-CoV-2 S trimer 6xr8 vs 4 molecule model (Research 
Collaboratory for Structural Bioinformatics, RCSB, Protein Data Bank PDB ID) of 
the wild-type closed, all-down S conformer was either PyMol extracted to isolate 
the SLSF-residues 960 to 1100, as previously reported1 (Figure 1) or used for S-
SLSF docking (SLSF in the complete trimer structure) using i9 computers with 48 
CPUs after eliminating their carbohydrate elements in PyMol (Figure 3).  

 

3D-docking by two algorithms 
Two complementary algorithms (AutoDockVina and seeSAR), were 

employed for tridimensional 3D-docking. The programs differed in both,  i) the 
generation of ligand pose conformations with probable geometric binding to the 
target binding-pocket (set at 10 poses per ligand) and ii) the quantification of each 
conformational pose by binding-score calculations. The target S binding-pocket at 
SLSF-residues or S-SLSF, maintained their covalent lengths/angles while the 
ligands were flexible, so their rotatable bonds were used by the programs to 
generate the different pose conformations. 

The AutoDockVina included in the PyRx 0.9.8. package 
33(https://pyrx.sourceforge.io/) used multithreading on multi-core e7 / i9 computers   
to speed up docking34. AutoDockVina generates poses with  Lamarckian genetic 
algorithms 35. The corresponding conformation-dependent Gibbs binding-score 
free-energies (ΔG) for each pose are calculated using semi-empirical data 36. To 
perform the docking, the  *.sdf files required ffu energy minimization, hydrogen and 
charges additions to generate *.pdbqt files (PyRx-OpenBabel). Grids including only 
the SLSF-residue inner 3x3 α-helices were used. Only one pose with the lowest 
binding-score per docked ligand ( *.out.pdbqt) was retained for analysis. To 
compare with the seeSAR binding-score values, the output ΔG energies in 
kcal/mol were converted to constant inhibition (Ki) in nM concentrations1.  

To predict possible seeSAR poses, the vs.10 package 
(https://www.biosolveit.de/SeeSAR/) uses the FLEXx  incremental fragment 
construction method based on software developed for computer vision and pattern 
recognition 37.The corresponding conformation-dependent binding-score Gibbs 
free-energies (ΔG) for each pose are calculated by the HYDE scoring function 
computing both HYdration and DEsolvation values (as calibrated from 
octanol/water partition data, logP) 38, 39. To reduce false positives, the HYDE 
calculations include not only favorable but also unfavorable interactions 40.  To 
perform the docking, the unique binding-pocket internal to the S-SLSF α-helices or 
all the 36 binding-pockets (average of 17 amino acids per pocket) predicted by the 
seeSAR in the whole S trimer (Figure 3,C), were selected. Only one pose with the 
lowest binding-score per docked ligand was selected for analysis.  The binding-
scores were expressed as nM means calculated from the HYDE lower-higher  
estimates (±100-fold range). 

To facilitate a preliminary interpretation of the abundant docked data, 

the profiles ordered by binding-scores were first analysed graphically using the 

Origin program (OriginPro 2015, 64 bit Sr1 b9.2.257, Northampton, MA, USA) and 

best poses extracted by home-made macros in MS Excel. Binding-score 

estimations differed <10 % when repeated in different runs (n=3-6). The predicted 

lead-protein complexes were visualized in PyRx, seeSAR, and/or PyMOL 

(https://www.pymol.org/). 

Core-replacement 

The Triazine core or each of the Trihydroxyl-Triphenyl fragments 
attached to Trihydroxyl-Triphenyl-Triazine (TTT) were selected (Figure S2, AB) for 
core-replacements. To carry out core-replacements, the seeSAR inspirator module 
was used to screen pdb and zinc seeSAR-provided fragment libraries of ~ 20 
million fragments each. Each iteration of core-replacement selects for the best-
similar 10 cores maintaining the rest of the molecule intact while docking. Up to 90 
best-fitting new cores were retrieved from each library and their corresponding 3D-
binding-scores to SLSF-residues estimated by seeSAR docking. The resulting 
SLSF-residue leads were then docked to S-SLSF. 

 
Fragment extension 

The seeSAR fragment extension feature was applied to identify 
possible fragments attached to TTT phenyls (Figure S2, C). The sdf file containing 
100 small molecular weight fragments provided by seeSAR, enriched with 10 
home-made fragments between 1 to 7 non-hydrogen atoms, designed in 
MarvinSketch 17.1.30.0 (Chemaxon, Oracle Co) was used for this purpose.   

To explore each of the C1-C5 carbons, cores were fixed while F+TTT 
compounds having different fragment extensions at each of the phenyls (RED, 
GREEN, BLUE) were generated and SLSF docked.  

To explore C1 bound fragments at combinations among the 3 
positions, additional F+TTT compounds containing 1, 2 or 3 best-binding 
fragments were manually generated in MolSoft (Molbrowser vs3.9-1bWin64bit) and 
SLSF-residues docked. The resulting leads were then docked to S-SLSF. 

 
Preparation of training sets for machine learning  

Training sets were generated by pooling negative (high binding-
scores, 0s) and positive (low binding-scores, 1s) S-SLSF ligands. Our previous 
library of thousands of 3D-docked compounds separated in 19 molecular weight 
files1  were randomly sampled for 10 binding-score 0s  >100 nM from each  
separated file to generate a representative pool of negative ligands for the training 
sets (under sampling the majoritarian class)41. Other 30 TTT-similars with binding-
scores 0s > 100  nM  were added to the negative pool. On the other hand,  48 
F+TTX  ligands predicting binding-scores 1s < 0.2 nM  were included as positives. 
The final training-set,  was obtained in a unique sdf file by pooling the randomized 
0s and the 1s  in a 4:1 ratio. To provide a common identifier with the target libraries, 
the inchikeys descriptors were calculated and added to the ligands of the training-
set as the unique molecular_names, using the DataWarrior program (Osiris, vs 
5.5.0. Idorsia Pharmaceuticals Ltd). Possible duplicates were eliminated by 
OpenBabel. To develop learning models, the final training-set was randomly splitted 
in 60 % ligands for training, 20 % for validation and 20 % for test. 

 
Learning models using chemical fingerprints as inputs 

All chemical  fingerprint types were obtained from the PADEL descriptor 

tool (http://padel.nus.edu.sg/software/ padeldescriptor) and tested. The resulting 

PADEL files were splitted into molecular descriptors and algorithm-specific 
fingerprint bins for comparative tests. Regression prediction models were developed 
such as AdaBoost, Tree, NeuralNetwork, and others provided by the Orange 
vs3.27.1 package (http://www.ailab.si/orange).Their accuracies, however, were low.  

 
Deep-learning models using convolutional neural networks (CNN) using 2D-

molecular images 
 The DEEPScreen software 25, using CNN and molecular 2D-images 

rather than chemical fingerprints for higher prediction success, was optimized by 
adjusting their parameters with different training-sets using python and pytorch 
home-made scripts. To identify new leads on large data bases, the strategy was 
applied in three steps: i) 3D-docking to obtain enough 0s and 1s ligands  to train  
CNN models, ii) 2D-deep-learning applying the CNN T13 model to downsize large 
libraries to a lower number of 3D docking-candidates, and iii) 3D-docking of the 
identified candidates for in silico S-SLSF binding validation. The accuracy of the 
T13 CNN model was 97.4 % on the training-set ligands. 

 
Estimation of water-solubility of lead-derivatives 
An estimation of pH-dependent water-solubility was obtained by 

drawing possible lead-derivatives and studying the resulting alterations of their pH-
dependent  logS profiles on the ChemAxon web-server by manual trial-and-error 
approximations (https://disco.chemaxon.com/calculators/demo/plugins/solubility/).  
To increase the accuracy of water-solubility values, consensus logS  for selected 
candidates were then calculated by averaging the prediction values obtained from 
molSoft Browser vs. 3.9-1b/Win 64bit (MolLogS), Osiris DataWarrior vs5.5.0 
(cLogS) and Virtual Computational Chemistry Laboratory 
(http://146.107.217.178/web/alogps/ from vcclab.org/lab/aloggps, aLogS). The 
estimated consensus LogS water-solubility values in mol/l were then transformed 
to mg/ml for each new compound and their mean and standard deviations  
calculated (n=3).  

 

http://ftp.ebi.ac.uk/pub/databases/chembl/%20ChEMBLdb/%20releases/chembl_28/
http://zinc15.docking.org/
https://www.enaminestore.com/search
https://www.aldrichmarketselect.com/
https://sourceforge.net/projects/openbabel/postdownload
https://pyrx.sourceforge.io/
https://www.biosolveit.de/SeeSAR/
https://www.biosolveit.de/SeeSAR/
https://www.biosolveit.de/SeeSAR/
https://www.biosolveit.de/SeeSAR/
https://www.biosolveit.de/SeeSAR/
https://www.pymol.org/
http://padel.nus.edu.sg/software/%20padeldescriptor
http://www.ailab.si/orange
https://disco.chemaxon.com/calculators/demo/plugins/solubility/
http://146.107.217.178/web/alogps/
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Results 
Docking of Tinosorb-similars to SLSF-residues   

Tinosorb-similars were docked to SLSF-residues by AutoDockVina 
and seeSAR. Results predicted 102-105-fold lower binding-scores (higher bindings) 
for seeSAR compared to AutoDockVina (Figure 1 top, red hexagons versus blue 
hexagons).  

 

 
Figure 1 

SLSF-residues binding-scores of Tinosorb-similars and their logP (UP) and drawings of complexes of SLSF-
residues+Tinosorb by AutoDockVina (A,B) and seeSAR (C,D) (DOWN) 

UP)  Blue hexagons, Tinosorb-similars docked by AutoDockVina.  
Black-edged blue hexagon, Tinosorb docked by AutoDockVina 
Red hexagons, Tinosorb-similars docked by seeSAR.  
Black-edged red hexagon, Tinosorb docked by seeSAR.  
 
DOWN)  Green, best Tinosorb docked pose.  
Gray, SLSF 960-1010  residue ribbons 
A, Top-view of trimeric SLSF-residues 3x3 α-helices complexed to Tinosorb by AutoDockVina.  
B, Side-view of one SLSF-residues complexed to Tinosorb by AutoDockVina. Two monomers removed for clarity.  
C, Top-view of trimeric SLSF-residues 3x3 α-helices complexed to Tinosorb by seeSAR.  
D, Side-view of one SLSF-residues complexed to Tinosorb by seeSAR. Two  monomers removed for clarity. 
 
 

 
Table 1  

SLSF-residues lead binding-scores of Tinosorb-similar showing their fragments linked to C1 phenyls 
PubChem, 
 ID 

Binding- 
score, nM 

 
logP 

 
MW 

  
Smiles   

Trihydroxyl-Triphenyl –
Triazine (TTT) 

136025237 0.00005 4.4 621.7 CCC(CO-C1  
 
                    
 
 
                   C1 
 
 
 

                   
 
C1                                 C1 

155024065 0.00005 6.2 621.7 CCCOCOC1=CC(=C(C=C1) 

135783913 0.00005 7.9 609.7 C1CCC(-C1) 

135611720 0.00005 8.2 615.8 CCC(C)CO-C1 

136044044 0.00005 8.3 623.7 C1CCC(C-C1) 

135740105 0.00005 8.7 747.9 CCCCOCCCO-C1 

136383973 0.00005 8.7 773.9 
CC(C)CCCCCOC(=O)C(C)O-

C1 

136058049 0.00005 9.0 773.9 CCCCCCCCOC(=O)C(C)O-C1 

149408938 0.00005 9.1 643.8 CCCCC(CC)CO-C1 

136030929 0.00005 9.6 627.8 CCC-C1 

137127598 0.00005 11.6 712.0 CCCCC(C)CO-C1 

142723568 0.00005 12.0 .790.0 CCCCCCCCOO-C1 

................. .............. .......... ........ ................................. 

 135487856  0.00100 10.4 627.8 *CCCCC(CC)CO-C1 

Examples of the 57 leads and their fragments obtained by docking Tinosorb-similars predicting lower binding-scores than 
Tinosorb  to SLSF-residues ordered by their logP. The same fragments were attached to the C1 carbons at each of the 
Trihydroxyl-Triphenyls bound to the Triazine core (F+TTT, star-shaped molecules with 3-fold symmetries). *,  In Tinosorb's  
one of the fragments is chemically different (Figure S1). 135487856, PubMed ID of Tinosorb  (58th of the leads).   
Binding-score, mean of the seeSAR's estimations in nM.  
LogP, logarithm of the proportion between water and octanol solubilities.  
MW, molecular weight in Daltons.  
Smiles, Simplified Molecular Input Line Entry Systems. 
 

  

Visualization of the best Tinosorb+SLSF-residues complexes 
suggested that poses predicted by seeSAR were crossbinding the inner sides of 
the 3x3 α-helix residues (Figure 1 Down C,D), while those generated by 
AutoDockVina predicted interactions with only two α-helices (Figure 1 Down A,B). 
These observations may explain the binding-score differences between the two 
programs. Together, these data suggested that to explore for new candidates 
targeting the binding-site of the S-SLSF 3x3 α-helices, the seeSAR program was 
the best option. Therefore, the seeSAR program was chosen for the rest of this 
work. 

By seeSAR docking, 57 Tinosorb-similars reduced their binding-
scores (leads) compared to Tinosorb (Figure 1, up). Most of the Tinosorb-similar  
leads contained a central Triazine core (N Nitrogens at the 1,3 and 5 positions of 
Triazine C=N rings), with Trihydroxyl-Triphenyl groups attached to its C Carbons 
(TTT). Similar chemical structures have been described in the chemical-synthesis 
literature as star-shaped molecules 3.  

Additional structural variations among the Tinosorb-similar leads 
predicted different fragments attached to the C1s of the Triphenyl groups (Table 
1). Many of them maintained 3-fold symmetrical star-shaped molecules (F+TTT, 
Fragment-Trihydroxyl-Triphenyl-Triazines). However, most of them were of similar 
or higher hydrophobicities than Tinosorb (see some selected examples in Table 1) 
and therefore predicting reduced drug-like possibilities. For instance, although 57 
Tinosorb-similars predicted lower binding-scores than Tinosorb (Figure 1 up, red 
large hexagon), only one showed a minimal lower logP corresponding to 
moderately higher water-solubility (Table1, 136025237 ID).   
  

Docking of TTT-similars to S-SLSF  
 Results of docking to TTT-similars predicted several leads with lower 

S-SLSF binding-scores compared to SLSF-residues (Figure 2). These results  
confirmed the chemical structural features than for Tinosorb-similars and 
suggested the implication of other amino acid residues.  

Although predicting ~10-fold higher binding-score than Tinosorb 
(Figure 2), TTT had properties improving its drug-likeness such as lower molecular 
weight,  higher water-solubility and 3-fold symmetry. Therefore, TTT was selected 
as the main initial structure for further improvements. On the other hand, there 
were also two other leads showing other cores and/or with less hydroxyls which 
suggested there may exist other chemotype leads. 

Visual inspection of the TTT+S-SLSF complex confirmed docking to 
the inner binding-pocket of the 3x3 α-helices at the upper part of the top-to-bottom 
central cavity of the S trimer (Figure 3, A,B,D). Such binding-pocket was fitting TTT  
despite the existence of 36 competitors (Figure 3C, different colors). In contrast, 
Tinosorb was unable to predict any docking to S-SLSF 1. Detailed exploration of 
the TTT+S-SLSF complex (Figure 3E) predicted Threonines T998  and Glutamines 
Q1002  as the main S-SLSF residues forming hydrogen bonds with TTT 
Trihydroxyls. The rest of the TTT atoms, including those of the Triazine cores, the 
Triphenyls and/or their attached fragments (in the case of TTT-similar leads) 
contributed to the final binding-score only by favoring hydrophobic desolvation 
around many of the amino acid residues between the S-SLSF 994 and the 1006 
positions. Hydrophobic binding residues Y756 and F759   located  4-5  Å  in front of the 
C1s outside S-SLSF (Figure 3E), were also included targets for desolvation 

(seeSAR, CCP4 and PyMol visualizations),  confirming the participation of such 
residues in the S-SLSF bindings in contrast to SLSF-residues. The reduced 
participation of Triazine C=N atoms in binding, suggested that the Triazine 
scaffolds  were shaping and holding together the "star-shaped" molecule. 

 

 
Figure 2 

SLSF-residues and S-SLSF binding-scores of TTT-similars 
Black circles, asymmetrical TTT-similars. Red circles, 3-fold symmetrical TTT-similars. Black numbers and 
down  chemical structures, PubChem IDs of some of the leads. Blue hatched line, equal SLSF-residues 
and S-SLSF binding-scores.  
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Figure 3  

Mapping S-SLSF residues at the S trimer (A,B), S-SLSF binding-pockets predicted by seeSAR (C) and S-
SLSF+ TTT complexes (D,E) 

A, side-view of the wild-type S 6xr8 trimer and location of the 3x3 α-helices of S-SLSF (red). Gray lines, rest of 
amino acid residues of the S trimer 
B, top-view of the  wild-type S 6xr8 trimer and central location of its 3x3 α-helices of S-SLSF showing the central 
homotrimer cavity of 7-20 Å wide (red).  
Gray lines, rest of the amino acid residues of the S trimer 
C, top-view of the 36 binding-pockets predicted by seeSAR in the exposed surfaces of the wild-type S 6xr8 trimer 
in several background colors. Red, green, blue lines, rest of amino acid residues belonging to each of the S 
monomers  in a different color line.  
D, top-view of the S-SLSF  docked to TTT. Green, TTT docked  to the wild-type S 6xr8 trimer in competition 
with the other 36 binding-pockets schematized in C. Gray lines, amino acids residues of the S trimer 
E, top-view of the side chains of S-SLSF  docked to TTT .  Side-chain carbons corresponding to SLSF-
residues 994-1006  and  Y756 and F759  located at  4-5  Å  complexed with TTT.  
Gray  ribbons, sliced ribbon cylinders of the 3x3 α-helices of S-SLSF, the rest omitted for clarity.  
Green sticks, TTT carbon bonds. 
Yellow sticks,  side chains  of SLSF-residues 994-1006  plus  outsider residues Y756 and F759   
Blue sticks, nitrogen bonds.  
Red sticks, Oxygen bonds 

 
Search for new cores by Triazine-core replacement 

Since 1,3,5 Triazine was not unique to the leads, explorations for 
alternative cores were attempted among Triazine-similars. However, although 
yielding a large number of 4346 drug-like molecules, none of them predicted S-
SLSF lead binding-scores. 

 To further explore for Triazine-core alternatives, the seeSAR core-
replacement feature was then employed. This methodology substituted Triazine for 
any core by different molecules while maintaining the rest of the Trihydroxyl-
Triphenyl groups and predicts their resulting binding-scores (Figure S2). The 
screening of millions of possibilities, identified 4 new cores (TTX chemotypes) with 
similar SLSF-residues binding-scores than TTT. S-SLSF binding-scores were ~50 
fold reduced from ~10-2 nM with SLSF-residues to ~10-4 nM with S-SLSF (Figure 4, 
open and closed red circles, respectively). These new X cores have 1 or 2 Ns 
rather than 3 Ns (N1, N14, N35, N34). N1 and N35 were present in both pdb and 
zinc libraries (Figure 4). 

These results suggested that other cores also predict molecules with 
subnanomolar lead binding to S-SLSF.  
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Figure 4 

SLSF-residues and S-SLSF Triazine-core replacement binding-scores  
The N135 (TTT) Triazine core was replaced by X-cores (TTX) using the core-replacement feature of seeSAR which screens 
the pdb / zinc fragment-libraries of tenths of millions molecules each (Figure S2). Y-axis, binding-scores of the newly 
generated core-replaced TTX molecules. X-axis, leads with cores labeled by N followed by their position in the 6 atom 
cores. The numbers corresponding to the pbd and zinc fragment IDs were as follows N1 (3qx502P1H5I, zinc263631), N14 
(zinc1593398), N35 (3bhh5CP1B600F, zinc8300484), N34 (zinc1564326) and N135 (PubChem 135616181).   
Open red circles, SLSF-residues binding-scores.  
Solid red circles, S-SLSF binding-scores.  

 
Search for new leads using fragment extension  

There were 5 different carbons per phenyl for possible fragment 
attachments since TTT Trihydroxyl-Triphenyls were not equivalent due to their 
tilting to each other around their rotable C4 to C Triazine bonds (Figure S1). To 
study whether or not there were any differences among the Triphenyls, those were 
labeled as RED, GREEN and BLUE (RGB), using their default colors in seeSAR. 
Each of them were independently studied as possible targets for fragment 
extension (Figure S2). Comparative docking to SLSF- residues predicted 103-106-
fold lower binding-scores to the fragments attached to C1 (Figure 5), confirming 
previous observations made on Tinosorb, Tinosorb-similars, TTT and TTT-similars. 
Therefore, the C1 positions were targeted for additional searches for possible 
fragment extensions. 

A first search for other possible C1-fragments among PubMed similars 
only found fragments for N1, N35 and N135 cores, but none of those displayed 
optimal drug-like characteristics (i.e., high hydrophilicities). On the other hand, the 
"build evolutionary library" option of DataWarrior did not generated alternatives for 
any of the N1, N14, N35, N34 and N135 cores (not shown). 

The fragment extension feature of seeSAR was then applied 
individually to each of the 3 C1s RGB positions of each of the 5 cores. A fragment 
library using 100 fragment extensions (provided by seeSAR) enriched with 10 
home-made small size fragments, were tested for fragment extension. The 
resulting TTX molecules docked to SLSF predicted that most, but not all, the 
present in leads were bound to each of the three RGB C1 positions with similar 
binding-scores (Figure S3, red bar means with low standard deviations among the 
3 positions).  

Those fragments/positions predicting binding-scores to < 0.2 nM 
(Table S1) were then combined to construct the corresponding F+TTX complete 
molecules for S-SLSF docking. The results identified dozens of new leads (Figure 
5), predicting both symmetric and asymmetric fragment structures. Compared to 
Tinosorb, the new lead logPs were reduced from 10.4 to ~3-6,  increasing their 
water-solubility. Steric or charged inhibition rather than hydrophobicity could 
partially explain some of the differences in binding-scores when changing targets 
from SLSF- residues to S-SLSF. For instance, some of the the larger or charged 
fragments that generated SLSF leads, resulted in too high S-SLSF binding-scores 
(>106 nM) when attached to the 3 C1 positions, similarly to Tinosorb1.  

Only one of the S-SLSF lead binding-scores, consisted in a new 
Trimethoxyl-Triphenyl-Pyrimidine chemotype molecule. However, further search 
did not identified any lower binding-score among 510-similars, nor fragment 
extension attempts to its N35 core could identify any lower or similar S-SLSF 
binding-scores (not shown). 

Together, the fragment extension F+TTXs leads showed a S-SLSF 
first docking group on the ~ 0.001 nM binding-score range and a second group on 
the ~0.1 nM range (Figure 5). Up to 43.7 % of the F+TTX leads were found in 
PubMed while the rest corresponded to newly described molecules identified by 
fragment extension.  
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S-SLSF leads after fragment-extension and docking 
The S-SLSF leads <0.2 nM were named by the core (Figure 4)+ the ID number of the fragments (Table S3).  
Red circles, unique fragment in the 3 C1s. Green circles, same fragments in 2 C1s. Gray circles,  only one fragment in  C1.  
Blue-edged  yellow circles, original N1, N14, N35, N34, N135 cores (Figure 4).  
Open diamonds, heterogeneous fragment combinations (PubMed IDs-similars).  
Purple stars, heterogeneous fragment combinations (CHEMBL IDs  predicted by the CNN T13 model). 

 
Screening large libraries by the CNN classifying T13 model  

To search for more leads, a newly developed T13 deep-learning CNN 
model using  2D molecular images was applied to larger libraries (learning rate of 
the model in Figure S5). A first screened library consisted in 0.5 x106 
computationally designed compounds covering a maximum of purchasable 
chemotypes. Results predicted 105 possible lead candidates. However, their S-
SLSF lowest binding-scores were in the high nM ranges. A second screened 
library consisted in ~ 2 x 106 million compounds downloaded from the last 
Chembl28 release and downsized to ~1.5 x 106 drug-like ligands. Results 
predicted 8751 possible lead candidates. To downsize such large number of 
candidates, 3D-docking was made to SLSF- residues. The resulting 34 candidates 
predicting < 1 nM SLSF-residues binding-scores were docked to S-SLSF 
identifying 4 new leads. Since one of the leads was previously identified, 3 leads 
were added to the final lead list (Figure 5, purple stars). 

 
Screening extreme larger libraries by infiniSee 

To explore larger chemical spaces, the BioSolveIt's infiniSee program 
was used to screen for TTT-similars among 4 libraries containing 109-1014 
compounds each.  However, results only identified compounds with S-SLSF 
binding-scores >3-4 nM among the best 1000 similar compounds in any of the 
target similarities or thresholds studied. Additional attempts targeting 10000 
compounds were also unsuccessful (not shown). 

 
Binding leads to computationally PP-mutated S trimers 

 Because preliminary results indicated that some of the leads predicted 
large differences when docked to other PP-mutated conformers selected from our 
previous study 1 (data not shown) and their amino acid sequence differences to the 
wild-type 6xr8 conformer were only due to their PP mutations, those mutations 
were computationally introduced into the 6xr8 wild-type conformer. The 
corresponding 3D trimer remodel derived in the SwissModel web-server from the 
6xr8 PP mutated amino acid sequence was then docked to the leads. The results 
predicted an estimated 30.9 % of the wild-type 6xr8 S-SLSF lead poses altered 
their binding-scores by the introduction of the PP mutations (Figure 6). In some 
F+TTX leads those differences were of several orders of magnitude corresponding 
to poses that did not cross-bind the 3x3 α-helices of S-SLSF (not shown).  
 

Water-soluble Triazine-derivatives with chemical synthesis possibilities  
Water-solubilities of the F-TTX leads described at Figure 5, predicted 

consensus mean values of 0.01 ± 0.04 mg/ml (n=57). Only 6 leads predicted water 
solubilities  >10-2 mg/ml (Figure S6). Such low water-solubility estimations may be 
insufficient for in vitro validation and/or drug-like purposes. On the other hand, only 
one of them was commercially available (TTT, PubChem 136616181). 
Furthermore, for many of them appropriated building-blocks for chemical synthesis 
were difficult to find (https://askcos.mit.edu/retro/network/, 
https://www.enaminestore.com/search, https://www.aldrichmarketselect.com/).  

To search for new lead-derivatives, chemical spaces for TTT-
derivatives with both higher water-solubility estimations and more synthetic 
possibilities were explored among manual designs. Batches of 5-10 TTT-derived 

molecules predicting increased logS pH-dependent water-solubility profiles   
(https://disco.chemaxon.com/calculators/demo/plugins/solubility), were then S-
SLSF docked. The resulting leads from TTT-derivatives were selected for the next 
solubility/docking iteration.  

Substitution of the TTT phenyls by piperidine rings (substitution of C4s 
by N4s and elimination of aromaticity), increased ~ 100-fold their water-solubility 
with small variations in their binding-scores (Figure S7). Most probably, the low 
participation of the phenyl C4s in the binding-score estimations (as shown by  
visualization of the corresponding docked complexes), could explain these results. 
After 10 iterations, two new TTT-derivatives were identified with increased water-
solubilities (Figure S7). Both C18H30N6O3 and C15H30N6O3 candidates 
maintained the C3N6 Triamine-Triazine core together with attached Trihydroxyls. 
The presence of Trihydroxyls was a sine-qua-non requirement for hydrogen 
bonding as shown by visualization of the predicted docked complexes (not shown). 

The Triamine-Triazine core is well known in the literature as Melamine. 
Melamine and many other highly-reactive Triazine-like compounds (i.e., TriChloro, 
TriBromo, Cyanuric acid, Trimethoxy, Isocyanuric, Tritiol, Tricarboxyl, and/or 
several combinations among them) are widely available from a high number of 
commercial sources (Enamine, Sigma, ChemVia, Chemshuttle, Apollo-Scientific). 
Such Triazine-like compounds have been widely used as the initial cores for a 
variety of synthetic chemical reactions with the aim to develop related molecules  
for many different practical applications 42. Therefore, the presence of the binding 
requirement of Melamine cores increased the synthetic possibilities of any of the 
lead-derivatives identified.  

Linearization of many compounds after eliminating one carbon per 
piperidine-ring, increased not only their water-solubility but also their synthetic 
possibilities. After 10 iterations the C18H30N6O3-derivative, resulting after 
linearization of the  C15H30N6O3 molecule was also identified as the other lead-
derivative. Manually adding O, OH or NH2  to  fragments  in many different 
proportions and combinations, further increased the resulting water-solubilities, but 
the corresponding binding-scores also increased (not shown).  

To explore for more possible fragments to be attached to the two 
newly identified lead-derivatives, the optimized fragments of the previously 
identified  F-TTX leads (Figure 5) were used as a source to manually generate 
Triazine piperidine- and linear-derivatives. Therefore, phenyls were substituted by 
piperidines eliminating the aromatic carbons and substituting the phenyl C4s by 
N4s. The resulting piperidine rings were then opened for linearization. All possible 
fragment combinations among the 3 C1 positions were manually generated for 
new F-C3N6 molecules and their resulting duplicated structures eliminated by 
Open Babel. This process generated 84 F- C3N6-derivatives that were S-SLSF 
docked resulting in 15 lead-derivatives with binding-scores < 0.6 nM to study their 
chemical synthesis possibilities. Figure 7 shows the S-SLSF pose profiles docked 
to the most representative C3N6 lead-derivatives (60 poses per derivative).  

As one example among many synthetic possibilities, the 15 new lead-
derivatives could be deconstructed in 6 possible candidate ligands by 
combinations of commercially available building-blocks and cores (Figure 8). Many 
alternative synthetic paths including different cores and fragments could  be 
followed. As one example, the Ulmann carbon-nitrogen cross-coupling method 
using the Cyanuric-Trichloride (2,4,6-Trichloro-1,3,5-Triazine) core and R1-NH-R2 
fragments, was studied in some detail, since it appears to be one of the most 
simple to combine with commercially available components 42 (Figure 8).  

In such method, substitution of the core chlorine atoms by N-
containing fragments may be performed in the presence of one hydrochloride 
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Figure 6 

Comparison of S-SLSF binding-scores between leads from wild-type and PP mutated 
6xr8 trimers 

The 6xr8 wild-type amino acid sequence was computationally mutated to prolines at the 
previously reported P986P987  amino acid positions stabilizing the trimer at its prefusion state and 
inhibiting coronavirus infection4-6. The corresponding 3D model were build with the Swiss model 
server and wild-type and PP mutant 6xr8 S-SLSF docked to the F+TTX leads of Figure 5. Ten 
poses per lead were obtained and those with binding-scores < 0.2 nM represented.   
X-axis, F+TTX leads labeled as in Figure 5.  
Red circles, binding-scores of wild type 6xr8 S-SLSF.  
Yellow circles, binding-scores of PP mutant 6xr8 S-SLSF.  
 

https://askcos.mit.edu/retro/network/
https://www.enaminestore.com/search
https://disco.chemaxon.com/calculators/demo/plugins/solubility
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Figure 7 

Profiles of S-SLSF binding-scores of conformational poses after docking lead-derivatives  
To visualize their binding characteristics, 60 conformational poses per lead-derivative were generated and their 
corresponding S-SLSF binding-scores  compared.  

 
acceptor to block the liberated corrosive hydrochloride acid molecules (ie., sodium 
carbonate, bicarbonate or hydroxide). The preparation of mono-, di- and tri-
substituted cores of Cyanuric Chloride may be performed in a unique pot controlled 
step-by-step by increasing temperatures. This may be possible because generally, 
mono-substitution is predicted to occur at ~ 0°C, di-substitution at ~ 40°C and tri-
substitution at  > 120°C, at least in other similar cases 42. Careful optimization of 
the amount of each of the fragments, order of fragment addition, temperature/time, 
solvent and hydrochlorine acceptor would be require, would be required to 
synthesize each of the desired lead-derivatives under appropriated safe conditions. 
Although wet-lab experimentation is required to successfully carry out such 
chemical synthesis, most paths mentioned above could be mimicked by some 
reaction-predictive programs (ie., "Suggest Synthesis Route/of Structure using 
SPAYA.AI", DataWarrior). Although some of the identified fragments could be also 
synthetized before attachment to the core, the R1-NH-R2 fragments shown in 
Figure 8 were actually available at the building-block collections of Enamine 
(https://www.enaminestore.com/search) and/or Sigma 
(https://www.aldrichmarketselect.com/). Theoretically, with the 7 fragments 
detected at the building-block databases mentioned above, 6 lead-derivatives 
could be synthetized (Figure 8). Most probably the easiest  lead-derivative to 
synthesize would be C18N6O3 because has the same fragments attached at each 
of its 3 possible positions. 
 The computational visualization of the TTT initial molecule and their 
lead-derivatives generated after substituting its aromatic carbons, opening the  

 
Figure 8 

Scheme of predicted Ulmann crosslinking synthetic paths using a Cyanuric-Chloride core and 7 fragments to 
synthetize 6 lead-derivatives 

The proposed example starts with the highly reactive Cyanuric Chloride core (C3N3Cl3) available from numerous 
commercial sources and  commercially available fragments containing reactive Nitrogen, 4-6 Carbons ± Oxygen. 
Among many other possibilities, core and fragments could be cross-linked using carbon-nitrogen Ulmann method. 
Blue circles, Nitrogen atoms. Red circles, Oxygen Atoms. Green circles, Chloride atoms. ---, Carbon bonds. 
Hydrogens have been omitted to increase clarity.   

 
piperidine rings and attaching some of the above mentioned carbon/oxygen 
fragments, predicted similar S-SLSF docked complexes. Despite lead-dependent 
small alterations, their central location in between residues T998 (side chain Os 
bonded to hydroxyl Hs)  and Q1002  (side chain Hs bonded to hydroxyl Os)  forming 
two hydrogen-bonds per hydroxyl perpendicular to the homotrimer cavity were 
conserved. Figure 9 shows some comparative details of the relative positions in 
the TTT (C21N3O3) and its lead-derivatives C18N6O3 and C19N6O3.  
 

Drug-like properties of the S-SLSF leads and lead-derivatives 
 The corresponding  in silico pharmacokinetic parameters, 
physicochemical and toxicity ADME predicted to the leads (Table S2) and to lead-
derivatives (Table S3) showed that while most of the leads were classified as only 
moderately soluble (mean logP = 4 ± 0.7), the lead-derivatives were ~100-fold 
more soluble (mean LogP = 2.1 ± 0.6). Furthermore, while most of the leads 
predicted inhibition of many cytochrome P-450 detoxyfying enzymes (Table S2), 
the lead-derivatives were more favorable (Table S3). Advantages of lead-
derivatives respect to leads were also apparent when comparing synthetic 
difficulties calculated by fragmentation (Table S2) with predicted synthetic paths 
(Figure 8). Therefore, in comparison with the leads,  the lead-derivatives not only 
predicted improved water-solubility and synthetic possibilities but may also improve 
other drug-like characteristics. 

 
Figure 9 

Top (up) and  bottom (down) views of TTT and representative TTT- derivatives complexed with S-SLSF 
The hydroxyls of TTT (C21N3O3) and TTT-derivatives  (C18N6O3, C19N6O3) were Hydrogen-bound to  T998  and Q1002  S-SLSF side-chains  as visualized in PyMol.  
Gray partial ribbons,  partial locations of the S-SLSF 3x3 α-helices, the rest omitted for clarity. 
 Green sticks, TTT and TTT-derivative carbon bonds. Yellow sticks, T998 and Q1002  side-chains implicated in Hydrogen-bonding 
Blue sticks, Nitrogen bonds.  
Red sticks, Oxygen bonds 

https://www.enaminestore.com/search
https://www.aldrichmarketselect.com/
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Discussion 
  Despite SLSF-residues docking, Tinosorb failed to S-SLSF docking 
and did not inhibited S coronavirus-pseudotyped VSV-infection1. Whether other 
Tinosorb-like star-shaped molecules do exist with improved drug-like properties at 
subnanomolar binding ranges have been computationally explored here. 
 First results were encouraging since ~ 50 more SLSF-residues leads 
could be identified among Tinosorb-similars. However, all except one, predicted 
higher logP hydrophobicities than Tinosorb, reducing their drug-like possibilities. 
Nevertheless, most of them showed a common minimal star-shaped molecular 
structure consisting of one Triazine core with attached Trihydroxyls-Triphenyls 
(TTT). Computational TTT core-replacement and fragment extension, identified 
dozens of star-shaped molecular lead alternatives including those containing  
hydrophilic short fragments (F) linked to their Triphenyl C1 carbons (F+TTT). Most 
important, ~10-fold lower S-SLSF binding-scores compared to  SLSF-residues 
were predicted. Trihydroxyls formed hydrogen-bonds to S-SLSF T998 and Q1002 . 
Reduction of S-SLSF binding-scores, could be due to additional desolvation 
interactions with hydrophobic residues outside the S-SLSF, such as those detected 
with Y756 and F759.  

Nor Tinosorb, nor  TTT-similar subnanomolar leads were previously 
detected among natural compounds, most probably due to the molecular weight 
cut-off used1. Nevertheless, the TTT positive leads and the not-binding negative 
natural ligands previously identified, could be pooled to generate appropriated 
training-sets to optimize CNN models. Thus, the resulting trained-sets were used 
to develop a T13 deep-learning model to search for additional leads in large 
libraries using 2D molecular images. The T13 model successfully identified new 
2D molecular candidates among  ~ 2.5 million compounds in a short time 
compared to 3D docking, however, only 3 new star-shaped leads were detected. 
Further screening for TTT-similars of much larger libraries (109-1014 compounds), 
did not contributed any new leads. In the future, further explorations including more 
star-shaped Triazine-derivative chemical spaces may be tried but libraries enriched 
in Triazine-derivatives should be first generated. Up to now, the star-shaped lead 
molecules were detected  using work-intensive core-replacement, fragment-
extension and/or manual iteration efforts. Most probably, automation by new 
algorithms based on similar search methods could contribute to discover any new 
star-shaped leads. Because trimer α-helices similar to S-SLSF may be 
participating in other important biological interactions, such algorithms could be of 
a more general interest. 

Only seeSAR predicted star-shaped structures docking to the inner 
part of the 3x3 S-SLSF-residues at subnanomolar ranges. Among other 
possibilities, some problems with the sdf to pdbqt file conversion of Triazine rings 
by OpenBabel for AutoDockVina docking, may result in their higher binding-score 
predictions. In contrast,  all the Triazine chemical features, including their correct 
placements of double bonds, were conserved during seeSAR docking. 
Nevertheless,  AutoDockVina performed better dockings than seeSAR in other 
examples, such as  screening for new rodenticides43 or prediction of interactions 
between graphene and detoxifying enzymes 44. It seems likely that the best 
docking algorithms may depend on each particular ligand/target system.  

Visualization of the S-SLSF docked complexes predicted only slightly 
different lead-dependent interactions. For most leads, the main contributions to 
their estimated binding-scores were made by hydrogen-bonds between their 
Trihydroxyls and the three S-SLSF T998 and Q1002  amino acids. There were none 
or few alternative fragments which could replace the contribution of the Trihydroxyl 
groups, confirming the importance of their hydrogen-bonds. The small distance-
requirement for hydrogen-bonds may also explain why any short displacement, 
amplified by the contribution of the S-SLSF 3 α-helices, like those described for PP 
mutants 4-6, could increase their corresponding lead binding-scores. On the other 
hand, the rest of the lead atoms, only contributed to the binding-score values by 
favoring desolvation (displacement of water molecules to allow for hydrophobic 
interactions). Such desolvations included amino acid atom targets both inside and 
outside the S-SLSF. Although weak for each pair of individual atoms, they made 
important desolvation contributions when added together for each of the lead 
binding-score computations. All fragment alternatives tested that contained 
charged atoms predicted unfavorable interactions, increased their corresponding 
binding-scores, and suggested that electrostatic charges were not implicated in the 
formation of S-SLSF+ lead complexes.  
 To explore for any more possible lead-derivatives with improved drug-
like properties, the Triazine-core and the F-TTX fragments were selected. The 
Triazine-core was chosen because it has more synthesizable possibilities than any 
other of the identified cores. The F-TTX fragments were chosen because they 
were the result of S-SLSF docking optimization  after exploring millions of 
alternatives. Their piperidine- and linear-derivatives were generated because these 
modifications  of the TTT molecular structure increased their water-solubility 
maintaining their subnanomolar binding-scores. Manual iterations were employed 
because appropriated open-source programs including predictions of water-
solubility, synthetic possibilities and building-block availabilities could not be found. 
Therefore, Piperidine - and their linear-derivatives were manually generated by 
iteration of combinations between Triazine-cores and F-TTX fragments. Those 

generated candidates predicting subnanomolar S-SLSF binding-scores, were 
selected to study both their synthetic possibilities and their corresponding building-
block availabilities. Although many other possible solutions do exist since a more 
comprehensive study has not been carried out, the manual strategy identified a 
few lead-derivatives which combined all the above mentioned practical 
requirements.  
 Compared to Tinosorb or TTT, the lead and lead-derivatives (leads for 
short) were more hydrophilic, of smaller size and maintained subnanomolar 
binding-scores. The leads have also a high proportion of rotatable bonds which 
may improve their penetration possibilities to reach their S-SLSF optimal binding-
site by going through the side-chains surrounding the homotrimer cavity. However, 
some of these leads may still be difficult to dissolve in water for efficient delivery for 
in vitro assays or may be inhibitors of detoxifying cytochromes for in vivo drug-like 
purposes.  Therefore, these aspects should be also considered when predicting or 
interpreting future validations. Experimental assays such as solid-phase binding to 
recombinant S spikes, cell culture inhibition of S pseudotyped VSV fusion (as we 
described before1) and/or possible blocking of cellular infection, could be 
employed to in vitro validate some of the proposed lead biological activities 
against coronaviruses. Considering that molecules with 3-fold symmetries may be 
the most favorable for chemical synthesis, the corresponding leads may be 
preferred for initial validations.  

The main challenge for experimental success of subnanomolar leads  
remains on how or when to access the inner S-SLSF binding-pocket target. The 
target may be reached i) at the compact wild-type prefusion state, ii) at the open 
prefusion states, or iii) during infection at trimer biosynthesis.  

Most of the leads docked to the S-SLSF binding-pocket of the wild-
type prefusion state, visually appeared tightly "sandwiched" between above 
Threonines (Ts) + Tyrosines (Ys) and below Glutamines (Qs) + phenylalanines 
(Fs). Such locations suggested difficult penetration throughout the side-chains of 
either top-to-bottom  (Ts, Qs, Ys and Fs Oxygen atoms form triangles of ~ 9, 4, 17 
and 17 Å side, respectively) or trilateral (~7-20 Å wide) cavities. At this respect, 
lead flexibility by having more rotable C-C bonds may favor their possibilities for 
penetration compared to the more rigid alternatives containing aromatic rings.  

Other alternatives for penetration may include targeting the more 
relaxed open (receptor binding domain, RBD-up) S conformers rather than the 
compact wild-type 6xr8 conformer. Such possible lead alternatives require further 
computational studies and experimentation. Focusing on their possible  
computational aspects, the preliminary docking to PP-mutated SwissModel-
remodeled  6xr8 conformer showed unfavorable increases in their lead binding-
scores. Those could be due to the ~ 2-4 Å  displacements detected on their YF987 
Oxygen-triangle distances while those of T998 and Q1002 remained similar (±0.8 Å), 
as suggested by PyMol visualization (not shown) and confirming the low propensity 
for dynamic conformational changes of the wild-type homotrimer cavity previously 
described in crystalized structures2. Furthermore, unfavorable higher binding-
scores were obtained also with the 6xs6 3-open PP-mutated conformer which 
displayed Oxygen-triangle distances among Qs ~ 3 Å longer than those of 6xr8, 
while its Oxygen-triangle Ts distances were conserved (not shown). Both  
preliminary observations suggest that the lead bindings may have very strict S-
SLSF 3x3 α-helix structural length requirements making it probable that S open 
conformations could require other lead chemotypes to target their slightly displaced 
3x3 α-helixes. Perhaps in the future, 3D structures of wild-type S in their open 
states may be available to allow for more accurate docking predictions, including 
molecular dynamic studies to best mimic  the conformational variations during all 
fusion steps.  

Other opportunities to reach the S-SLSF binding-pocket may be 
offered by targeting viral infection steps rather than prefusion viral particles as 
discussed above. For instance, targeting the S biosynthesis at the formation of 
dimers/trimers from monomers during the coronavirus infection. Any of these many 
possibilities need further computational mimicking and experimental work. 

We may conclude that there are star-shaped leads and lead-
derivatives with predicted subnanomolar binding-scores to S-SLSF which are 
highly specific for the wild-type 6xr8 conformers present in the surface of wild-type 
coronaviruses. Such leads have probabilities to inhibit coronavirus fusion, 
however, it is not known whether their accession to the target binding-site located 
at the inner part of the S-SLSF α-helices would be possible. In other words, 
despite their predicted subnanomolar binding-scores, small molecular sizes, high 
water-solubilities, synthesizability and expected accessibility possibilities to their 
target, it is not yet clear if any of the leads/lead-derivatives described here will 
successfully bind to S-SLSF, block fusion and inhibit coronavirus infectivity. 
Because some computational data indicated that the smaller the size, the better, 
any other leads with simpler chemical structures should be also explored including 
any possibility for covalent cross-linking the α-helices implicated taking advantage 
of the high specificity of the star-shaped leads identified.  
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Figure S1 
Molecular 2D and 3D molecular structures of Tinosorb 

A. 2D representation of Tinosorb (bis-ethylhexythexyloxyphenol-methoxyphenyl-Triazine) 
B. 3D representation of Tinosorb best conformational pose when docked to SLSF 

 

 
Figure S2 

TTT core- / phenyl-replacements and hydroxyl-phenyl C1 fragment extensions 
Core- and phenyl-replacements (A,B) were screened among ~40 millions of fragments of seeSAR’s supplied libraries.  
Hydroxyl-phenyl C1 fragment extensions (C) were screened among the 100 low molecular weight fragment library provided 
by seeSAR and enriched with 10 home-made fragments. Each of the resulting new F-TTT molecules were then SLSF 
docked.  
A, core-replacements in gray and the rest of the maintained structures in black, separated by the pink insertion locations.  
B, phenyl-replacements in gray and the rest of the maintained structures in black, separated by the pink insertion 
locations.  
C, hydroxyl-phenyl C1 extension  separated by the pink insertion location.  
D, example of merged fragments extended in position C1 at the RED hydroxyl-phenyl.  

 

 
Figure S3 

SLSF-docking of fragments extended to different C positions of TTT  
One hundred fragments provided by seeSAR's  were linked to each of the TTT 1-6 Carbon phenyl positions  (except  
position 4). RED, GREEN and BLUE hydroxyl-phenyls were independently extended and docked to SLSF.  
A, scheme of the  TTT molecular structure, with only the RED hydroxyl-phenyl drawn (GREEN and BLUE hydroxyl-phenyls  
were omitted in the TTT structure for clarity).  
B, Binding-score profiles to SLSF-residues of the resulting F+TTT complexes. 
Red hexagons, C1 phenyl carbons.  
Blue hexagons, C2 phenyl carbons.  
Purple hexagons, C3 phenyl carbons..  
Gray hexagons, C5 phenyl carbons..  
Green hexagons, C6 phenyl carbons. 
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Figure S4 

RGB lead binding-scores to SLSF-residues of the C1 fragment extension  
The fragments represented in their smiles formula were those selected among the seeSAR’s fragment 
extension leads having binding-scores < 0.2 nM. Mean ± sd were calculated from the binding-scores of the 3 
RGB hydroxyl-phenyl groups at each of the F+TTT complexes.  
Y-axis, fragment smiles formula where [R] indicates the covalent bond to C1.  
Gray bars, bound only to one of the RGB. Red bars, fragments with > 7 non-hydrogen atoms.  
Green bars, fragments with < 7 non-hydrogen atoms. 
 

Table S1 
SLSF binding-scores of cores + fragment extensions 

      phenyl     
      RED GREEN BLUE 

core   C1-fragment nM nM nM 

N1 N1+ [R]       

 
N1+1 C[R]       

  N1+2 CC[R] 0.14 0.11 0.11 
  N1+3 CCC[R] 0.05 0.03 0.05 
  N1+4 CCCC[R] 0.07 0.03 0.05 
  N1+5 CC(C)SC[R] 0.02 0.01 0.01 
  N1+6 CC(C)C[R] 0.02 0.03 0.01 
  N1+7 CC(C)OCCC[R] 0.01 0.02 0.07 
  N1+8 (C)OCCC[R] 0.00 0.23 0.01 
  N1+9 CS[R] 0.09 0.12 0.08 
  N1+10 CC(O)[R] 0.13 1.30 0.09 
  N1+11 COCN[R] 0.03 0.09 7.63 
  N1+12 CCC[C]([R])CC 0.11 0.01 0.01 

N14 N14+ [R]       
  N14+1 C[R] 

     N14+2 CC[R] 0.11 0.07 0.10 
  N14+3 CCC[R] 0.06 0.03 0.02 
  N14+4 CCCC[R] 0.09 0.02 0.02 
  N14+5 CC(C)SC[R] 0.05 0.01 0.04 
  N14+6 CC(C)C[R] 0.14 0.01 0.03 
  N14+9 CS[R] 0.12 0.07 0.10 
  N14+13 CC(C)[R] 260.74 0.04 0.07 
  N14+14 COC([R])=O 0.12 0.08 0.08 
  N14+15 C1COCCC1[R] 0.91 0.03 0.09 

N35 N35+0 [R] 
     N35+1 C[R] 
     N35+3 CCC[R] 0.41 0.07 0.08 

  N35+4 CCCC[R] 0.12 0.06 0.03 
  N35+5 CC(C)SC[R] 0.01 0.01 0.01 
  N35+6 CC(C)C[R] 0.05 0.05 0.05 
  N35+7 CC(C)OCCC[R] 0.00 0.00 0.01 
  N35+8 (C)OCCC[R] 0.01 0.01 0.05 
  N35+12 CCC[C]([R])CC 0.01 0.01 0.01 

N34 N34+ [R]       
  N34+1 C[R] 

     N34+13 CC(C)[R] 33.70 0.12 0.06 
  N34+16 CO[R] 1.34 1.34 0.17 

N135 N135+ [R] 
     N135+1 C[R] 0.38 0.40 0.45 

  N135+3 CCC[R] 0.12 0.14 0.10 
  N135+4 CCCC[R] 0.16 0.09 0.05 
  N135+5 CC(C)SC[R] 0.06 0.02 0.04 
  N135+6 CC(C)C[R] 0.04 0.05 0.07 
  N135+7 CC(C)OCCC[R] 0.01 0.01 0.01 
  N135+8 (C)OCCC[R] 0.01 0.22 0.02 
  N135+12 CCC[C]([R])CC 0.02 0.02 0.02 

      The F+TTX structures were generated by the seeSAR fragment extension of hydroxyl-
phenyls C1s in the 5 different cores of Figure 4. The resulting structures were  labeled by an 
N followed by their N positions in the core as in Figure 4. The selected fragments were 
arbitrarily numbered from +1 to +16 (i.e., N34+13). Those fragments represented by 
individual [R] corresponded to the initial core-replacement molecules of Figure 4. The 
represented fragment binding leads to SLSF-residues were defined as those F+TTX 
structures with predicting binding-scores < 0.2 nM. The tabulated fragments were then 
computationally drawn as been bound to their corresponding C1 positions on the final F+TTX 
molecules to be tested by S-SLSF docking (final results in Figure 5). The minimal fragments 
C[R] were rejected by the fragment extension program, but their binding-scores included in 
the final F+TTX reconstructed molecules for S-SLSF docking.  
Numbers in red,  fragments with a high nM binding-score having low probability of fitting to 
the SLSF-residues and/or S-SLSF.   
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Figure S5 

Learning curve of the DEEPScreen CNN T13 model developed for high-throughput screening of 

binding candidates among those of large libraries 

The training-set contained 48 F+TTX  ligands classified as positives (1s) (Figure 5) and randomized/size-

selected 30 TTT-similars + 162 SNII as negatives (0s). To train the T13 model, the training-set of 240 

classified compounds was randomized and splitted in 60 % for training, 20 %  for validation and 20 %  for test.  

Loss, mean differences between the T13 model predictions and their true classifications.  

Epochs, number of forward/backward CNN iterations through the training-set. 
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Figure S6 

Predicted higher water-solubilities vs binding-scores of the leads 
The leads from Figure 5 showing the higher mean water-solubilities in mg/ml were represented together with 
their corresponding formulas. A insert, water-solubilities vs binding-scores of all the leads from Figure 5. 
Green circles and vertical lines, mean and standard deviation water-solubility (n=3) 
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Figure S7 

Lead-derivatives with higher water-solubilities and their corresponding binding-scores  
Lead-derivatives theoretically drawn from TTT (PubMed ID, 135616181) predicting the most soluble pH-
dependent logS profiles (https://disco.chemaxon.com/calculators/demo/plugins/solubility), were S-SLSF 
docked. Only the lead-derivatives with the lowest binding-scores were selected for the next solubility/docking 
iteration. After 10 iterations, two new chemotypes were identified with increased water-solubilities maintaining 
low binding-scores (C18H30N6O3 and 155346721 or C15H30N6O3). They contained a C3N6 Triamine-
Triazine core with the attached Trihydroxyls (-CCOH) required for hydrogen binding to the T998 and Q1002  
residues of the S-SLSF 3x3 α-helices. Green circles, and vertical upper lines, mean and standard deviation 
of binding-scores expressed in nM (n=3). Open blue circles and vertical upper lines, mean and standard 
deviations of water-solubility expressed in mg/ml (n=3). 
 

 
Table S2 

Lead drug-like characteristics predicted by the SwissADME web-server 

ID
 o

r 

N
am
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n
M

 

M
W
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g
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IA

  

1A
2 

 

2C
19

  

2C
9 

 

2D
6 

 

3A
4 
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K
 

P
A

IN
S

 

S
yn

A
cc

 

141325665 0.0001 398.5 4.6 M  H Yes Yes Yes Yes Yes 0 0 3.1 

135843076 0.0002 399.4 4.2 M  H No No No Yes No 0 0 2.7 

N14+1x2 0.0002 385.4 3.0 M  H Yes Yes No Yes Yes 0 0 3.2 

N135+1x3 0.0002 399.4 4.2 M  H No No No Yes No 0 0 2.7 

N1+1x2 0.0002 383.4 4.6 P  H Yes Yes No Yes No 0 0 3.0 

N14+1x1 0.0003 371.4 2.6 M  H Yes Yes No Yes Yes 0 0 3.1 

N35+1x2 0.0003 384.4 4.2 M  H Yes Yes No Yes No 0 0 3.0 

N135+1x2 0.0003 385.4 3.9 M  H Yes No No Yes No 0 0 2.6 

N35+1x1 0.0003 370.4 3.9 M  H Yes Yes No Yes No 0 0 2.9 

N135+1x1 0.0004 371.4 3.5 M  H Yes No No Yes Yes 0 0 2.5 

137100803 0.0004 355.4 4.0 M  H Yes Yes No Yes  No 0 0 2.8 

N14 0.0004 357.4 2.3 M  H Yes Yes No Yes Yes 0 0 3.0 

N1 0.0004 355.4 4.0 M  H Yes Yes No Yes No 0 0 2.8 

N1+1x1 0.0004 369.4 4.4 M  H Yes Yes No Yes No 0 0 2.9 

N135 0.0007 357.4 3.2 M  H Yes Yes No Yes Yes 0 0 2.4 

N35+1x1 0.0007 370.4 3.9 M  H Yes Yes No Yes  No 0 0 2.9 

141325666 0.0008 356.4 3.7 M  H Yes Yes No Yes Yes 0 0 2.8 

N35 0.0008 356.4 3.7 M  H Yes Yes No Yes Yes 0 0 2.8 

136653883 0.0009 357.4 3.2 M  H Yes Yes No Yes Yes 0 0 2.4 

N34 0.0009 357.4 2.7 M  H Yes Yes No Yes No 0 0 3.0 

136423729 0.0011 415.4 3.5 M  H Yes No No Yes No 0 0 2.9 

135960896 0.0013 413.5 4.6 P  H No No No Yes No 0 0 2.9 

chembl2205860 0.0018 444.4 5.5 P  H Yes Yes Yes Yes Yes 1  0 2.9 

N1+2x1 0.0058 383.4 4.7 P  H Yes Yes No Yes No 0 0 3.0 

N34+1x1 0.0098 371.4 3.1 M  H Yes Yes No Yes No 0 0 3.2 

N35+4x1 0.0117 412.5 4.9 P  H  No Yes No Yes No 0 0 3.2 

136006876 0.0120 383.4 4.6 M  H Yes Yes Yes Yes Yes 0 0 2.7 

chembl4098217 0.0205 373.8 5.0 P  H Yes Yes No Yes Yes 0 0 2.8 

135839733 0.0227 355.4 4.0 M  H Yes Yes No Yes Yes 0 0 2.5 

N14+3x1 0.0271 399.5 3.3 M  H Yes Yes No Yes Yes 0 0 3.3 

153499063 0.0294 323.4 4.8 M  H Yes Yes No Yes Yes 0 0 2.6 

N34+16x1 0.0295 387.4 2.8 M  H Yes Yes No Yes No 0 0 3.2 

N35+1x3 0.0325 398.5 4.6 M  H No Yes No Yes No 0 0 3.1 

136627870 0.0327 427.5 4.9 P  H No Yes No Yes No 0 0 3.1 

135800943 0.0335 340.4 3.9 M  H Yes Yes No Yes Yes 0 0 2.7 

136159616 0.0344 339.4 4.4 M  H Yes Yes No Yes Yes 0 0 2.8 

N34+16x1 0.0354 387.4 2.7 M  H Yes Yes No Yes No 0 0 3.2 

136085071 0.0400 355.4 4.0 M  H Yes Yes No Yes Yes 0 0 2.5 

135981233 0.0474 339.4 4.4 M  H Yes Yes No Yes Yes 0 0 2.7 

N1+4x1 0.0476 411.5 5.4 P  H Yes Yes No Yes No 0 0 3.2 

630964 0.0505 340.4 4.0 M  H Yes Yes No Yes Yes 0 0 2.7 

136052741 0.0535 401.5 4.4 M  H No No Yes No No 0 0 3.9 

137662037 0.0678 373.8 5.0 P  H Yes Yes No Yes Yes 0 0 2.8 

chembl1096434 0.0681 339.4 4.4 M  H Yes Yes No Yes Yes 0 0 2.7 

135458191 0.0706 353.4 4.7 M  H Yes Yes No Yes Yes 0 0 2.8 

136052737 0.0710 401.5 4.1 M  H No No Yes No No 0 0 3.9 

N34+16x2 0.0820 417.4 2.7 M  H Yes Yes No Yes No 0 0 3.4 

N14+1x2 0.0855 385.4 3.0 M  H Yes Yes No Yes Yes 0 0 3.2 

N14+2x1 0.0926 385.4 3.0 M  H Yes Yes No Yes Yes 0 0 3.1 

N1+1x2 0.0965 383.4 4.7 P  H Yes Yes No Yes No 0 0 3.0 

N135+4x1 0.1250 413.5 4.6 P  H  No Yes No Yes No 0 0 2.9 

N1+8x1 0.1343 427.5 4.7 M  H Yes Yes No Yes No 0 0 3.2 

N34+1x2 0.1437 385.4 3.4 M  H Yes Yes No Yes No 0 0 3.3 

N14+1x1 0.1491 371.4 2.7 M  H Yes Yes No Yes Yes 0 0 3.1 

136432921 0.1641 423.4 5.0 P  Low Yes Yes No Yes No 0 0 2.8 

N35+8x1 0.1948 428.5 4.2 M  H Yes Yes No Yes No 0 0 3.2 

N1+8x1 0.1969 427.5 4.7 M  H Yes Yes No Yes No 0  3.2 

Lead numbers, PubMed IDs 
Lead chembl number, CHEMBL IDs 
Lead N numbers, core (Figure 4) + fragment number (Table S1) x 1,2 or 3 fragments . 
LIPK, number of  violations of Lipinski rules that would make the ligand less likely to be an orally administrable drug if >5.  
LogP, consensus value of multiple predictions of lipophilicity.   
1A2, 2C19, 2C9, 2D6, 3A4, in green the leads predicted to inhibit the main detoxyfying cytochromes P450.   
GIA, in green predictions of high gastro-intestinal adsorption.   
PAIN, Pan Assay Interference Structures (PAINS), alerting of the number of chemical fragments that return false positives in virtual binding.  
Green, favorable  
Light green,  moderately favorable.  
Empty in white backgrounds, unfavorable. 
SynAcc, synthetic difficulties calculated by fragmentation of the leads and ranged from 1-10 (the highest the most difficult to synthesize) 

0 

 

 
Table S3 

Drug-like characteristics of lead-derivatives predicted by the SwissADME web-server 

Formula 
Cons. 
LogP 

Cons. 
Sol mg/mL GI  1A2 C19  2C9  2D6 3A4 

C20N6O3 2.5 0.03       
C19N6O3 2.4 0.02       
C18N6O3 1.1 13.38       
C19N6O2 2.5 0.01       
C18N6O2 2.7 0.02       
C17N6O2 1.6 0.69       

Cons., SwissADME consensus LogP and Sol water-solubility.  
Other details as in Table S2 

 
 
 
Funding 
The work was carried out without any external financial contribution 
 
Competing interests 
The author declares no competing interests 
 
Authors' contributions 
JC designed, performed and analyzed the dockings and deep-screen, and drafted the manuscript.  
 
Acknowledgements 
Thanks are specially due to Dr. Judd Dunkan of Awridian Ltd at United Kingdom by kindly providing the 500k 
synthetic chemotype-maximized purchasable library, to Dr. Tunca Doğan of the University of Ankara at Turkey 
for his help to understand his simple and powerful DEEPScreen program, to Dr. Markus Gastreich of 
BioSolveIT GmbH at Germany for his zoom-help with the inspirator features of seeSAR.  Thanks are also due 
to Dr. Alberto Villena from the University of Leon (Spain), Luis Maestre (telecommunication engineer) from 
Madrid and to Dr. Ignacio Garcia from the Hospital Gomez Ulla of Madrid (Spain) for their help with the 
bibliography, to Dra.Maria M.Lorenzo for her preliminary tests and to Dr. Rafael Blasco at INIA (Madrid, Spain) 
for his original ideas and discussions.  
 
 
 
 
 

https://disco.chemaxon.com/calculators/demo/plugins/solubility


 10 
 

References 
 
1Lorenzo, M.M., R. Blasco and J.M. Coll.  Would it be possible to stabilize prefusion SARS-COV-2 spikes with 

ligands? ChemRxiv.  2021: http://dx.doi.org/10.26434/chemrxiv.13453919.v2. 
2Kalathiya, U., M. Padariya, M. Mayordomo, M. Lisowska, J. Nicholson, A. Singh, . . . J.A. Alfaro.  Highly 

Conserved Homotrimer Cavity Formed by the SARS-CoV-2 Spike Glycoprotein: A Novel 
Binding Site. J Clin Med.  2020, 9: http://dx.doi.org/10.3390/jcm9051473. 

3Diab, H.M., A.M. Abdelmoniem, M.R. Shaaban, I.A. Abdelhamid and A.H.M. Elwahy.  An overview on 
synthetic strategies for the construction of star-shaped molecules. Royal Society Chemistry 
Advances.  2019, 9: 16606-16682. http://dx.doi.org/10.1039/c9ra02749a. 

4Henderson, R., R.J. Edwards, K. Mansouri, K. Janowska, V. Stalls, S. Gobeil, . . . P. Acharya.  Controlling the 
SARS-CoV-2 Spike Glycoprotein Conformation. bioRxiv.  2020: 
http://dx.doi.org/10.1101/2020.05.18.102087. 

5Hsieh, C.L., J.A. Goldsmith, J.M. Schaub, A.M. DiVenere, H.C. Kuo, K. Javanmardi, . . . J.S. McLellan.  
Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science.  2020: 
science.abd0826 [pii], http://dx.doi.org/10.1126/science.abd0826. 

6Xiong, X., K. Qu, K.A. Ciazynska, M. Hosmillo, A.P. Carter, S. Ebrahimi, . . . J.A.G. Briggs.  A thermostable, 
closed SARS-CoV-2 spike protein trimer. Nat Struct Mol Biol.  2020: 
http://dx.doi.org/10.1038/s41594-020-0478-5, 10.1038/s41594-020-0478-5 [pii]. 

7Carr, C.M. and P.S. Kim.  A spring-loaded mechanism for the conformational change of influenza 
hemagglutinin. Cell.  1993, 73: 823-832. http://dx.doi.org/10.1016/0092-8674(93)90260-W. 

8Pallesen, J., N. Wang, K.S. Corbett, D. Wrapp, R.N. Kirchdoerfer, H.L. Turner, . . . J.S. McLellan.  
Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. 
Proc Natl Acad Sci U S A.  2017, 114: E7348-E7357. 1707304114 [pii], 
http://dx.doi.org/10.1073/pnas.1707304114. 

9Kandeel, M., A.H.M. Abdelrahman, K. Oh-Hashi, A. Ibrahim, K.N. Venugopala, M.A. Morsy and M.A.A. 
Ibrahim.  Repurposing of FDA-approved antivirals, antibiotics, anthelmintics, antioxidants, and 
cell protectives against SARS-CoV-2 papain-like protease. J Biomol Struct Dyn.  2020: 1-8. 
http://dx.doi.org/10.1080/07391102.2020.1784291. 

10Kandeel, M. and M. Al-Nazawi.  Virtual screening and repurposing of FDA approved drugs against COVID-19 
main protease. Life Sci.  2020, 251: 117627. http://dx.doi.org/10.1016/j.lfs.2020.117627. 

11Bakowski, M.A., N. Beutler, K.C. Wolff, M.G. Kirkpatrick, E. Chen, T.-T.H. Nguyen, . . . T.F. Rogers.  Drug 
repurposing screens identify chemical entities for the development of COVID-19 interventions. 
Nature Communications. 2021, 12: 3309-3323. http://dx.doi.org/10.1038/s41467-021-23328-0. 

12Xia, S., L. Yan, W. Xu, A.S. Agrawal, A. Algaissi, C.K. Tseng, . . . L. Lu.  A pan-coronavirus fusion inhibitor 
targeting the HR1 domain of human coronavirus spike. Sci Adv.  2019, 5: eaav4580. 
http://dx.doi.org/10.1126/sciadv.aav4580, aav4580 [pii]. 

13Xia, S., Y. Zhu, M. Liu, Q. Lan, W. Xu, Y. Wu, . . . L. Lu.  Fusion mechanism of 2019-nCoV and fusion 
inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol.  2020, 17: 765-767. 
http://dx.doi.org/10.1038/s41423-020-0374-2, 10.1038/s41423-020-0374-2 [pii]. 

14Wang, C., S. Xia, P. Zhang, T. Zhang, W. Wang, Y. Tian, . . . K. Liu.  Discovery of Hydrocarbon-Stapled 
Short alpha-Helical Peptides as Promising Middle East Respiratory Syndrome Coronavirus 
(MERS-CoV) Fusion Inhibitors. J Med Chem.  2018, 61: 2018-2026. 
http://dx.doi.org/10.1021/acs.jmedchem.7b01732. 

15Cannalire, R., I. Stefanelli, C. Cerchia, A.R. Beccari, S. Pelliccia and V. Summa.  SARS-CoV-2 Entry 
Inhibitors: Small Molecules and Peptides Targeting Virus or Host Cells. Int J Mol Sci.  2020, 
21: ijms21165707 [pii], http://dx.doi.org/10.3390/ijms21165707. 

16Tang, T., M. Bidon, J.A. Jaimes, G.R. Whittaker and S. Daniel.  Coronavirus membrane fusion mechanism 
offers a potential target for antiviral development. Antiviral Res.  2020, 178: 104792. S0166-
3542(20)30206-0 [pii], http://dx.doi.org/10.1016/j.antiviral.2020.104792. 

17Wu, C., Y. Liu, Y. Yang, P. Zhang, W. Zhong, Y. Wang, . . . H. Li.  Analysis of therapeutic targets for SARS-
CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B.  2020: 
http://dx.doi.org/10.1016/j.apsb.2020.02.008, S2211-3835(20)30299-9 [pii]. 

18Ruan, Z., C. Liu, Y. Guo, Z. He, X. Huang, X. Jia and T. Yang.  SARS-CoV-2 and SARS-CoV: Virtual 
Screening of Potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12). 
J Med Virol.  2020: http://dx.doi.org/10.1002/jmv.26222. 

19Tsuji, M.  Potential anti-SARS-CoV-2 drug candidates identified through virtual screening of the ChEMBL 
database for compounds that target the main coronavirus protease. FEBS Open Bio.  2020, 
10: 995-1004. http://dx.doi.org/10.1002/2211-5463.12875. 

20de Souza Neto, L.R., J.T. Moreira-Filho, B.J. Neves, R. Maidana, A.C.R. Guimaraes, N. Furnham, . . . F.P. 
Silva, Jr.  In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. 
Front Chem.  2020, 8: 93. http://dx.doi.org/10.3389/fchem.2020.00093. 

21Liu, T., M. Naderi, C. Alvin, S. Mukhopadhyay and M. Brylinski.  Break Down in Order To Build Up: 
Decomposing Small Molecules for Fragment-Based Drug Design with eMolFrag. J Chem Inf 
Model.  2017, 57: 627-631. http://dx.doi.org/10.1021/acs.jcim.6b00596. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22Patel, H., W.D. Ihlenfeldt, P.N. Judson, Y.S. Moroz, Y. Pevzner, M.L. Peach, . . . M.C. Nicklaus.  SAVI, 
in silico generation of billions of easily synthesizable compounds through expert-system type 
rules. Sci Data.  2020, 7: 384. http://dx.doi.org/10.1038/s41597-020-00727-4. 

23Polishchuk, P.  CReM: chemically reasonable mutations framework for structure generation. J Cheminform.  
2020, 12: 28. http://dx.doi.org/10.1186/s13321-020-00431-w. 

24Jahnke, W., D.A. Erlanson, I.J.P. de Esch, C.N. Johnson, P.N. Mortenson, Y. Ochi and T. Urushima.  
Fragment-to-Lead Medicinal Chemistry Publications in 2019. J Med Chem.  2020, 63: 15494-
15507. http://dx.doi.org/10.1021/acs.jmedchem.0c01608. 

25Rifaioglu, A.S., E. Nalbat, V. Atalay, M.J. Martin, R. Cetin-Atalay and T. Dogan.  DEEPScreen: high 
performance drug-target interaction prediction with convolutional neural networks using 2-D 
structural compound representations. Chem Sci.  2020, 11: 2531-2557. 
http://dx.doi.org/10.1039/c9sc03414e. 

26Yang, X., J. Zhang, K. Yoshizoe, K. Terayama and K. Tsuda.  ChemTS: an efficient python library for de 
novo molecular generation. Sci Technol Adv Mater.  2017, 18: 972-976. 
http://dx.doi.org/10.1080/14686996.2017.1401424, 1401424 [pii]. 

27Spiegel, J.O. and J.D. Durrant.  AutoGrow4: an open-source genetic algorithm for de novo drug design and 
lead optimization. J Cheminform. 2020, 12: 25. http://dx.doi.org/10.1186/s13321-020-00429-4. 

28Chevillard, F., S. Stotani, A. Karawajczyk, S. Hristeva, E. Pardon, J. Steyaert, . . . P. Kolb.  Interrogating 
dense ligand chemical space with a forward-synthetic library. Proc Natl Acad Sci U S A.  
2019, 116: 11496-11501. 1818718116 [pii], http://dx.doi.org/10.1073/pnas.1818718116. 

29Volochnyuk, D.M., S.V. Ryabukhin, Y.S. Moroz, O. Savych, A. Chuprina, D. Horvath, . . . D.B. Judd.  
Evolution of commercially available compounds for HTS. Drug Discov Today.  2019, 24: 390-
402. S1359-6446(18)30242-3 [pii], http://dx.doi.org/10.1016/j.drudis.2018.10.016. 

30Polishchuk, P.  Control of Synthetic Feasibility of Compounds Generated with CReM. J Chem Inf Model.  
2020, 60: 6074-6080. http://dx.doi.org/10.1021/acs.jcim.0c00792. 

31Yang, T., Z. Li, Y. Chen, D. Feng, G. Wang, Z. Fu, . . . M. Zheng.  DrugSpaceX: a large screenable and 
synthetically tractable database extending drug space. Nucleic Acids Res.  2021, 49: D1170-
D1178. 5940503 [pii], http://dx.doi.org/10.1093/nar/gkaa920. 

32Blasco, R. and J.M. Coll.  In silico screening for natural ligands to non-structural nsp7 conformers of SARS 
coronaviruses. ChemRxiv.  2020: http://dx.doi.org/10.26434/chemrxiv.12952115.v2. 

33Dallakyan, S. and A.J. Olson.  Small-molecule library screening by docking with PyRx. Methods Mol Biol.  
2015, 1263: 243-50. http://dx.doi.org/10.1007/978-1-4939-2269-7_19. 

34Trott, O. and A.J. Olson.  AutoDock Vina: improving the speed and accuracy of docking with a new scoring 
function, efficient optimization, and multithreading. J Comput Chem.  2010, 31: 455-61. 
http://dx.doi.org/10.1002/jcc.21334. 

35Morris, G.M., R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson.  AutoDock4 
and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem.  
2009, 30: 2785-91. http://dx.doi.org/10.1002/jcc.21256. 

36Huey, R., G.M. Morris, A.J. Olson and D.S. Goodsell.  A semiempirical free energy force field with charge-
based desolvation. J Comput Chem.  2007, 28: 1145-52. http://dx.doi.org/10.1002/jcc.20634. 

37Rarey, M., B. Kramer, T. Lengauer and G. Klebe.  A fast flexible docking method using an incremental 
construction algorithm. J Mol Biol.  1996, 261: 470-89. S0022-2836(96)90477-5 [pii], 
http://dx.doi.org/10.1006/jmbi.1996.0477. 

38Schneider, N., S. Hindle, G. Lange, R. Klein, J. Albrecht, H. Briem, . . . M. Rarey.  Substantial improvements 
in large-scale redocking and screening using the novel HYDE scoring function. J Comput 
Aided Mol Des.  2012, 26: 701-23. http://dx.doi.org/10.1007/s10822-011-9531-0. 

39Schneider, N., G. Lange, S. Hindle, R. Klein and M. Rarey. A consistent description of HYdrogen bond and 
DEhydration energies in protein-ligand complexes: methods behind the HYDE scoring 
function.J Comput Aided Mol Des. 2013, 27: 15-29. http://dx.doi.org/10.1007/s10822-012-
9626-2. 

40Reau, M., F. Langenfeld, J.F. Zagury and M. Montes.  Predicting the affinity of Farnesoid X Receptor ligands 
through a hierarchical ranking protocol: a D3R Grand Challenge 2 case study. J Comput 
Aided Mol Des.  2018, 32: 231-238. 10.1007/s10822-017-0063-0 [pii]  
http://dx.doi.org/10.1007/s10822-017-0063-0. 

41Garcia, S. and F. Herrera.  Evolutionary undersampling for classification with imbalanced datasets: proposals 
and taxonomy. Evol Comput.  2009, 17: 275-306. 
http://dx.doi.org/10.1162/evco.2009.17.3.275. 

42Kotha, S., M. Meshram, N.R. Panguluri, V.R. Shah, S. Todeti and M.E. Shirbhate.  Synthetic Approaches to 
Star-Shaped Molecules with 1,3,5-Trisubstituted Aromatic Cores. Chem Asian J.  2019, 14: 
1356-1403. http://dx.doi.org/10.1002/asia.201801912. 

43Bermejo-Nogales, A., J.M. Navas and J.M. Coll.  Computational ligands to VKORC1s and CYPs. Could they 
predict new anticoagulant rodenticides? BioRxiv.  2021: 
http://dx.doi.org/10.1101/2021.01.22.426921. 

44Connolly, M.C., J.M. Navas and J. Coll.  Prediction of nanographene binding-scores to trout cellular 
receptors and cytochromes. bioRxiv.  2021: http://dx.doi.org/10.1101/2021.02.20.432107. 

 

http://dx.doi.org/10.26434/chemrxiv.13453919.v2
http://dx.doi.org/10.3390/jcm9051473
http://dx.doi.org/10.1039/c9ra02749a
http://dx.doi.org/10.1101/2020.05.18.102087
http://dx.doi.org/10.1126/science.abd0826
http://dx.doi.org/10.1038/s41594-020-0478-5
http://dx.doi.org/10.1016/0092-8674(93)90260-W
http://dx.doi.org/10.1073/pnas.1707304114
http://dx.doi.org/10.1080/07391102.2020.1784291
http://dx.doi.org/10.1016/j.lfs.2020.117627
http://dx.doi.org/10.1038/s41467-021-23328-0
http://dx.doi.org/10.1126/sciadv.aav4580
http://dx.doi.org/10.1038/s41423-020-0374-2
http://dx.doi.org/10.1021/acs.jmedchem.7b01732
http://dx.doi.org/10.3390/ijms21165707
http://dx.doi.org/10.1016/j.antiviral.2020.104792
http://dx.doi.org/10.1016/j.apsb.2020.02.008
http://dx.doi.org/10.1002/jmv.26222
http://dx.doi.org/10.1002/2211-5463.12875
http://dx.doi.org/10.3389/fchem.2020.00093
http://dx.doi.org/10.1021/acs.jcim.6b00596
http://dx.doi.org/10.1038/s41597-020-00727-4
http://dx.doi.org/10.1186/s13321-020-00431-w
http://dx.doi.org/10.1021/acs.jmedchem.0c01608
http://dx.doi.org/10.1039/c9sc03414e
http://dx.doi.org/10.1080/14686996.2017.1401424
http://dx.doi.org/10.1186/s13321-020-00429-4
http://dx.doi.org/10.1073/pnas.1818718116
http://dx.doi.org/10.1016/j.drudis.2018.10.016
http://dx.doi.org/10.1021/acs.jcim.0c00792
http://dx.doi.org/10.1093/nar/gkaa920
http://dx.doi.org/10.26434/chemrxiv.12952115.v2
http://dx.doi.org/10.1007/978-1-4939-2269-7_19
http://dx.doi.org/10.1002/jcc.21334
http://dx.doi.org/10.1002/jcc.21256
http://dx.doi.org/10.1002/jcc.20634
http://dx.doi.org/10.1006/jmbi.1996.0477
http://dx.doi.org/10.1007/s10822-011-9531-0
http://dx.doi.org/10.1007/s10822-012-9626-2
http://dx.doi.org/10.1007/s10822-012-9626-2
http://dx.doi.org/10.1007/s10822-017-0063-0
http://dx.doi.org/10.1162/evco.2009.17.3.275
http://dx.doi.org/10.1002/asia.201801912
http://dx.doi.org/10.1101/2021.01.22.426921
http://dx.doi.org/10.1101/2021.02.20.432107

