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Abstract: Single molecule detection methods are becoming increasingly important for 

diagnostic applications. Practical Early detection of disease requires sensitivity down to the level 

of single copies of the targeted biomarkers. Of the candidate technologies that can address this 

need, solid-state nanopores show great promise as digital sensors for single-molecule detection. 

Here, we present work detailing the use of solid-state nanopores as downstream sensors for a 

PCR-based assay targeting group A streptococcus (strep A) which can be readily extended to 

detect any pathogen that can be identified with a short nucleic acid sequence. We demonstrate 

that with some simple modifications to the standard PCR reaction mixture, nanopores can be 

used to reliably identify strep A in clinical samples. We also discuss methodological best 

practices both for adapting PCR-based assays to solid-state nanopore readout as well as 

analytical approaches by which to decide on sample status.  

 

Molecular methods for infectious disease diagnostic are gradually being introduced into 

clinical use, and this trend will only accelerate because of the Covid-19 pandemic.1–4 Many of 

these molecular tests typically employ a DNA amplification method to generate many copies of 

the target sequence and then rely on downstream optical sensors to detect a fluorescent signal 

generated by the presence of amplified nucleic acid products (i.e., amplicons) in the sample. 

However, the optical components and the use of dyes as labels, required for fluorescence-based 

detection, can impose some limitations on the cost, size, and robustness of the instrument or 



 

reagents. These factors may limit the use of molecular diagnostics at the point of care and in rural 

or remote settings. Alternative detection methodologies that can improve on speed, sensitivity and 

accuracy are being actively explored.5,6  

The use of solid-state nanopores for electrical detection of PCR products is one such 

strategy that can offer less costly, more miniaturizable, and more rugged alternative to optical 

sensors. Solid-state nanopores are molecular-sized openings in thin membranes that allow the 

passage of individual biomolecules immersed in a conductive solution. Under an applied voltage, 

a steady stream of ions transit the nanopore, creating a measurable electrical current that is 

disrupted by the passage of a single biomolecule. The characteristic electrical signature generated 

by a target molecule can enable target identification. 7–9 

To demonstrate this potential, a few solid-state nanopore sensing methods have been 

developed to detect specific nucleic acid (NA) targets. PNA probes have been used to bind to 

specific DNA sequences,7,8 and employed to detect the cystic-fibrosis mutation codon.9 Solid-state 

nanopores have also been used to detect polymorphic insertion or deletion mutations in DNA, 

which determine the virulence or drug-resistance of two different bacterial organisms, after 

cleavage with mutation site recognition enzymes. Conserved sequences of the HIV RNA genome 

have been detected using biotinylated ssDNA probes and monovalent streptavidin.10 DNA 

nanostructures were used to report the presence of a Zika virus gene by folding in its presence, as 

well as a microRNA biomarker for human lung cancer.11–13 RNA targets, including SARS-CoV-

2, were also quantified by reverse transcription to produce gene specific cDNA that could be 

counted without necessarily requiring amplification, though low-level of amplification steps 

improved the detection speed in cases of rare transcripts.14 Multiplexed detection of prostate cancer 

microRNA biomarkers has also been developed with an electro-optical nanopore platform.15 Using 



 

solid-state nanopores for direct detection of NA targets from clinical specimens is challenging, 

partly due to the complexity of most biofluids, which can clog the pore or severely complicate 

downstream data analysis by generating a variety of translocation signals, but also to the 

requirement for a high volume of statistics and a high degree of reproducibility needed for 

confidently obtaining useful clinical results. This requires employing many individual solid-state 

nanopore sensors, often of similar geometries, which is presently achieved by performing and 

repeating many measurements serially but would be accelerated if done in parallel with arrays of 

nanopores. 

Here, we performed a proof-of-concept study to determine the feasibility of pathogen 

detection from clinical samples with solid-state nanopores. We targeted group A streptococcus 

(GAS) in throat swabs from children with pharyngitis. GAS is a very important pediatric bacterial 

pathogen, accounting for 20-30% of pharyngitis episodes in children and leading to many pediatric 

emergency department visits.16,17 The complications of untreated GAS pharyngitis include acute 

rheumatic fever, scarlet fever, tonsillopharyngeal abscess, and streptococcal toxic shock 

syndrome.18 Antibiotic therapy is used to prevent these severe complications and to reduce the 

duration of pharyngitis symptoms. Clinicians have traditionally depended on bacterial culture 

results from throat swabs to identify those infected with GAS. More recently, molecular tests for 

GAS that amplify organism DNA have been developed,19 but, as noted, such tests are often costly 

and devices used for testing may be less adapted for handheld operations at the point of need, 

limiting the widespread use of these tests. Nanopore-based diagnostics may be able to overcome 

these barriers, while potentially offering simple workflows and high throughput, and maintaining 

high sensitivity. 



 

In this work, we demonstrate the utility of solid-state nanopores as the sensing element in 

a screening test for the presence of Group A streptococcus (GAS) in throat swabs. We report the 

optimizations and workflow adaptations required to make PCR amplification compatible with 

downstream solid-state nanopore detection, present an analysis scheme based on statistical 

differences in capture rates to make a call on a clinical sample, and demonstrate that our homebrew 

PCR nanopore assay agrees well with gold standard cell-culture and qPCR-based tests results.  

 

RESULTS AND DISCUSSION  

In this study, screening for an infectious agent in a clinical sample is based on electrical 

identification of individual PCR amplicons using a solid-state nanopore sensor. To enable 

detection with an acceptably low level of false positives (specificity) and false negatives 

(sensitivity), the nanopore must distinguish target amplicons from all other molecules present in 

the sample or introduced during the amplification reaction, including small molecules, genomic 

DNA, proteins, and enzymes. The electrophoretic and electroosmotic forces in and around the pore 

can capture these unwanted molecules, and their collision and interaction with the pore as well as 

their full translocation can lead to measurable blockages in the ionic current signal that must be 

differentiated from the amplicon signal. The degree with which the nanopore sensor can report the 

detection of these molecules is a function of the pore properties (pore size, surface chemistry), 

operating condition (salt concentration, pH, voltage), the properties of the off-target molecules in 

the sample (size, charge, and propensity to stick to and clog pores in a given set of operating 

conditions), and the response time of the amplifier-pore system.20–28 Consequently, we first 

performed control experiments to investigate the nanopore response to different PCR mixtures to 

identify adequate operating conditions for sensing amplicons.  



 

Nanopore Detection from Commercial PCR mixtures 

Polymerase Chain Reaction (PCR) is the gold standard technique for amplifying nucleic 

acids,29–31 and numerous kits are available commercially. These kits contain several reagents to 

optimize the amplification reaction following their protocol. Commercial kits are also often used 

with a downstream fluorescent optical readout and cannot a priori be assumed to be compatible 

with nanopore sensing. These off-the-shelf PCR master mix kits usually include components such 

as bovine serum albumin (BSA) and detergents (e.g., Tween20) used to stabilize enzymes during 

storage and minimize losses to walls of plastic tubes as well as additional proprietary or 

undisclosed ingredients to increase PCR yield and product lifetime. These molecules, which can 

be in relatively high concentrations, are known to produce signals when translocating a nanopore, 

but also to stick to the pore walls, increasing the low-frequency noise of the nanopore signal and 

often leading to clogs (reversible or permanent).32–35 Characterization of the signals caused by any 

PCR master-mix is therefore a critical control for any analysis of the amplification reaction with a 

nanopore sensor.  

Figures 1a-c shows the results of a PCR mixture from a commercial kit sensed by a 6 ± 2 

nm nanopore in 3.6M LiCl pH 8 at 200 mV (note the uncertainty in the pore size is due to the 

uncertainty in the effective membrane thickness, likely smaller than the nominal membrane 

thickness of 10 nm).36,37 To perform this measurement, a commercial master mix (see Methods 

section) was added to a sensing salt to mimic the background signals expected of a PCR 

amplification reaction during nanopore sensing.  

Figure 1b shows a representative current trace of this experiment, sampled at 4.17 MS/s 

and low pass filtered at 500 kHz. The trace shows many different event shapes, including 

temporary clogs, and ends with the nanopore irreversibly clogging after about 10 minutes. Figure 



 

1c provides additional detail on the characteristics of the signals generated, showing a range of 

blockage depths from 1-3.5 nA and a wide distribution of passage times from 3-1000 μs. 

 

Figure 1:  Nanopore sensing of different PCR mixtures. a) Schematic representation of a nanopore 

sensing a commercial PCR reaction mixture; b) 1-s current trace (black) of the commercial master mix; c) 

Maximum blockage depth of an event versus its passage time for the entire ~10 minutes dataset, comprised 

of 8,078 single-molecules events (black dots); d) Schematic of a nanopore sensing of a homebrew PCR 

mixture. e) 1-s current trace (green) of nanopore-optimized homebrew PCR master mix; f) Maximum 

blockage depth of an event versus its passage time for all 297 events identified during ~10 minutes of 

recording with nanopore-optimized homebrew PCR mixture (green dots); g) Schematic representation of a 

nanopore sensing DNA amplicons; h) 1-s current trace (blue) of 100bp dsDNA at 75 nM; i) Maximum 

blockage depth of an event versus its passage time for all 2,779 events identified during  ~10 minutes with 

100bp dsDNA (blue dots); j) Schematic of a nanopore sensing of a homebrew PCR-amplified reaction 

mixture; k) 1-s current trace of homebrew PCR-amplified reaction mixture containing homebrew mixture 

components and generated 100bp target amplicons from a GAS positive clinical sample; l) Maximum 

blockage depth of an event versus its passage time for all 1,444 events identified during ~10 minutes of 

recording with of PCR-amplified reaction mixture using homebrew PCR mixture containing 100bp target 

amplicons from a GAS positive clinical sample. Data for b) and c) acquired on the results of a PCR mixture 

from a commercial kit sensed by a 6 ± 2 nm pore, while for i), k), l) on a 5 ± 1 nm diameter pore (with 7 ± 

2 nm effective thickness) and e), f), h) on the same pore that grew to 7 ± 1 nm diameter pore (with 8 ± 2 

nm effective thickness) many hours later, all at 200 mV in 3.6M LiCl pH8. Current traces displayed with a 

low-pass Bessel filter at 500 kHz 

 



 

We attribute the large number of events and the complexity of the signals to the variety of 

molecules translocating the nanopore. The events observed can result from a complex combination 

of signals generated by the presence of detergents, fluorescent dyes, uracil-DNA glycosylase 

(UDG), and proteins included to improve stability and amplicon yield. Furthermore, under the 

high salt concentration condition used here, it is also possible for proteins to agglomerate and 

change structure. The data of Figure 1c revealed 8,078 single-molecule events in a 645 s of 

recording, exhibiting a high capture rate of molecules of 12.5 Hz. A representative sampling of 

signal shapes attributed to the master mix and 100bp dsdDNA can be found in Supporting Section 

S1.  

The passage of linear unfolded dsDNA molecules is expected to produce blockages of 

approximately 1.5 ± 0.2 nA, depending on the value of the effective pore length. The presence of 

the amplicon population would therefore be difficult to discern from this commercial mixture. 

While the pore properties and operating conditions could be adjusted to potentially permit a better 

identification of amplicons from this commercial PCR mixture, the sensing conditions are far from 

optimized. Analysis is also complicated by the large number of events detected and the propensity 

of pore to clog that severely limits the nanopore lifetime and lowers experimental yield. To 

overcome these limitations, a homebrew PCR mixture was developed to be better suited to solid-

state nanopore operation.  

Nanopore Detection from Homebrew PCR mixture 

To develop a PCR mixture compatible with nanopore detection (i.e., that minimizes the 

events from background and avoids frequent clogging), we optimized a reaction mixture starting 

from a minimal set of components. Details on this process can be found in Supporting Section S2. 

Characterization of this homebrew PCR mixture under optimized nanopore sensing conditions are 



 

shown in Figures 1d-f. In this negative control experiment, the solution contained the homebrew 

PCR reagents without any template (or genomic DNA), primer or amplicon present mixed in 3.6 

M LiCl pH8 following 25 cycles of PCR amplification (see Methods section). The PCR reagents 

include Taq Polymerase at 25 units/mL, Tris-HCl at 10 mM, KCl at 50 mM, MgCl2 at 4 mM, and 

dNTPs at 200 μM.   

The current trace (Figure 1e) using this optimized mixture reveals far fewer events 

compared to Figure 1b for a similar sized pore (~5nm) at the same applied voltage of 200 mV. 

Additional current traces of the homebrew PCR mixture on additional pore sizes 6 ± 2 nm are 

shown in Supporting Section S3. The solid black line represents the mean current, while the dashed 

line is the current blockage threshold at 7 standard deviations (SD) from the mean used to identify 

the beginning of a translocation event during our analysis. With these analysis settings, 297 events 

were detected in 679 s, for a capture rate of 0.44 Hz. The plot of the maximum blockage versus 

dwell time of an event (Figure 1f) shows a mean blockage depth of 1.2 ± 0.3 nA and passage time 

of 5 ± 3 µs. While some events in this negative control experiments generate blockages that overlap 

with the estimated blockage depth (~1.5 nA) and mean passage time (< 10 µs) for single-file linear 

dsDNA in these conditions, this homebrew PCR mixture produces fast and relatively very few 

background signals, and most importantly is far less prone to clogging the nanopore when 

compared with the commercial kit. These features should greatly facilitate data collection and 

analysis when characterizing clinical samples.    

Next, we characterized the signal from a positive control, wherein a 100 bp dsDNA strand 

was added as a means by which to highlight the expected result of amplification of a target 

sequence from an infectious agent. The results of this positive control are shown in Figures 1g-i. 

Similar to the negative control, the presence of 75 nM of 100 bp, rod-like, dsDNA produces events 



 

with a mean blockage of 1.4 ± 0.2 nA. While these events are also translocating quite rapidly, they 

are more tightly distributed in passage time and blockage depth as compared to the events from 

the homebrew PCR mixture. Distinguishing an amplicon from a molecule in the homebrew PCR 

mixture on an individual event basis can be challenging, as the two populations show some 

overlap, although the frequency of events is much greater for this concentration of DNA, with 

2,779 single-molecule events in a 779 s of recording. We note that the fast passage times of the 

short DNA molecules approaches the response time of our nanopore-amplifier system and we 

carefully set the analysis parameters (low-pass filter settings and detection threshold value) to 

provide appropriate signal-to-noise ratio to detect the blockage level of dsDNA while minimizing 

attenuation. For the average residence time of ~2-5 microseconds, a filter of 500 kHz was chosen 

to minimize attenuation of signals >2 μs. 

Finally, to explore if the presence of amplicons in a homebrew PCR mixture can be 

discerned, we performed the full amplification reaction of a clinical GAS-positive sample using 

the homebrew PCR protocol and examined the result with a nanopore. Here, in addition to the 

homebrew PCR reagents and the amplicons, the sample contains genomic DNA and potentially 

other biomolecules from the clinical sample leftover from the assay workflow (see section below 

for assay workflow details). The results of this experiment performed on the same pore are shown 

in Figures 1j-l. As expected, the populations of events observed resembles a superposition of both 

previously tested controls, with some overlap (Figures 1f and 1i). However, with the reduced 

background signal from the homebrew mixture, the presence of the population of amplicons is 

now more easily identifiable. Equipped with this homebrew PCR mixture, and an understanding 

on how to discern the presence of an amplicon population, we next turned to testing of clinical 

samples.  



 

 

 

Assay Workflow and Testing of Clinical Samples   

For this study we received clinical samples from residual throat swab specimens submitted 

to the Eastern Ontario Regional Laboratory Association (EORLA) from de-identified patients at 

the Children’s Hospital of Eastern Ontario (CHEO). These swabs were previously used to diagnose 

the presence of Group A streptococcus (GAS) bacterial infections in children using conventional 

laboratory techniques. The results from these clinical tests were used for comparison with the 

nanopore PCR assay workflow. 

Figure 2 is a schematic of the workflow used to amplify a region of the genome of GAS using 

specially designed primers previously clinically validated by qPCR.38 Briefly, throat swabs were 

collected from patients expressing strep-like symptoms when visiting the Emergency Department 

at CHEO. The sample was obtained by DNA extraction and purified by centrifugation, before 

undergoing PCR with the optimized components (see Methods). After PCR, the reaction mixture 

was diluted, combined with salts for nanopore sensing and run on a nanopore for approximately 

ten minutes. Each nanopore used for the assay also saw a blank negative control consisting of a 

template-free homebrew PCR reaction mixture. Following nanopore sensing each set of events 

were analyzed based on the signal profile produced by the blank to classify the background (blank) 

population. This classified signal is used to identify a subpopulation located around the expected 

amplicon translocation profile of a sample. The classified amplicon subpopulation is then 

compared with the classified signal of the blank with a t-test.  



 

 
Figure 1: Schematic representation of the assay workflow. Step 1: a throat swab is collected from 

patients with BD ESwabs. Step 2: DNA is extracted from the throat swab using the Quick-DNA 

Fungal/Bacterial Miniprep Kit and purified by centrifugation. Step 3: PCR is performed (25 cycles) with a 
homebrew reaction mixture. Step 4: The sample is mixed with sensing solution and injected in the fluidic 

flow cell to sense with the nanopore for a few minutes. Step 5: Capture rate of single molecules from sample 

and blank are compared on the same pore. Step 6: The sample is called GAS positive if a significant 

amplicon population is present compared to background.  

 

Nanopore Capture Rate-Based Screening  

Here, we analyzed data sets with events from multiple populations of molecules, such as 

in Figure 1l, by a method of population classification based on blockage depth and dwell time. We 

discuss a few alternative approaches by which such data can be analyzed, and single-molecule 

events from different population separated, in Supporting Section S4.  From the analysis of 

multiple positive and negative controls, we identified the expected range of blockage depths and 

dwell times for the amplicon population by Gaussian fitting of the two distributions. This 

knowledge was then applied the PCR-amplified clinical samples to construct a filter to select all 

events within an ellipsoid drawn on a log-passage time versus blockage depth plot with each major 

axis spanning 2 SD about the expected amplicon peak on an individual pore basis, and to calculate 

the capture rate of events so selected (the “signal rate”) as shown in Supporting Figure S8.  

To demonstrate the utility of solid-state nanopores as the sensing element in a screening 

test for the presence of Group A streptococcus (GAS) in throat swabs, we used the assay workflow 



 

of Figure 2 and compared on the same nanopore the results of a clinical sample with a negative 

control containing only the PCR mixture. Both sample and control underwent PCR amplification 

and nanopore sensing under identical conditions. Because even the homebrew PCR mixture 

produces some events that overlap with the amplicon population, the single-molecule event 

detection rate from the subpopulation classified as amplicon was used to determine whether the 

PCR amplification process had generated enough amplicons in the clinical sample to exceed the 

rate at which signals were generated in the negative control. If a statistically significant increase 

in the amplicon-classified signal rate over the background was identified from the same population 

clusters, a clinical sample was then identified as positive. This significance was measured at a two-

tailed confidence interval of 95%.  

If more precise quantitative analysis is desired, we have previously demonstrated an 

applicable technique (controlled counting) that makes use of a known-concentration standard to 

account for variations between nanopore and over time in the measured capture rate of a target 

molecule.39 For the purposes of our proof-of-concept study, which focuses simply on screening 

for the presence or absence of pathogenic DNA, the accuracy and precision of the capture rate data 

is not as important as qualitatively identifying the GAS-positive samples that produced a clear 

signal over the negative samples.  



 

To assess the performance of our assay and analysis workflow on clinical samples, four 

throat swab samples (two GAS-positive, two GAS-negative) were assessed. The 

positivity/negativity of the samples for GAS was determined by conventional plating technique 

(i.e. bacterial culture), and verified by ddPCR. Overall, the data reported in the main text comprises 

>10,000 single-molecule events from 11 experiments acquired on 3 nanopores. The results of these 

GAS screening tests are presented in Figure 3.  

Figure 3: Nanopore analysis of clinical samples. a-c) Blockage fraction as a function of open-pore current 

vs passage time of all (gray) and amplicon-classified (green, orange, purple) events collected over ten 

minutes on the same pore with a) blank control (n = 816 total, n = 72 classified events), b) GAS-negative 

(n = 662 total, n = 47 classified events), and c) GAS-positive (n = 2,598 total, n = 591 classified events) 

samples amplified by PCR. d-f) Signal rate of amplicon-classified events after 300 s of recording for each 

sample. Red area bounded by dashed lines represents the 95% confidence interval of the Blank signal rate. 

All GAS-neg sample signal rates fall within the blank CI, while GAS-pos sample signal rates exceed the 

blank CI. Data acquired on pore A (6 ±1 nm dia.), pore B (5 ±1 nm dia.) and pore C (7 ±1 nm dia.) at 200 

mV in 3.6M LiCl pH8. 

 

Figures 3a-c depict the normalized blockage depth and dwell time for all events as well as 

the classified signals for different samples collected for ~10 minutes on the same pore. The same 



 

2 SD criteria, to classify the amplicon population, is applied on all samples on the same pore, 

though the centroid of the ellipsoid and the actual value of the SD varies between pores. These 

classified events are shown in color (green, orange, purple) over the entire data set (grey). Analysis 

of additional clinical samples can be found in Supporting Section S5. The classified signal rate is 

presented in Figure 3d-f, which shows the capture rates after 300 s of recording is enough to 

correctly identify the sample with a 95% confidence interval. The measurements on each sample 

were repeated on at least two nanopores to verify reproducibility and consistency of results of our 

classification approach.  The results are summarized in Table 1.  

 

Table 1: Outcomes of all samples tested with the nanopore assay along with initial copy numbers as 

determined by ddPCR. The signal rate scales with the initial copy number for the same given pore. 

Pore ID Sample type Initial Copy 

Number (#/μL) 

Signal Rate 

(Hz) 

Pore A Blank n/a 0.14 ± 0.04 

Pore A GAS- 1 0.7 ± 0.9 0.13 ± 0.04 

Pore A GAS- 2 undetectable 0.13 ± 0.04 

Pore A GAS+ 1 180 ± 20 0.28 ± 0.06 

Pore A GAS+ 2 1400 ± 100 1.0 ± 0.1 

Pore B Blank n/a 0.05 ± 0.02 

Pore B GAS+ 1 180 ± 20 0.56 ± 0.09 

Pore B GAS+ 2 1400 ± 100 1.4 ± 0.1 

Pore C Blank n/a 0.07 ± 0.03 

Pore C GAS- 1 0.7 ± 0.9 0.08 ± 0.03 

Pore C GAS- 2 undetectable 0.04 ± 0.02 

 

 

Variations in the capture rate between the negative samples and blank are reduced to statistical 

noise when taking the classified signal detection rate, while the positive samples maintain their 

statistically higher signal rate.  Demonstration of the validity of simple capture rate averaging over 



 

time can be found in Supporting Section S6. Note that the diagnosis results from all three pores 

are consistent, even if the capture rates for the three pores presented in Table 1 show some variation 

from pore to pore, which is expected despites being closely related in size, ranging from 5 ± 1 nm 

to 7 ± 1 nm, and being used under otherwise identical operating conditions.39  

The low signal rate for the GAS-negative clinical samples shows that very few amplicons 

were generated as compared to blank control samples. The low level of amplification from these 

GAS-negative clinical samples could be explained by the presence of the extremely low target 

concentration (here estimated to be <1 copy per µL) not picked up by bacterial culture (not 

surprisingly, PCR is more sensitive than conventional plating techniques) or from nonspecific 

binding of the primers to other genomic DNA present in the throat swab sample. From this limit 

of blank, we can estimate a limit of detection for this homebrew PCR assay with a few minutes of 

downstream detection with a single nanopore down to seconds for a small array of tens of pores. 

The time-evolution of the capture rate shown in Supporting Figure S12 

The nanopore screening results agree well with cell cultures and ddPCR techniques. Due 

to the difference in components and technique between PCR and ddPCR, a direct quantitative 

comparison between amplicon-classified capture rate and starting copy number is not possible, 

though the same trend of higher capture rates for higher starting copy numbers was observed. 

Using the technique presented here, we can make a confident call on the presence or absence of 

strep-A in a clinical throat swab sample after 25 cycles of PCR with our homebrew reaction 

mixture, using a purely electrical nanopore readout that obviates the need for optical labelling of 

the resulting amplicons.  

 



 

 

CONCLUSION 

We have demonstrated that the reagent mixture for PCR can easily be adapted for nanopore 

sensing, to avoid clogging and spurious events that can prevent measurements or complicate data 

analysis. We have also provided convincing proof of concept results that nanopores are suitable as 

the readout mechanism for nucleic-acid amplification-based assay.  

Going forward, it will also be interesting to investigate isothermal methods such as NEAR, 

RPA or LAMP,40–42 and to build real-time detection and analysis into the assay to reduce the time-

to-answer. While thermocycling comes with requirements for temperature control that most likely  

precludes real-time sensing of the amplification reaction because of the constantly changing pore 

conductance, changes in capture, higher, etc., isothermal techniques will likely allow for nanopore 

measurements in real time, permitting the time to answer for amplification tests assayed with 

nanopores to match or potentially event exceed fluorescence-based readouts, given that the PCR 

cycle threshold CT can be lower when paired with a nanopore single-molecule  detection than it is 

with optical instrumentation.14  

While our results show that solid-state nanopores can find utility in point-of-care 

diagnostics, they also demonstrate clearly that bringing this test into the clinical space requires 

practical technology development to scale up and parallelize the sensing modality beyond what is 

currently possible. We hope that these results, and the inspiring proof of concept demonstrations 

being performed by others in the diagnostics space with solid-state nanopores, will motivate this 

essential next step in realizing the full potential of solid-state nanopore sensors.  

 



 

 

 

 

EXPERIMENTAL 

Sample Collection and Preparation 

Samples were collected with BD ESwabs (BD, 220245) on children being tested for GAS at the 

Emergency Department of the Children’s Hospital of Eastern Ontario (CHEO). DNA was 

extracted from throat swabs using the Quick-DNA Fungal/Bacterial Miniprep Kit (Zymo D6005) 

following kit instructions. 

Gel Benchmarking 

2% agarose (w/v) gel was made in 1X TE buffer with Sybr Safe DNA Gel Stain (Thermofisher, 

S33102). 5 μL sample aliquots were diluted in 6X DNA Gel Loading Dye (Thermofisher, R0611) 

with water. 

Commercial PCR  

Commercial PCR was performed using Thermofisher’s PowerUP Sybr Green Master Mix 

(A25741) according to manufacturer-provided directions for “Standard Cycling Mode (primer Tm 

< 60°C)” over 25 cycles instead of the instructed 40 cycles.  

Nanopore Optimized PCR  

Nanopore optimized PCR was performed using a customized master mix. A 50µL preparation of 

nanopore-optimized PCR master mix contained 5 μL 10X Taq Buffer (NEB, B9014S), 0.25 μL 

Taq Polymerase (NEB, M0273S), 2.5 μL 10 μM DNAse B Forward Primer (0.5 μM – in final 

volume) [IDT 5’-AGT TGA TTC CAA GAG CTG TCG TG-3’], 2.5 μL 10 μM DNAse B Reverse 

Primer (0.5 μM) [IDT 5’-TTA ATG GTG TAG CCA TTA GCT GTG TT-3’], 1 μL dNTP mix 

(NEB, N0447S) 5 μL 10 mM MgCl2 (2.5 mM), and 31.75 μL Nuclease-free ultrapure water 



 

(Thermofisher, 10977015). 2 μL target DNA extract was incubated in this mixture and 

thermocycled. Starting from 60 s at 95°C, the mixture was subjected to 25 cycles of [15 s at 95°C, 

15 s at 55°C, and 30 s at 68°C], followed by a cooldown 60°C for 420 s then reduction to 4°C to 

stabilize until use.  

Nanopore Fabrication  

Nanopores are fabricated using controlled breakdown,43 employing the equipment and protocols 

outlined in detail in Waugh et al.44 Briefly, pores were fabricated in nominally 12 nm thick SiNx 

membranes purchased from Norcada Inc. (NBPX5004Z-60O-Hi RES) in 1 M KCl pH 8 using a 

linear voltage ramp, followed by conditioning and enlargement in 3.6 M LiCl pH 8 until a low-

noise pore in the size range of 5-8 nm was reached. 

Data Acquisition and Analysis  

Prior to sensing with the nanopore, 28 µL of the sample following the PCR amplification step was 

diluted with 72 µL of 3.6 M LiCl 10 mM HEPES pH 8. From that sensing mixture, 40 µL is used 

to perform a nanopore experiment. Amplicon signal was verified using NoLimits 100 bp DNA 

fragments (ThermoFisher, SM1441) 

PCR amplicons are sensed in 3.6 M LiCl pH 8 using a 200 mV voltage bias. Data are acquired 

using a Chimera VC100 amplifier sampled at 4.17 MHz with a bandwidth of 1 MHz and are 

software low-pass filtered at 500 kHz prior to analysis. Events are fitted using a custom 

implementation of the CUSUM+ algorithm.45  
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