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Abstract 22 

Paper-based analytical devices 23 

(PADs) employing colorimetric detection 24 

and smartphone images have gained wider 25 

acceptance in a variety of measurement 26 

applications. The PADs are primarily 27 

meant to be used in field settings where assay and imaging conditions greatly vary resulting in 28 

less accurate results. Recently, machine learning (ML) assisted models have been used in image 29 

analysis. We evaluated a combinations of four ML models - logistic regression, support vector 30 

machine, random forest, and artificial neural network, and three image color spaces - RGB, 31 

HSV, and LAB for their ability to accurately predict analyte concentrations. We used images 32 

of PADs taken at varying lighting conditions, with different cameras, and users for food color 33 

and enzyme inhibition assays to create training and test datasets. Prediction accuracy was higher 34 

for food color than enzyme inhibition assays in most of the ML model and colorspace 35 

combinations. All models better predicted coarse level classification than fine grained 36 

concentration labels. ML models using sample color along with a reference color increased the 37 

models’ ability in predicting the result in which the reference color may have partially factored 38 

out the variation in ambient assay and imaging conditions. The best concentration label 39 

prediction accuracy obtained for food color was 0.966 when using ANN model and LAB 40 

colorspace. The accuracy for enzyme inhibition assay was 0.908 when using SVM model and 41 

LAB colorspace. Appropriate model and colorspace combinations can be useful to analyze 42 

large numbers of samples on PADs as a powerful low-cost quick field-testing tool. 43 

 44 

Keywords: artificial intelligence, colorspace, enzyme inhibition assay, ML models, pesticide 45 

residue 46 
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Introduction 47 

Paper-based analytical devices (PADs) have gained wider acceptance in clinical 48 

diagnosis, environmental pollution, and food quality monitoring and pharmaceutical quality 49 

screening among many other applications. Assays involving PADs are high throughput, less 50 

costly, easy to use, and are considered as point-of-need assays.1–5 Electrochemical and optical 51 

detection methods are primarily used to record the assay signal on the PADs.6  Due to the 52 

proliferation of digital cameras, particularly the smartphone cameras, digital image-based 53 

colorimetric detection method is one of the widely used methods where color information 54 

encoded in the digital image is used for quantitative analysis.3 Smartphone image-based 55 

colorimetric detection could be a cost-effective and an attractive field-based alternative to 56 

conventional techniques such as spectrophotometers, colorimeters or fluorometers.7,8  57 

Digital cameras use multiple charge-coupled device (CCD) or complementary metal 58 

oxide semiconductor (CMOS) sensors to capture the light intensity signal separately from the 59 

primary colors Red (R), Green (G) and Blue (B) using a mosaic patterned filter array. The 60 

signals are then combined using demosaicing, resulting in three color values R, G and B at each 61 

pixel of the digital image.9 The image formation process in digital cameras is non-linear. The 62 

raw signal or the intensity value at each pixel of the imaged area depends on the lighting condition, 63 

the sensor sensitivity, the distance between the object and camera, and the reflectance property 64 

of the object being imaged.10,11 Some of these variations such as lighting condition, object-65 

camera distance can be minimized by using a controlled environment that is only possible in 66 

lab settings.12–15 However, the PADs are ultimately meant to be used in field settings by a 67 

minimally trained user during which criteria of controlled imaging conditions may not be 68 

achieved resulting in errors.  69 

Attaching an extra device on smartphones is possible to maintain a constant source of 70 
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illumination at the cost of higher price and same device may not be applicable for all 71 

smartphones having diverse shapes and sizes.16 Another approach uses a blank or reference 72 

assay along with sample assay at the same time to factor out the impact of illumination and 73 

camera quality changes.10,17 Since the raw signal captured by the camera sensors process non-74 

linearly during image acquisition before saving to the memory, above mentioned approaches 75 

only partially address the problem. Furthermore, image auto-correction options such as 76 

automatic exposure correction, color correction based on ambient light selection, white 77 

balancing, and contrast enhancement can highly influence the overall color calibration.16,28 Thus, 78 

estimating the analyte concentration from color intensity in PADs is an inverse problem where 79 

any estimation models will have explicit or implicit assumptions on the image formation 80 

process. To make robust and reliable low-cost models that can work in diverse point-of-need 81 

settings, one needs to account for the non-linear factors.  82 

Traditional computer vision and machine learning based models have been used for 83 

image processing to enhance the robustness of the PADs assay. Traditional computer vision 84 

based algorithms try to be invariant to illumination, scale, and camera.10 Most of these 85 

algorithms use color spaces including the red, green and blue (RGB); hue, saturation and value 86 

(HSV); hue, saturation and lightness (HSL); and CIE L*a*b*.10,16,18 Each particular application 87 

usually requires careful selection of color space model based on preliminary data and 88 

experiments. Similarly, other corrections such as white balance correction, contrast transfer and 89 

gamma correction have been used but these corrections are specific for individual camera. 90 

These camera-specific corrections are not practical when the goal is to enable low-cost 91 

colorimetry to the large variety of consumer cameras. 92 

In recent years, data-driven machine learning (ML) algorithms are getting increasingly 93 

common for colorimetric detection.19,20 ML has a potential to be robust against unwanted 94 

variation as one does not need to explicitly design an algorithm to extract information but let the 95 
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model learn from the data to work in diverse environmental settings.21 Bao et al. trained Support 96 

Vector Machines (SVM) on RGB color channels in multiple indoor settings using a single 97 

camera.22 Similarly, Solmaz et al. used Least-Squares Support-Vector Machine (LS- SVM) and 98 

multi-class Random Forest classifier to predict per-oxide content on colorimetric test strips and 99 

report over 90% accuracy for 6 classes with inter-phone repeatability under versatile 100 

illumination.23 Kim et al. applied Linear Discriminant Analysis (LDA), Support-Vector 101 

Machine (SVM) and Artificial Neural Network (ANN) for colorimetric analysis of saliva–102 

alcohol concentrations, with average cross-validation accuracy rates of 100% and 80% for the 103 

standard and enhanced concentrations.19 Even though few papers reported the use of ML in 104 

image-based colorimetric detection, they lack insights on the relative efficacy of various ML 105 

algorithms and their generalization capabilities. Generalization is an important issue in ML, 106 

where a model’s high performance in training and validation data degrades in test data with 107 

different distribution. As reported by Morbioli et al.24,     most of the proposed ML models for 108 

colorimetric detection with PADs do not release their source code and data used, making it 109 

difficult to reproduce results and perform benchmark comparisons.  110 

In this work, we designed a set of comprehensive experiments to analyze the 111 

performance and utility of ML for colorimetric image analysis of PADs using two different data 112 

sets – food color and enzyme inhibition assay for pesticide residue determination. We assessed 113 

four different ML models - logistic regression (LR), support vector machine (SVM), random 114 

forest (RF), and artificial neural network (ANN) - and three image color spaces - RGB, HSV, 115 

and LAB - to predict the target analyte concentration using images of PADs taken at varying 116 

lighting conditions, with different cameras, and users. The colorimetric assays involved in our 117 

approach included both target analyte and a reference assay zone on the paper device in contrast 118 

to most of the previous works that captured only the target sample image when estimating its 119 

concentration. In this setting, we obtained the concentration label prediction accuracy of 0.966 120 
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and 0.908 for food color and pesticide residue analysis datasets, respectively in separate real-121 

life test datasets. We also highlight the limitations of all ML models when there is domain shift 122 

in test data, and their inability to predict with the same accuracy at all concentration levels. We 123 

have made our source code and data publicly available to contribute to the reproducibility issues 124 

in this rapidly progressing field. 125 

Experimental 126 

Fabrication of paper analytic device 127 

We designed a layout of circular patterns in computer and printed on Whatman No 1 128 

grade filter paper using Xerox ColorQube 8580 solid wax printer.25 The wax printed paper was 129 

heated from backside by pressing with a dry clothing iron on its surface. The backside of the 130 

PADs was laminated to prevent liquid from spilling through the other side of the paper. Finally, 131 

the paper sheet was cut in such a way that each PADs contained two circular assay regions as 132 

reference and sample zones (see Fig. 1A). 133 

Classification datasets 134 

We prepared datasets for two different assays – first one using food color and second 135 

one using pesticide assay. Each dataset used four different smartphones (Huawei SCC-U21, 136 

iPhone 6, Honor 8C, and Samsung Galaxy J7 Max) for images acquisition at different lighting 137 

conditions, camera to PAD distance, and capture angle. The lighting conditions included 138 

outdoor sunlight, indoor daylight, fluorescent light, incandescent light, and combination of 139 

them. A general procedure of assay on a paper device is given in Fig. 1B. 140 

The food color data sets were obtained by loading food color (Foster Clark Product Ltd.) 141 

solutions of ten different dilutions onto the PADs. We captured 2400 images in total under 142 

various conditions. Images that were unclear or blurred were removed and 2353 images were 143 

used for training ML models. The images were labeled from 1 to 10 - 1 for highest concentration 144 
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and 10 for lowest concentration of food color. The dataset contained approximately equal 145 

number of images per label. New set of 600 images of the same food color concentrations were 146 

obtained and were used as test data set. These images were taken in a different day - varying 147 

the illumination, randomly changing the camera, and camera-PAD distance – to create different 148 

test datasets from training datasets. Representative images are shown in Fig. 1C. 149 

Figure 1: (A) Fabrication of paper device. Solid wax was printed on Whatman filter paper 150 

which penetrated through the paper after heating (see, insert illustrations) (B) General 151 
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procedure for paper-based pesticide assay. (C) Representative images of paper device test 152 

zones after assays were performed. Ten different dilutions of food color and ten different 153 

concentrations of pesticide were used. Since pesticide assay followed enzyme inhibition 154 

reaction, the concentrations and color intensity are inversely corelated. (D) Automatic color 155 

pixel extraction procedure from the PADs: left to right represent binary thresholding, mask 156 

generation and masked region of interest (ROI). 157 

The second dataset prepared was for a more realistic application which included enzyme 158 

inhibition assay for pesticide residue measurement.26 In this assay, the acetylcholinesterase 159 

enzyme (Sigma-Aldrich) breaks down the acetylthiocholine chloride (AtCh) substrate (Sigma-160 

Aldrich) into thiocholine and acetic acid. The thiocholine molecules react with Ellman's reagent 161 

(Dithiobisnitrobenzoic acid - DTNB) (Sigma-Aldrich) to give a yellow-colored product of 162 

thionitrobenzoic acid.26 In the presence of organophosphate and carbamate group of pesticides, 163 

the enzyme activity is inhibited. Based on the extent of inhibition, amount of pesticide on the 164 

sample is estimated. The intensity of yellow color produced is indirectly proportional to the 165 

concentration of pesticide in the sample. Since no pesticide is added to the reference assay zone, 166 

it has high color intensity.1,27 Images of PADs were captured at 10 minutes of the enzyme 167 

reaction using a smartphone for further analysis (see Fig. 1B for general outline). We collected 168 

1872 images for training data sets by repeating the same experiment in multiple days and 169 

different light conditions using 4 different smartphones. Each image was given a label from 1 170 

to 10 similar to food color assay images. Label 1 represents a pesticide (Paraoxon, Sigma-171 

Aldrich) concentration of 100 ppm. Same pesticide solution was serially diluted half in the 172 

remaining assays. New experiments at different lighting conditions were performed to obtain 173 

601 new images as test datasets. See Fig. 1C for representative images of pesticide assay. 174 

 175 

 176 
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Extraction of pixel values from assay images 177 

The pre-processing of a PAD image is outlined in Fig. 1D. The leftmost image in panel 178 

1D is a typical image of the PAD captured using a camera. The two regions encircled by black 179 

rings are the regions of interest (ROIs) that contain the color information of the reference and 180 

target samples. We developed an automatic threshold-based segmentation algorithm to extract 181 

all the pixels lying in these two regions. RGB images were converted to grayscale images which 182 

were then converted to binary image by applying a threshold T = 0.8 · Im + 30, where Im is the 183 

mean intensity of an image converted to grayscale, 0.8 and 30 are empirically chosen values 184 

after visual inspection across multiple images. The binary images provide us the masks which 185 

were used to extract the pixel values lying in the two ROIs of the corresponding original images 186 

as shown in the rightmost image of Fig. 1D. 187 

Evaluation of multi-class classification models 188 

We used Average Classification Accuracy (ACA), which is a commonly used metric 189 

for multiclass classification problems. ACA is a ratio of the total number of correct predictions 190 

to the total number of predictions ACA =  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
. In addition, we visualized 191 

the results using confusion matrices which provides information on how many samples of a 192 

particular class are misclassified to another class. We used a 5-fold cross validation where the 193 

training dataset was randomly split into 5 subsets (folds), and the model was trained five times 194 

such that each time a unique fold was selected for validation and the remaining four for training. 195 

The mean ACA and its standard deviation were reported for the cross-validation experiments. 196 

In order to evaluate the robustness of ML models and its generalization ability, we also 197 

evaluated the models with a separate test set under different conditions trying to emulate actual 198 

real-life testing scenarios. 199 
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We used various approaches to extract features and feed them as input to the ML 200 

models. We compare these approaches using the following two experimental setups: (a) Color 201 

spaces: RGB vs. HSV vs. LAB color representation; (b) Mean pixel value of ROIs for each 202 

channel vs. using all the pixel values of the down sampled ROIs. Similarly, we assessed the 203 

impact of reference test region by using the third setup (c): Using only target sample vs. using 204 

both the reference and target sample. 205 

After extracting the mean color intensity of the sample and reference assay zones, we 206 

obtained 2 x 3 = 6 unique values for each assay (two circular zones and the three-color 207 

channels). This can be fed as a 6-dimensional feature vector to ML classification models. The 208 

mean values from ROI do not capture the variation of pixel values within the ROI. However, 209 

using all the pixels of the ROIs as input features to train ML models dramatically increases the 210 

feature dimension which computationally affects the training of some ML algorithms such as 211 

SVM. As most of the PADs colorimetry images only have color information without texture 212 

and shape information, as a compromise, we downsampled the cropped image into a size of 16 213 

x 16 and converted it to a 1D Vector of dimension 16 x 16 x 3 = 768 (for three color channels) 214 

for each reference and targe ROIs, resulting in two 1D vectors. 215 

We compared following four most widely used supervised ML models for colorimetry 216 

with PADs: logistic regression28, support vector machine (SVM)29, random forest30 and 217 

artificial neural network (ANN)31. We used python-based ML library, scikit-learn32 to build 218 

LR, SVM and RF models. For ANN, we adopted a popular python-based framework Keras33. 219 

Details of implementation configuration is given in Table 1. 220 

 221 
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Table 1: Implementation details of machine learning models 222 

Model type Library or  

framework 

Implementation details of model 

Logistic Regression Scikit-learn Multi-nominal + L2 penalty, L-BFGS 

solver, maximum iteration = 10000 

Support Vector Machine Scikit-learn Squared L2 penalty, Linear Kernel 

Random Forrest Scikit-learn no. of trees = 1000, split criterion = gini 

Artificial Neural Network 

(Fully connected) 

Keras 3-Dense Layers, sigmoid + softmax 

activation, adam optimizer, categorical 

cross-entropy loss 

Artificial Neural Network 

(Convolutional + Fully 

connected) 

Keras 2*(2-Conv Layer + Max pooling) Layers, 

3-Dense Layers, relu + softmax activation, 

adam optimizer, categorical cross-entropy 

loss 

 223 

Results and discussion 224 

We established a baseline result by using sample color and using a mean color intensity as 225 

input feature to ML models. Cross validation results for various color spaces and ML models 226 

using mean pixel values of the ROIs as input features to classify into 10 concentration labels 227 

are shown in Fig. 2. At first, we tested the models using test zones of samples only. In general, 228 

RF model yielded higher accuracy in all three-color spaces in case of food color experiments. 229 
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In this case, HSV color space had higher (0.691) value than LAB (0.669) and RGB (0.588). 230 

The LR and SVM models gave lower accuracy compared to RF model. In both LR and SVM 231 

models, all three-color spaces had similar values compared to RF. We also looked at the ANN 232 

model’s ability to predict correct assay values. It gave comparable values with LR and SVM 233 

models but the values for three different color spaces had some variation. In case of pesticide 234 

assay, the accuracy was lower in all combinations of models and color spaces. However, the 235 

trend was similar to food color assay.  236 

Combining sample and reference assay color 237 

To improve the accuracy of prediction, we took into consideration of both sample and 238 

reference assay color. In these experiments, we looked into if imaging both reference or control 239 

assay and sample assay at the same time could improve the prediction accuracy by ML models. 240 

The later approach showed an improvement in the prediction accuracy of all the ML models 241 

when the mean color intensity from the reference region was included as the feature (see Fig.2). 242 

We believe that the ML model is able to use information from the reference sample region to 243 

partially factor out the variations due to ambient conditions and camera parameters, improving 244 

the result when using the reference sample compared to using only the target sample. 245 

The cross-validation accuracy using RGB color space for food color assay was found to 246 

be higher in LR, SVM and ANN models while it was lower in RF model when compared to LAB 247 

and HSV color spaces. The HSV color space in RF and RGB color space in ANN models 248 

showed higher accuracy. However, we did not find any specific trends among color spaces and 249 

models used. Similar results were observed for pesticide assay dataset. It is interesting to note 250 

that the HSV color space using Random Forest showed highest average accuracy in comparison 251 

to other color models (i.e., 0.804 in food color and 0.596 in pesticide). In LR, the highest average 252 

accuracy was observed in RGB color model (0.684 in food color and 0.406 in pesticide assay). 253 

Similarly, in SVM, the highest average accuracy was in LAB with 0.68 for food color and 0.42 254 
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for pesticide. For ANN, the highest average CV accuracy was in RGB, i.e., 0.721 for food color 255 

and 0.401 for pesticide. 256 

 257 

Figure 2: Cross validation accuracy results obtained for both food color prediction (left 258 

panel) and pesticide assay (right panel). Each box describes the full range of variation 259 

(whisker’s height), the likely range of variation (box height), and median (horizontal line 260 

within the box) in the classification accuracy score of five cross-validation folds. All results in 261 

this figure were obtained using mean of each color channel values of sample assays without 262 

(top) and with (bottom) reference assay test zones. 263 

Along with cross-validation experiments, we also evaluated all the models and color 264 

spaces in separate test dataset. The highest test accuracy was 0.67 with HSV color space in 265 

SVM for food color and 0.34 with HSV color space in ANN for pesticide (in ANN with HSV). 266 

The results, as expected, showed that test results did not necessarily agree with the cross-267 

validation accuracy. Here, HSV color model showed good results in both sets of assays. In 268 

addition, a large drop in test accuracy was observed across all the models compared to the cross-269 

validation results. This highlights that reporting only cross-validation scores or scores in test 270 

data that are very similar to training set can overestimate ML model’s performance. ML 271 
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models’ performance can severely degrade when the statistical distribution of the test data is 272 

different from that of the training set. This is closer to the real-world scenario we wanted to 273 

emulate in order to further assess the efficacy and applicability of ML systems when test images 274 

are captured in different field settings. When comparing the results across food color and 275 

pesticide, we observed that the accuracy in pesticide assay is relatively lower than that of food 276 

color for all the models. 277 

The confusion matrix in Fig. 3 shows food color has its values clustered near the diagonal 278 

line expect for labels 8, 9 and 10. These labels correspond to low concentration values with faint 279 

colors (best viewed in color image). For pesticide assay, the values in the initial labels (1,2,3,4) 280 

and final labels (8,9,10) are misclassified in large numbers. The matrix fields in the middle, 281 

though not accurate, show a diagonal pattern. This result seems to follow a typical S-shaped 282 

enzyme assay curve.34 283 
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 284 

Figure 3: Confusion Matrix (of test accuracy of Logistic Regression) for Food Color and 285 

Pesticide Assay when RGB, LAB, HSV color models are used respectively. The Confusion 286 

Matrix of other models also show similar patterns. 287 

Input feature vectors from downsampled image 288 

Fig. 4 shows the CV accuracy using all the pixels of downsampled ROIs as a feature 289 

vector for ML models. Since images containing both sample and reference colors provided 290 

better accuracy than using sample color only, we used the former approach in this experiment. 291 

CV accuracy is generally higher when using all pixels from a downsampled image as input 292 

features compared to when using color channel means. The improvement in the accuracy was 293 

observed in most of the models and color spaces. However, the extent of improvement varied 294 

with the models and color spaces tested. Similar trend was observed both in food color assay 295 

and pesticide assay. LR and SVM models with RGB and LAB color spaces resulted in the 296 
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highest accuracies. For LR, CV accuracy was 0.975 and 0.977 when using RGB and LAB 297 

respectively. Likewise, for SVM, CV accuracy was 0.971 when using RGB or LAB. When the 298 

test dataset was evaluated, the test accuracy was lower in both food color and pesticide. 299 

However, the gap between cross-validation and test accuracy in pesticide is higher for pesticide 300 

in all the color channels and models. (see Table SI1). 301 

 302 

Figure 4: Cross-validation accuracy using all the pixel values from 16*16 downsampled 303 

images of reference and sample as input features. Each box describes the full range of variation 304 

(whisker’s height), the likely range of variation (box height), and Median (horizontal line 305 

within box) in the accuracy score of 5 cross-validation folds. LR, SVM, RF and ANN are 306 

implemented in 3 color models: RGB, LAB, and HSV. 307 

Classification into high, medium, and low 308 

The results in the previous section show that accurately and robustly estimating fine-309 

grained concentration labels is difficult even with powerful ML models using 10 concentration 310 

labels. Therefore, we merged 10 concentration classes into 3 distinct labels: high, medium, and 311 

low for semi-quantitative prediction of both the food dye and pesticide samples. Labels 1, 2, 312 

and 3 shown in Fig.1C were merged into high, 4, 5, 6, and 7 were merged into medium and 8, 313 

9, and 10 were merged into low category in case of food color assay. In case of pesticide assay, 314 

labels 1, 2, 3, 4 in Fig. 1C were merged into high, 5 and 6 into medium and 7, 8, 9, 10 into low 315 

categories.  316 
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 317 

Figure 5: Cross-validation accuracy for three reduced classes of high, medium, low. Results 318 

of both mean color and 16*16 downscaled RGB Pixels are presented for food color (left 319 

panel) and pesticide assay (right panel). 320 

Fig. 5 shows the overall CV accuracy in food dye and pesticide datasets when they were 321 

reduced into three classes of high, medium, and low. We found that the food color dataset when 322 

individual means of 3-color channels were used as input features showed similar accuracy values 323 

with all four models and all three-color spaces. CV accuracy values for pesticide assay with mean input 324 

features produced similar results as with food color but slightly lower values. Most of the models and 325 

color spaces in both food color and pesticide assays produced better accuracies when using all 326 

the pixels from the downsampled image as input features. 327 

To emulate a realistic setting and test generalization capability, we evaluated all the 328 

models using test dataset. Table 2 shows the average test accuracies, where we see that in 329 

general, the food color dye dataset exhibited higher classification accuracy compared to the 330 

pesticide dataset. For food color, we observe the highest accuracy of 0.966 in ANN with LAB 331 

color space and input feature from all color pixels of the downsampled image. However, the 332 

models for pesticide concentration prediction did not benefit much by using all the pixels as input 333 
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features. For pesticide, the highest accuracy of 0.908 was obtained in SVM with LAB color space 334 

and input feature from individual means of each color channel. The obtained results show that 335 

accurate semi-quantitative prediction of concentration from PAD images is possible even in 336 

uncontrolled setup with enough data and suitable ML model. 337 

Table 2: Average accuracy using 3 concentration labels (high, medium, low). A)  all color 338 

pixels from 3-channels of downsampled 16*16 image as input feature and B) individual mean 339 

of each color channels (3 means) as input feature. All images included sample and reference 340 

assays. 341 

A) 

 Food Dye Pesticide 

 RGB HSV LAB  RGB HSV LAB 

LR 0.940 0.921 0.946  0.753 0.637 0.743 

SVM 0.936 0.926 0.938  0.738 0.674 0.774 

RF 0.901 0.933 0.940  0.865 0.875 0.870 

ANN 0.960 0.946 0.966  0.851 0.8336 0.778 

 

B) 

 Food Dye Pesticide 

 RGB HSV LAB  RGB HSV LAB 

LR 0.933 0.936 0.928  0.900 0.873 0.895 

SVM 0.936 0.941 0.936  0.903 0.883 0.908 

RF 0.898 0.915 0.928  0.837 0.855 0.852 

ANN 0.893 0.868 0.926  0.866 0.868 0.901 

 342 
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Conclusions 343 

We evaluated four ML models for their ability to accurately predict the concentration 344 

of target analytes on paper device platform. We found that the ML models that used sample 345 

color along with a reference color increased the models’ ability in predicting the result. In such 346 

cases, the ML models can utilize information from the reference region to partially factor out 347 

the variations of ambient lighting conditions and image acquisition setup and learn to estimate 348 

the concentration level by looking at the differences in the signal color of the two regions. Using 349 

a printed reference color instead of a reference assay performed on the same paper device may 350 

not correct the variation resulting from the assay procedure. The relationship between reference 351 

and sample color could be a simple difference or a n-degree polynomial. The reference assay 352 

color may provide a one-point calibration to estimate or predict the concentration of analyte in 353 

the given sample. 354 

In general, we found accuracy for food color assays were higher than accuracy for 355 

pesticide assay in most of the combinations. Unlike food color, the final color in the pesticide 356 

assay is obtained by an enzyme inhibition reaction. The enzyme reaction varies with ambient 357 

environmental conditions. Such variation in assay temperature and moisture can result in 358 

inconsistent color development on the surface of paper devices. Our results show that the ML 359 

models may provide only limited accuracy when using fine grained estimation of concentration 360 

labels but provide high accuracy when using them for coarse level classification such as low, 361 

medium and high. Ability of ML models to accurately classify pesticide concentration to such 362 

three classes even in difficult real-life test images show the potential of using ML powered 363 

PADs as a low-cost quick field testing method.  364 

Smartphone cameras allow post-processing even before we save or see images. Since it 365 

is very hard to understand and identify these individual pre-processing steps, letting the ML 366 
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models learn from the data instead of trying to build inverse models to revert the camera post-367 

processing is a more promising approach. Convolutional Neural Networks (CNNs) have seen 368 

tremendous success in the last few years in the computer vision field. Since the colorimetric 369 

assays on paper devices do not provide variation in texture and shape, the neural networks have 370 

limited to no benefit compared to other ML models such as RF. We might be able to leverage 371 

the power of CNNs and build more accurate analyte concentration estimation methods if we 372 

can develop novel PADs that express shape and texture variation depending on the target 373 

concentration analyte.  374 

Finally, robust ML models can be useful in analyzing large numbers of samples in 375 

applications such as environmental monitoring, clinical diagnosis during emergencies for 376 

assays involving colorimetric paper devices. Appropriate ML models integrated in smartphones 377 

that can read assay results performed on PADs platform by taking images, process or analyze 378 

the signal to accurately predict assay results, and report or store the results locally or on cloud 379 

could be powerful tools in several measurement applications. 380 
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