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Traditional ELISA, long the workhorse for specific target protein detection using microplate wells, is nearing its fundamental limit 

of sensitivity. New opportunities in healthcare call for in vitro diagnostic tests with ultra-high sensitivity. Magnetic bead-based ELISA 
formats have been developed that can reach unprecedented sensitivities order of magnitude better than are allowed for by the rate 

constants for a single ligand-receptor interaction. However, these ultra-high sensitivity assays are highly vulnerable to a host of 

confounding factors, including nonspecific binding from background molecules and loss of low-abundance target to tube walls and 
during wash steps. Moreover, optimization of workflow is often time-consuming and expensive. In this work, we present a simulation 

tool that allows users to graphically define arbitrary binding assays, including fully reversible first-order binding kinetics, timed 

addition of extra components, and timed wash steps. The tool is freely available as a user-friendly webapp. The framework is 
lightweight and fast, allowing for inexpensive simulation and visualization of arbitrarily complex assay schemes, including but not 

limited to digital immunoassays, DNA hybridization, and enzyme kinetics, for validation and optimization of assay designs without 

requiring any programming knowledge from the user. We demonstrate some of these capabilities and provide practical guidance on 

assay simulation design. 

The ability to sensitively detect specific biomarker in a clinical 

sample containing a mixture of off-target components is a 

cornerstone of diagnostic medicine. The most common method 
by which this is achieved for proteins is the enzyme-linked 

immunosorbent assay (ELISA),1 in which target proteins are 

captured either by direct adsorption to the surface of a plate or 
through pre-coated “capture” antibodies, and subsequently 

detected by a labelled secondary “detector” antibody and 

optically read via colorimetric, fluorescence or 

chemiluminescence detection strategies.2–4 This technique is 
ubiquitous in the life sciences and medicine to detect and 

quantify a specific protein in a complex mixture and is driving 

everything from pregnancy tests to cancer detection. However, 
as our understanding of the human proteome advances, there is 

a growing need for detection of target proteins in the 

femtomolar concentration range, and standard ELISA is limited 
to target concentrations within a few logs of the dissociation 

constant (𝐾𝑑) for the receptor-ligand interaction on which it is 

based, which practically limits it in most cases to the picomolar 

range.  

Recently, impressive work has been done using so-called digital 

ELISA schemes, in which just a few copies of a target protein 
can be detected and counted directly.5–7 Digital counting 

methods overcome measurement uncertainty associated with 

integration of an analog optical signal and is in principle only 

limited by Poisson counting noise, making femtomolar and in 

some cases even attomolar concentrations detectable.8,9  

One of the best-known example of this approach is the SiMoA 

technology pioneered by D. Walt and now commercialized by 
Quanterix.5–7,10 In their scheme, paramagnetic beads are coated 

with capture antibodies specific to the target protein and are 

mixed with a clinical sample. Because each bead has on the 

order of 𝑁 ∼ 105 antibodies, the effective 𝐾𝑑 for a bead is 𝑁 

times smaller than the 𝐾𝑑 for any individual antibody alone, 

permitting efficient capture in 3D of very low concentrations 
targets. Coupled with digital detection of the beads with or 

without a target protein bound, the SiMoA technology has 

improved the sensitivity of standard ELISA by >1000x.11  

While this approach has made possible the quantification of low 
abundance biomarkers from complex biofluids,12 the 

development of an assay for a particular target remains an 

extremely laborious and expensive task, involving weeks of 
optimization varying the assay steps, components 

concentrations, incubation times, number of washes, etc., to 

maximize the assay performance. To assist in these tedious 
experimental tasks, there is a need for simulation tools to shift 

the burden of optimization away from the expensive and time-

consuming empirical framework.  

Few studies have attempted to address this knowledge gap. 
Chang et al11 presents a model that involves a multi-step, multi-

component framework for simulation of their assay workflows 

which performs well in the low-concentration regime of target 
as compared to capture antibody (i.e. 1 or 0 targets per bead).11 

However, their model assumes irreversible binding between 

additions of new components to the mixture, which is overly 
optimistic about the final signal generated. More recently, a 

Python library that allows definition of arbitrary first-order 

coupled kinetics was introduced which has similar capabilities 
similar to the tool presented in this work, but relies on the user 

being able to program their own assays in Python.13 Other 

computational resources with slightly different specialization 

can be readily found,14 but applying these tools can be a 

laborious task.  
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In this work, we present a user-friendly tool that allows 
definition of arbitrarily complex multi-component systems of 

first-order binding interactions, which allows for timed addition 

of components part way through the workflow, and timed wash 
steps. The effects of nonspecific binding of background 

molecules and the influence of the timing and duration of wash 

steps can easily be simulated to inform assay design before 

undertaking complex experimental work. We demonstrate its 
utility through simulation of a full bead-based digital sandwich 

immunoassay, complete with nonspecific binding and wash 

steps, and discuss best practice for digital immunoassay design. 
We also model a binding reaction involving assembly of small 

DNA nanostructures used in our previous work15,16 with the 

goal of aiding in explaining previously ambiguous experimental 

results.  

MATERIALS AND METHODS 

Experimental. Solid-state nanopore data is reused from our 

previous work for the purposes of comparison to this tool. 
Briefly, nanopore fabrication is performed using the controlled 

breakdown method17–20 on SiNx membranes and used to sense 

DNA nanostructures, the design of which has been previously 
published.21 Experiments are performed in 3.2 M LiCl pH 8, at 

100 mV using a 12 nm pore, and a low-pass Bessel filtered at 

200 kHz for analysis. 

Theoretical. A simple reversible first-order receptor-ligand 

binding or DNA hybridization reaction between arbitrary 

components 𝐴 and 𝐵 is governed by the system of equations: 

 𝑑[𝐴𝐵]

𝑑𝑡
= 𝑘𝑜𝑛[𝐴][𝐵] − 𝑘𝑂𝑓𝑓 [𝐴𝐵], (1) 

and 

 
𝑑[𝐴]

𝑑𝑡
=

𝑑[𝐵]

𝑑𝑡
= −𝑘𝑜𝑛[𝐴][𝐵] + 𝑘𝑜𝑓𝑓[𝐴𝐵], (2) 

where [∘] denotes concentration and 𝑘𝑜𝑛 and 𝑘𝑜𝑓𝑓 are the 

association and dissociation constants which together define the 

dissociation constant 𝐾𝑑 =
𝑘𝑜𝑓𝑓

𝑘𝑜𝑛
. This can be readily extended to 

a multi-component system with a vector of component 

concentrations 𝑐 using Einstein summation notation as: 

 𝑑𝑐𝑖

𝑑𝑡
= 𝜷𝑗

𝑖𝑘𝑐𝑗𝑐𝑘 + 𝜶𝑗
𝑖𝑐𝑗 , (3) 

where 𝜷 is a rank-3 tensor of on-rates in such a way that 𝜷𝑖𝑗𝑘 =

𝜷𝑖𝑘𝑗 for 𝑖 ≠ 𝑗 and 𝑖 ≠ 𝑘 is the rate at which 𝑐𝑖  is produced by 

binding between 𝑐𝑗 and 𝑐𝑘   and 𝜷𝑖𝑖𝑘 for 𝑖 ≠ 𝑘 is the rate at which 

𝑐𝑖  is depleted as it forms various complexes with 𝑐𝑘 . 𝜶 is a 

matrix of off-rates such that 𝜶𝑖𝑗 for 𝑖 ≠ 𝑗 is the rate at which 𝑐𝑗 

breaks into 𝑐𝑖  and another component, and 𝜶𝑖𝑖 is the total rate 

at which 𝑐𝑖  is enriched by the breakup of all other components. 

To represent a physically valid system of first-order binding 

kinetics, 𝜶 and 𝜷 must satisfy conservation of mass 

requirements, which can be expressed as: 

 𝜶𝑖𝑖 = − ∑ 𝜶𝑗𝑖

𝑗≠ 𝑖

, (4) 

and 

 𝜷𝑖𝑖𝑘 = − ∑ 𝜷𝑗𝑖𝑘

𝑗≠𝑖

. (5) 

Prior to simulation, all variables are internally normalized in 
order to ensure numerical stability. We define two calculated 

normalization constants specific to a given system of 

interactions: 

 
𝛽̅ = √∑ 𝜷𝑖𝑗𝑘

2

𝑖,𝑗,𝑘

 (6) 

is the on-rate normalization constant, while: 

 
𝛼̅ = √∑ 𝜶𝑖𝑗

2

𝑖,𝑗

 (7) 

is the off-rate normalization constant. One could equivalently 

use the spectral norm of 𝜶 to normalize, but we use the 

Frobenius norm here since it is easier to generalize to higher 

order tensors. From these, we define the population 
normalization, which can be thought of as a generalized analog 

of 𝐾𝑑 for the system, as:  

 
𝜅 =

𝛼̅

𝛽̅
. (8) 

Defining 𝜌⃗ = 𝜅−1𝑐 and 𝜏 = 𝛼̅𝑡, 𝚩 = 𝛽̅−1𝜷 and 𝚨 = 𝛼̅−1𝜶, the 

normalized system of equations becomes: 

 𝑑𝜌𝑖

𝑑𝜏
= 𝚩𝑗

𝑖𝑘𝜌𝑗𝜌𝑘 + 𝚨𝑗
𝑖 𝜌𝑗 . (9) 

Note that all variables are rescaled back to the same units in 

which they are configured by the user prior to actual output. 

While most non-trivial reactions do not have analytical 
solutions, this system can readily be numerically solved using 

an explicit Runge-Kutta integration scheme.22 The tool 

presented here uses standard RK4 to propagate Equation 9 

through time, with a timestep of Δ𝜏 that is calculated at runtime 

to ensure numerical stability, under the assumption that the 

system will be farthest from equilibrium when the simulation 
starts. The timestep calculation will fail to ensure stability if the 

simulation is started close to an equilibrium configuration, 

which should never be the case for any practical model. The 
model outputs a snapshot of the current concentration vector 10 

times per 𝜏. Since 𝜏 is by construction shorter than the shortest 

dynamic timescale in the system this ensures that no interesting 

features are lost to sampling issues.  
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The model makes several key assumptions. We are considering 
only the evolution of concentration over time, which means that 

we are assuming that the probability of two species 

encountering one another is proportional to the ratio of their 
concentrations, or equivalently that all the components are 

perfectly mixed. We do not explicitly model diffusion, nor are 

steric interactions considered. As such it is important that this 

tool only be applied to simulation of assays that occur in the 
bulk phase (i.e., in 3D). If antibodies are immobilized on a 2D 

surface, for example, it is not expected that this model will give 

correct results.  

For the purposes of numerical simulation, we define a system at 

equilibrium to be one that satisfies:  

||
𝑑𝜌

𝑑𝜏

⃗⃗⃗⃗⃗⃗
||

Δ𝜏

||𝜌⃗||
< 10−10  

The full user interface and a guide to using the tool for practical 
assay system and workflow definition is given in 

Supplementary Section S1. The webapp is freely available at 

immunoassay.herokuapp.com. 

 

RESULTS AND DISCUSSION 

Modelling First-Order Kinetics Binding Systems. We first 

begin with a demonstration of a reaction which can be solved 
analytically, namely, a simple ligand-receptor system defined 

by the reaction 𝐴 + 𝐵 ↔  𝐴𝐵. The results from the simulation 
are shown in Supplementary Section S2 to be in perfect 

agreement with theoretical predictions.  

Idealized Digital Immunoassay. Digital immunoassay design 

is becoming an increasingly important challenge. As the limits 
of detection are pushed further down toward single molecule 

copies, the details of the sample preparation steps leading up to 

the final detection step become critical in enabling that level of 
sensitivity. To better understand the impact of upstream sample 

preparation and biochemical reactions leading up the final 

sample read, we simulate a variety of model systems, including 
a full assay workflow used in the SiMoA technology to better 

understand the influence of the timing and duration of each step 

of a typical digital immunoassay.  

The simulation setup for this model consists of four primary 
components: capture antibodies bound to magnetic beads (A), a 

target protein (T), a detector antibody (D), and a labelling 

molecule (L), such as an enzyme6 or a DNA strand.15 Assuming 
no cross-reactivity between species and no nonspecific 

background molecules, these four components can eventually 

bind together into an ATDL complex, forming every 
permutation of subcomplexes along the way. Our idealized 

assay consists of the 10 possible species representing the set of 

subcomponents: 4 base components (A, T, D, and L), 3 2-

component subcomplexes (AT, TD, and DL), 2 3-component 
sub-complexes (ATD and TDL), and the full ATDL complex. 

These subcomponents can form or break up at any point. We 

will assume for simplicity that binding of a subsection of the 
complex does not alter the binding constants for subsequent 

assembly steps, though the simulation framework can 
accommodate changing binding constants in response to partial 

complexation. This system is shown as a diagram in Figure 1a 

and 1b.  

 

Figure 1: a) Schematic diagram of a typical 4-component bead-

based digital immunoassay, in which a capture antibody A 

bound to a paramagnetic bead capture targets T from solution, 

which are then labelled with a combination of a detector 

antibody D and a label L that is eventually used for 

downstream detection. On the way to assembly of the full 

complex all possible sub-permutations of 2- and 3-components 

will form, leading to a total of 10 possible interacting species in 

solution. b) Network diagram of interactions between the four 

primary components of a bead-based digital immunoassay and 

complexes thereof. Paired binding pathways are color-coded to 

highlight interaction partners in the network. c) A typical assay 

workflow. Assay begins at the “Mix” step and follows the 

arrows in the labelled order.  

Note that we are not explicitly simulating beads in this case, but 

instead simulating the capture antibodies as though they are 
uniformly distributed through the reaction volume. This is a 

subtlety that is very important: when a bead is coated with 𝑁 

capture antibodies, to first order it acts as a single antibody with 

a 𝑘𝑜𝑛 is that 𝑁 times larger than the 𝑘𝑜𝑛 for a single antibody 

alone while 𝑘𝑜𝑓𝑓 remains unchanged. In the case where many 

of those binding sites are occupied, the effective on-rate reduces 

proportionately, that is, a bead with 𝑁 binding sites of which 𝑛 

are occupied has an effective on-rate of (𝑁 − 𝑛)𝑘𝑜𝑛 with 

respect to the next binding event, which means that it is not 
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possible to simulate these beads directly unless we consider the 
time-dependent on-rate that results. Because these beads are 

spread through the 3-dimensional volume of the reaction 

chamber, however, it is reasonable from a simulation standpoint 
to ignore those spatial correlations and to simply simulate the 

capture antibodies as though they were freely diffusing on their 

own, which circumvents the need to account for partial binding 

affecting the on-rate of the beads themselves. This is reasonable 
if the ratio of capture antibody to target molecule is large and 

steric effects are negligible, which will always be true for any 

real assay attempting to measure the concentration of a low-
abundance target. As an example, in the SiMoA platform, the 

ratio of target to bead is <1 for a digital readout while each bead 

contains hundreds of thousands of antibodies.5,11 Nevertheless, 
care should be taken when using this model to simulate a 

situation in which target concentrations are comparable to the 

capture antibody concentrations, as in this case these steric 

effects may be important and this model would be expected to 

overestimate binding.  

A typical paramagnetic microbead-based digital assay 

workflow generally follows the steps below. This workflow is 

shown in a flowchart in Figure 1c.  

1. Capture-antibody coated beads are mixed with the target 

and allowed to equilibrate. 

2. Beads are immobilized and washed to remove unbound 

target and any nonspecific background molecules. Note 

that some captured target will fall off during and after 

this step, although this is minimized by the enhanced 𝑘𝑜𝑛 

as long as the number of capture antibodies is high 

relative to the number of targets. 

3. Beads are resuspended and detection antibodies and 

labelling enzymes are added and allowed to bind and 

label the captured targets remaining on the beads.  

4. Beads are immobilized and washed to remove unbound 
detector and label. Note that some captured target-label 

complexes, as well as labels themselves, will fall off 

during and after this step. 

5. Post-processing done to count the fraction of labelled 

beads. 

As an illustration of the capabilities of this software, we first 
approximate a bead-based digital assay with nanopore electrical 

readout which we conducted recently.15 Unfortunately, due to 

the fact that detailed on- and off- rates are not available for the 
capture antibody and detector antibody pairings in that assay, 

we must make some approximations. To do so while still 

gaining useful physical insights, we normalize parameters by 

the expected behavior of the capture antibody pairing and take 
generic binding constants for all interactions, setting on- and 

off-rates for all components to 1 (arbitrary units), except for the 

detector-label on- and off-rates, which are set to 10 and 0.01 to 
approximate the much stronger biotin-streptavidin interaction 

used to bind the label to the detector. Target concentration is set 

to 1, which can be thought of as being equal to 𝐾𝐷 for the target-
capture antibody pairing. Capture antibody concentration is set 

to 103 to simulate an extreme excess, while detector antibody 

and label, when added, are at a concentration of 102. In the 

actual assay, the excess in both cases was even more by at least 
an order of magnitude, but we have found in simulation that 

such disparity in concentrations can lead to numerical 

instability or very long runtimes, while not actually changing 
the results significantly. Wash steps are modelled by setting the 

free concentration of all species that are not bound to a bead (in 

this case, that do not contain an A) to zero, though the general 

framework allows for the effects of imperfect washing to be 
simulated as well by setting the wash efficiency to a number 

between 0 and 1 for all components. Three washes are 

performed after allowing the initial equilibration of A and T and 
after adding D and L. The system is propagated to equilibrium 

between each step. Figure 1c shows the full workflow being 

simulated.  

Figure 2 presents the time evolution of the relative 

concentrations of the various interacting species in such a 

typical 4-component bead-based sandwich immunoassay. 

Figure 2a is a zoom into step 1, showing the time-evolution of 
the capture of targets by antibody-coated beads. The target T 

starts at a normalized concentration of 1 and antibody-coated 

beads, A, at 103. Equilibration of AT complexes happens very 
fast due to the excess of capture antibodies, and there is 

essentially no loss of target to the wash steps since any targets 

that fall off are immediately recaptured by a nearby capture 
antibody. Figure 2b then shows the addition of the detector 

antibody, D, and label, L, and the time-evolution of all 

complexes that are not removed during the washes (anything 
containing an A, i.e., stuck to the bead). Concentrations in this 

part of the assay respond much more strongly to washes, and 

equilibrium takes orders of magnitude longer to establish. 

Figure 2c shows the total amount of T and L in the system, 
demonstrating the loss of signal that occurs as a function of 

wash timing. While essentially no target is lost throughout the 

assay, the amount of label available to indicate its initial 
presence in the sample is highly dependent on the number of 

wash steps following the addition of the detector antibody, D, 

and label, L. 

From the results of Figure 2 a few things are immediately 

apparent. The first is that not all wash steps are equal: very little 

target is lost in the first round of wash steps, while a majority of 

detector-label complex is lost in the second round. While it is 
possible to calibrate the assay to account for these losses, the 

signal will get exponentially weaker in the number of wash 

steps that occur after the label is added, implying that wash 
steps should be front-loaded to the extent possible, and that 

minimal washing is desirable after adding the label. The much 

longer equilibration time required after a wash at this stage is 
also good reason to limit post-labelling washes to one if 

possible. The reason for the asymmetry is simple. Due to the 

enormous excess of capture antibodies, any targets that fall off 

almost immediately rebind, whereas there are very few sites for 
the detectors to attach, meaning that an unbinding event is 

usually final at this stage. It is interesting to note that most of 

the losses occur on longer timescales, and that immediately 
after a wash everything remains bound, approaching 

equilibrium via a stretched exponential process. This confirms 

the intuitive understanding that the timing and duration of wash 
steps is a critical consideration in designing an effective digital 

immunoassay workflow.  



 

5 

It is interesting to note that in Figure 2c that the full ATDL 
complex makes up only a minority of the total L available in the 

system at any given time, with most of the L free-floating and 

not attached to an antibody once equilibrium is established. This 
is of significant consequence for downstream readout 

mechanisms. In the SiMoA assay model, only ATDL 

complexes give rise to downstream signal detection, since 

beads need to be confined to microwells for optical readout, 
whereas in the nanopore assay, all sources of L left over at the 

end of the washes will contribute, whether still bound or not on 

the bead. Care must therefore be taken when constructing 
calibration curves with the downstream detector to ensure that 

the source of signal, and losses thereto, are properly accounted 

for in the upstream assay design. Alternatively, one can design 
a wash schedule to occur before equilibrium is established, in 

which case wash timing must be strictly adhered to when 

comparing a calibration curve to a full assay run.  

 

Figure 2: Time evolution of the relative concentrations of the 

various interacting species in a typical 4-component bead-

based sandwich immunoassay. a) fast equilibration of the 

target molecule T, with an initial concentration of 1, in the 

presence of an extreme excess of capture antibody A (1000x), 

forming AT complexes, close to 1 (i.e., ~99.99% of targets are 

captured very rapidly). b) Time-evolution of complexed species 

that do not get washed away during wash steps. c) Time 

evolution of the total target T and total label L available in the 

system, showing a strong loss of signal to washes that occur late 

in the workflow. Vertical dashed lines indicate wash timing.  

DNA Nanostructure Binding. We next consider a different 

binding model that we recently explored experimentally:15,21 the 

binding together of two star-shaped DNA nanostructures using 
a linker strand into a dumbbell shape, as show in Figure 3a. We 

simulate this using a two-component system initially – stars and 

linkers. DNA stars have a single stranded region at the end of a 
double stranded tail that is complementary to half as of ssDNA 

linker. Once a linker binds to one star, it can bind with an 

additional star to form the dumbbell. We estimate 

𝑘𝑜𝑛~106𝑠−1𝑀−1,23 and assume that binding is irreversible, so 

that all off-rates are 0. As we will show, this simple model fails 

to fully capture the experimental results, and we complexify the 

model from this simple starting point, considering the effect 
first of misassembled DNA star structures that cannot properly 

bind as well as stars that can bind into a pseudo-dumbbell in the 

absence of a linker strand, and finally including the presence of 
an additional population of misformed stars that can bind into 

duplexes with a slower on-rate. These three cases and 

comparison of the resulting simulations to experiment are 

shown in Figure 3.  

In its simplest form (Figures 3a and 3b), one intuitively expects 

that that the fraction of dumbbells 𝑓 formed should be equal to 

the ratio of linkers to stars 𝑥 (assuming equal concentrations of 

both star-halves), or the inverse of that ratio, whichever is 

smaller, that is: 

 𝑓 = min(𝑥, 𝑥−1) (10) 

This is a consequence of the irreversibility of the binding, since 

when there is an excess of linker strands the star nanostructures 
will get capped by the linker strand and be unable to bind further 

to another star, since two linker strands cannot bind together. 

This supports the notion that we previously presented that any 
practical application of these schemes must operate in the 

regime where linker strands are the limiting reagent, which is 

practically the case for any real assay.  

In the experimental case, shown as the black curve in Figure 3b, 

Equation 10 only holds true for values of 𝑥 ≪ 1. The peak value 

at  𝑥 = 1, is smaller experimentally than the theoretical 

prediction.  Below 𝑓~10−2 the dumbbell fraction reaches a 

minimum (noise floor) that persists even in the absence of linker 
strands. Finally, there exists an asymmetry showing more 

binding than expected for 𝑥 > 1. We hypothesized that the first 

discrepancy is likely due to a fraction of misassembled stars that 
cannot bind properly, while the second one is likely due to 

misassemblies that occur in such a way as to allow the stars to 

bind together in the absence of a linker. The simulation tool 
allows us to validate these hypotheses. If we include both types 

of misassembled products in the simulation, we indeed recover 

both the reduced maximum value of 𝑓 and the false positive 

behavior at both ends of the spectrum, as shown in Figure 3b. 

It is interesting to note the discrepancy between even the 

modified simulation and experiment for 𝑥 > 1, where 
simulation still underestimates the binding, and an asymmetry 

is present in the experimental results that is not predicted by 

Equation 10. A hypothesis to explain this discrepancy is that 
what we are modelling as non-binding misassemblies instead 

bind less strongly with linkers, and when linker strands are 

present in extreme excess, these weakly binding species begin 

to matter for the kinetics. This scenario could arise, for example, 
if the single-stranded tail meant to interact with the linker 
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instead weakly binds to a misassembled single-stranded arm 
through some weak base-pairing that would then require a 

strand displacement reaction for the linker to bind properly. 

Were this the case, one would expect that strand displacement 
only to happen in the case where there is an excess of linkers 

leftover after binding the unaffected probes.  

 

Figure 3: a) A schematic illustration of the two-step binding 

scheme of pairs of probes into dumbbells. b) a comparison 

between an idealized simulation (blue triangles) and 

experimental results from He et al15 (black squares). c) An 

illustration of the effects of non-binding misassembled probes 

and of the effects of probes that can bind in the absence of a 

linker strand. d) An illustration of the asymmetry introduced 

when a subset of probes has weaker and competitive binding 

kinetics with the linker. For the experimental data, the linker 

strand concentration ranges from 200 pM to 400 nM and 

shooting star probes is fixed at 20 nM, with ~1100 single-

molecule events at each concentration.  

To test this hypothesis, we simulated this as well, using an on-
rate for the strand displacement component that is 10x smaller 

than the on-rate for the properly assembled DNA stars. The 

introduction of these binding elements reproduces the 

asymmetry observed experimentally, as the linkers will bind the 
misassemblies in significant quantities only in the case where 

there is an excess beyond that required to saturate the properly 

assembled probe molecules. This agreement can be seen in 

Figure 3c. 

Note that the total concentration of dumbbells remains 

unchanged when introducing misassemblies, but is broken up 

between proper assemblies and misassemblies, and that the 
reported dumbbell fraction included in the numerator the sum 

of all structures that would look like a dumbbell to a nanopore 

(two stars bound together by a linker strand), and in the 
denominator the sum of the concentrations of all structures that 

would look like stars to the nanopore.  

Because the actual rate constants are unknown and simply 
chosen to show qualitative effects of having different kinds of 

misassemblies present, the concentration breakdown is 

arbitrarily chosen to match the experimental data. It should be 

carefully noted at this point that the fact that a model accurately 
reproduces experimental behavior is not definitive proof that 

that model is an accurate representation of the physics, nor are 

the rate constants or concentrations chosen expected to be an 
accurate reproduction of the real breakdown of misassemblies. 

This tool is not meant to prove that a system of interaction is the 

underlying physical system. Rather, it allows rapid exploration 
of the downstream expectation if certain interactions are 

included so that physical intuition and hypotheses can be 

rapidly tested for consistency without needing to invest upfront 

experimental time and resources.  

 

Figure 4: A comparison of time-to-equilibrium for two 

different ssDNA linker to dsDNA stars ratios, demonstrating 

that equilibrium takes much longer to establish when binary 

components are present in equal concentration. Note that time 

in log-scaled here to show the different more clearly.  

The second issue that arises in such first-order binding systems 

systems is that the two-step binding required to make a full 

DNA nanostructure greatly extends the time required to reach 

equilibrium when 𝑥~1, experimentally taking more than 24 

hours at parity (see SI He et al15).  Figure 4 presents a 

comparison of the time response of the concentration of 
dumbbells normalized to the equilibrium concentration ratios of 

𝑥 = 1 and 𝑥 = 0.1. Equilibrium takes much longer to establish 



 

7 

at parity (red curve), even though the concentration of DNA 

stars in both cases is the same.  

This can be understood, under the assumption of irreversible 

binding, by the fact that at parity the concentration of available 
reagents to bind is depleted as the reaction progresses, leading 

to progressively slower kinetics. The need for two binding 

events to form the positive molecular signal   comes at the cost 

of increased assay time. Which is clearly seen in Figure 4, and 
suggests that multi-step bindings are to be avoided to minimize 

assay time when required reagents are present in equal 

concentrations. Future digital assays with nanopore readout 

should take this into consideration 

Conclusions. We have presented a computational tool that 

allows for simulation of arbitrarily complex receptor-ligand or 
DNA hybridization first-order kinetics-based assay workflows 

from start to finish without requiring any programming 

knowledge on the part of the user. We have demonstrated its 

utility for providing insights into assay performance and 
validating hypotheses, through two case studies. We compared 

our experimental results with those of the simulation tool, 

finding good agreement. A detailed description of the user 
interface along with a basic user guide is included in the 

Supporting Information. The webapp is freely available at 

immunoassay.herokuapp.com. 

Many ligand-receptor pairs do not have separate on- and off-

rate values listed in the literature, and only have available the 

equilibrium constant for the reaction, that is 𝐾𝑑 =
𝑘𝑜𝑓𝑓

𝑘𝑜𝑛
. In this 

case an educated guess must be made as to how this quantity 
splits into on- and off-rates individually, but by varying these 

parameters and simulating over the possible splits, the 

simulation tool can provide some insight into the effect of these 
assumptions and allow for matching to experimental results. In 

a simple two-component reaction the equilibrium state of the 

system depends only on 𝐾𝑑; for more complex interacting 
systems, or if measuring concentrations at intermediate times 

prior to equilibrium where the system is still in a transient state, 

the individual rates matter. Even in the absence of exact on- and 
off- rate values to provide quantitative results, the tool offers a 

method by which to validate assay designs generally, giving 

clear insight into the effect on downstream signal of wash steps 
and nonspecific binding of background molecules, allowing full 

assay workflows to be validated in minutes prior to conducting 

expensive and time-consuming experimental work that can take 

weeks. This application of our simulation tool was 
demonstrated in our first case study. It is also a tool with which 

to test ideas relating to experimental workflow failure, making 

it simple to test hypotheses about any discrepancies between 
prediction and experiment by defining potential unintended 

component interactions, as we demonstrated in our second case 

study. 

Finally, the results presented so far have provided valuable 

insight into bead-based digital immunoassay design generally: 

wash steps should be conducted as early in the assay workflow 
as practicable and must be carefully timed to be consistent 

between calibration and experiment if not allowed to equilibrate 

between washes. 
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