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MAIN TEXT 

Long acting injectables (LAI) are a class of advanced drug delivery systems that are designed to 

release their cargo over extended periods of time in order to achieve a prolonged therapeutic effect. 

LAIs that are amenable to parenteral administration can confer several advantages over 

conventional drug formulations, including increased patient compliance and bioavailability of 

drug [1]. Moreover, LAIs can be engineered to provide either local (e.g., Zilretta®) or systemic 

(e.g., Lupron Depot®) drug exposure over a prolonged period, making them ideal formulation 

strategies for the treatment of chronic diseases [2]. The unparalleled chemical and physical 

diversity afforded by polymers, makes polymer-based LAIs a particularly apt version of this drug 

delivery strategy. These systems can be engineered to entrap drug within a polymer matrix with 

release occurring via erosion, diffusion, or simultaneous erosion and diffusion mechanisms [3]. In 

addition to achieving sustained or controlled drug release, the encapsulation of drug into these 

polymeric matrices can often provide protection to the therapeutic cargo [4]. To date, various 

polymer-based LAI technologies administered via the intramuscular [5], subcutaneous [6], and 

intra-articular [7] routes have received regulatory approval (Figure 1A).  

Despite the advantages associated with polymeric LAIs, their translation from bench to bedside 

remains non-trivial. In the past two decades, only about 30 polymeric LAI products have received 

regulatory approval, and this is in contrast to the thousands of conventional oral formulations 

approved in the same period [3,8]. Several pivotal challenges limit the clinical translation of 

polymeric LAIs. Firstly, there are few biodegradable polymer materials that are generally 

recognized as safe (GRAS) for parenteral administration. To date, the polymeric LAIs which have 

received clinical approval are largely based on a single polymer: poly(lactide-co-glycolide) 

(PLGA) [2,3,9]. The use of a material, such as PLGA, with an established safety profile may 

accelerate the regulatory approval of new LAI formulations. However, it is well recognized that 

polymer-drug compatibility significantly influences the performance of a formulation including 

drug loading capacity, drug release, and stability [10]. Given that each drug has its own unique 

physicochemical properties it is unlikely that any one polymer material is ideally suited for the 

formulation of all drugs. Thus, reliance on the relatively small subset of polymeric materials that 

have GRAS status likely restricts our ability to develop polymer-based LAIs for many classes of 

drugs. For drugs that display adequate compatibility to this limited number of GRAS polymer 

materials, there are a wide range of variables that must be optimized during the preparation of 
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LAIs. In addition, there are a number of distinct methods to prepare LAIs, and each method is 

associated with unique processing parameters that must be considered during formulation 

development [11]. Experimental evaluation of the number of variables that might be considered 

can soon become intractable. Moreover, changes to any of these variables has the potential to 

impact formulation performance, and the net effect of such alterations cannot be known a priori. 

During the development of LAIs emphasis is placed on achieving sustained or controlled drug 

release over extended periods of time. Often, initially promising formulations can fail at various 

stages during development due to unwanted drug release rates, making their re-formulation and 

re-evaluation necessary (Figure 1B). This trial-and-error based approach represents a significant 

bottleneck in LAI development [12].  

To date, several strategies have been investigated to inform decision making and expedite the drug 

formulation development process. Mathematical models have been used to describe drug release 

and polymer degradation [13]. These models have greatly enhanced our understanding of the 

mechanisms underlying drug release and materials degradation; however, their application is 

generally limited to post hoc analysis. More recently, molecular dynamics simulations have been 

investigated [14]. These techniques have been useful in quantifying links between drug release 

rates and formulation parameters (including particle size and drug loading levels) [15]. While the 

development of these techniques is an active area of research, molecular scale simulations of entire 

drug delivery systems are currently computationally intractable [15]. Several studies have also 

investigated machine learning (ML) approaches [12]. ML techniques, in particular deep learning 

(DL), have  recently been explored extensively for property prediction in chemistry and materials 

science [16–18]. Drug formulation development is associated with similar challenges to those 

currently being addressed using ML techniques in these areas. Regression models, such as those 

designed in this study, typically generate predictions by combining and transforming numerical 

input features through an array of stacked layers of artificial neurons, usually referred to as neural 

networks (NNs). The flexibility and established predictive power of NNs have led to the 

development of specific architectures for certain tasks, including convolutional NNs (i.e., image 

recognition), recurrent NNs (i.e., speech recognition), and graph neural networks (i.e., molecular 

property prediction). 

The current study pursued the development and use of ML models for accurate prediction of drug 

release from polymeric LAIs (Figure 1C). Past efforts to predict in vitro drug release from LAIs 



 4 

using ML have only examined models with a narrow scope of application. Szlęk et al. used NNs 

to predict drug release of proteins and peptides from PLGA-based MPs [19]. Small molecule 

studies have focused on MPs that include only a single drug formulation [20]. The limited scope 

of this previous work is not sufficient to evaluate whether ML might also allow us to design 

innovative polymeric LAIs. The current study was motivated by the ambitious goal of testing 

whether it is possible to develop a single ML model that can predict drug release profiles for 

arbitrary drug-polymer combinations. To evaluate this hypothesis, a dataset of 102 drug release 

profiles was curated from the literature and used as training data for various NN architectures. This 

training dataset included both MPs and cylinder-based implantable systems, 13 different small 

molecule drugs, and several commercially available polymers, including PLGA, polylactic acid 

(PLA), and polycaprolactone (PCL), of various molecular weights and repeat unit ratios. A second 

separate dataset containing 79 drug release profiles (made up of 33 new drug-polymer 

combinations) was also collected and used only for model evaluation. The NNs deployed in this 

study were trained to minimize root-mean-square deviation (RMSD) between their predictions and 

the experimental fractional drug release values. In this way, the models were developed to predict 

release iteratively per day. In addition, we also tested a model that would provide a single-shot 

estimate of the entire release curve by assuming a sigmoid functional form, NNsig. In both cases, 

we tested NNs with one or two outputs. In the latter case, the final layer of the network output both 

the mean and variance of the predictions to provide an estimate of its own uncertainty, these 

models are referred to as mean variance estimation (MVE) networks, or MVEsig, where the MVE 

network included parameterized sigmoid functions. Instead of predicting the experimental drug 

release values for a given input feature directly, MVEs parameterize a distribution from which the 

experimental drug release value is sampled at high likelihood (Supplementary Equation S1). 

More details on of each of these model architectures can be found in the SI.  

The initial input features for the NNs were manually selected to account for both the 

physicochemical properties of individual formulations and release experiment conditions (i.e., 

amount of surfactant present in media). During the model development phase, NN structures with 

various numbers of input features (i.e., 9, 12, 13 and 25) were trained and evaluated using leave-

one-group-out (LOGO) cross-validation. Briefly, the LOGO approach employed involved 

grouping the data into drug-polymer combinations, withholding one of these groups, training the 

model on the remaining groups and evaluating the accuracy of the predicted versus actual drug 
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release profiles for the withheld group in terms of the Pearson correlation coefficient (PCC) and 

RMSD (Figure 1 C(ii); Supplementary Figure S1). The relevance of the starting pool of 25 input 

features was determined through a series of analytical steps. For example, the magnitude of input 

weights was observed and served as a proxy for feature importance (Figure 1 C(iii); 

Supplementary Figure S2). Overall, the trained models predicted the release curves for different 

drug-polymer systems at accuracies that were in qualitative (PCC ≥ 0.95) and quantitative 

agreement (RMSD ≤ 0.2) with the experimentally obtained drug release profiles. In all cases the 

addition of parameterized sigmoid functions (i.e., NNsig and MVEsig) did not significantly improve 

the performance of models compared to the models without these constraints (Figure 1C (ii)).  

Generally, the NN and MVEs predicted drug release with comparable overall performance, with 

RMSD values ranging from 0.1 – 0.2 (Figure 1C(ii)). Despite this comparable prediction 

accuracy, the MVEs yielded one potential advantage for future applications: prediction of 

fractional drug release along with an estimation of uncertainty in the prediction. The NN models 

also predict fractional drug release but afford no measure of prediction uncertainty. This prediction 

uncertainly feature could be useful in future applications as users can be more confident in 

predictions with low uncertainty. Moreover, model uncertainty can be used for active learning, 

where the ML model identifies the most informative data to collect in order to refine its predictions 

[21]. Overall, the 12 and 13 feature MVEs afforded the best prediction accuracy on the training 

set (Figure 1C(ii)). While the 12-feature MVE exhibited a marginal improvement versus the 13-

feature NN (i.e., RMSD ~ 0.1 versus ~0.125), the 13-input feature configuration was chosen for 

the final model as it included an additional input feature that describes the physicochemical 

properties of the polymer Figure 1C(iii).  

To rigorously evaluate the generalizability of the selected 13-feature MVE, a pseudo-prospective 

study was conducted using a second dataset constructed from the published literature. The data 

from these published studies was digitized, tabulated, and used for prediction (Table 1). Most of 

the drug-polymer combinations in this external validation dataset were unseen by our model during 

training (i.e., 29/33). The 4/33 drug-polymer combinations that were present in the training set, 

differed considerably from previous entries in their input features, including drug loading capacity, 

surface to volume ratio of LAIs, and/or surfactant concentration in release media. The predicted 

release profiles for all formulations in the external validation dataset were compared with the 

experimental profiles (Figure 2A; Supplementary Figure S3 and S4). The overall prediction 
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accuracy of the model on the external validation dataset was quantified in terms of prediction 

accuracy and PCC (Supplementary Equation S5). In this way, the median prediction accuracy 

of the model was found to be 76%. This is a remarkable degree of accuracy for a ML model trained 

on such a small dataset (~ 100 release experiments), especially considering the diversity of drugs, 

polymers, drug-polymer combinations, and other LAI variables. Moreover, in many of the cases 

where the MVE prediction accuracy did not match the experimental release values, the uncertainty 

of the MVE was indicative of such lack of confidence, e.g., in the caffeine-PLGA, quercetin-PCL, 

triamcinolone acetonide-PLGA, and acetaminophen-PVL-co-PAVL predictions (Figure 2A(i-iv)). 

However, there were also a few exceptions where the predicted fractional drug release values were 

not only inaccurate, but where the error was also not captured by the estimated uncertainty: for 

example, letrozole-PLGA and lidocaine-PLGA (Figure 2A(v-vi)). In these cases, we postulate 

that the drug-polymer combinations may be beyond the predictive power of the current model 

design. This led us to a more thorough analysis of the predictions for the external validation set. 

When the accuracy of the model on the external validation dataset was assessed by grouping 

predictions in terms of drug-polymer combination, it was found that the median prediction 

accuracy for most drug-polymer combinations was above the median prediction accuracy of the 

whole validation dataset. This observation had three exceptions: letrozole-PLGA, gefitinib-PLGA, 

and lidocaine-PLGA (Figure 2B). These three systems displayed a broad range of predictive 

accuracies, with lidocaine-PLGA having an especially large fraction of inaccurate predictions. The 

prediction accuracy for letrozole-PLGA ranged from ~0.95-0.55 (n=4), for gefitinib-PLGA from 

~0.95 – 0.6 (n=5), and for lidocaine-PLGA from ~0.85 – 0.3 (n=20). Thus, there did not appear to 

be any drug-polymer group that the model was not able to predict well. Rather, there were several 

individual experiments for select drug-polymer groups that exhibited poor prediction accuracy. 

Similarly, there were some individual release profiles for other drug-polymer groups with a 

prediction accuracy that was significantly lower than the median value, i.e., paclitaxel-PVL-co-

PAVL and triamcinolone acetonide-PVL-co-PAVL (Figure 2B).  

When the prediction accuracy of the model was assessed in terms of drug (Figure 2C(i)) and 

polymer groups (Figure 2C(ii)), where polymers were grouped by the nature of the repeat unit 

(i.e., PLGA, PVA, etc.), a similar trend was observed. The median prediction accuracy of three 

drugs (letrozole, gefitinib, and lidocaine) were found to be below the overall median prediction 

accuracy of the model (Figure 2C(i)). These three drugs are all weak bases, and have the potential 
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to be at least partially ionized in physiologically relevant release media [22]. The ionization of 

these compounds could result in alterations in the physicochemical properties used as input 

features in the current model (i.e., LogP, TPSA, etc.). Moreover, these three drugs were also found 

to be the outliers for the abovementioned drug-polymer combination groupings, where each was 

prepared with PLGA (Figure 2B). This is noteworthy, as it has been proposed elsewhere that the 

hydrolysis of PLGA can result in a local decrease in pH [23], this phenomenon could have a 

profound effect on the release of such weakly basic drugs from the polymeric matrices. Moreover, 

changes in the ionization states of weakly basic and acidic compounds are well known to have a 

significant effect on drug solubility and dissolution rate [24,25]. Drug ionization during release 

experiments is a factor that warrants further investigation in future model iterations. Despite this 

observation, the prediction accuracy for several of the individual drug release profiles for letrozole, 

gefitinib, and lidocaine remained above the overall median accuracy of the model. Thus, indicating 

that perhaps values below the prediction median could be attributed to the polymers. 

Hence, the effect of polymer group on prediction accuracy was also assessed (Figure 2C(ii)). 

Polymers were grouped by nature of repeat unit, molecular weight, and where applicable, lactic 

acid to glycolic acid ratio (i.e., for the PLGA systems). Interestingly, this grouping revealed that 

for almost half of the polymer groups the accuracy of the model was less than the overall median 

prediction accuracy (i.e., (PLGA, L/G= 65:35, Mw 57,700), (PLGA, L/G= 75:25, Mw 105,000), 

(PLGA, L/G= 50:50, Mw 44,000), (PVL-co-PAVL, Mw 150,000), (PLGA, L/G= 50:50, Mw 

18,000), and (PLGA, L/G= 50:50, Mw 48,000)). Moreover, for two polymer groups the prediction 

accuracy for a significant number of the release experiments was less that 50% (i.e., (PLGA, L/G= 

50:50, Mw 18,000), and (PLGA, L/G= 50:50, Mw 48,000)). Overall, the difference in the 

prediction accuracy for different polymers, and the same polymer with different attributes, 

suggests that the input features used in the final model do not fully capture subtle differences that 

can exist between polymers with the same repeat unit. Future additional studies are warranted to 

assess more optimal methods of numerically describing complex polymers, such as molecular 

fingerprints. Indeed polymer informatics is currently an active area of research, and methods to 

better capture the array of chemical and physical diversity of polymers are key to these research 

efforts [26]. Furthermore, it was also noted that the polymer groups with the lowest median 

accuracy (i.e., (PLGA, L/G= 50:50, Mw 18,000), and (PLGA, L/G= 50:50, Mw 48,000)) and the 

drug group with the lowest median accuracy (i.e., lidocaine) were extracted from the same original 
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publication. This observation highlights the challenge associated with training ML models with 

data extracted from published studies. While collecting all experimental data in-house provides 

maximum consistency, the volume of data accessible in such a way is limited. On the other hand, 

data collected from heterogenous literature sources may harbor hidden variability and 

inconsistencies that are detrimental to the development of accurate data-driven models. In fact, 

many laboratories have different experimental protocols for conducting release studies, and these 

subtle differences can result in distinct experimental outcomes. Better data transparency, and 

adaptation of automated experimental techniques could help to overcome this current hurdle in the 

application of ML tools in pharmaceutical formulation development as shown recently in several 

self-driving laboratory studies citations [27–30]. To this end, all trained models and datasets used 

in this study are openly available online (https://github.com/aspuru-guzik-group/to-be-released-

upon-acceptance). 

In summary, this study demonstrates that DL models can predict in vitro drug release from LAIs 

with a high degree of accuracy despite the minimal amount of training data (i.e., ~100 data 

samples). This is particularly promising for the application of ML in drug formulation 

development, and other areas of the pharmaceutical sciences, where large open access databases 

of experimental data are not readily available. Cutting-edge ML technologies are now freely 

available to pharmaceutical and material scientists, and the results obtained here demonstrate the 

potential for ML to expedite the development of innovative drug delivery technologies. Among 

the strengths of modern ML models are their ability to adapt to the prediction task at hand, and to 

provide uncertainty estimates reflecting model confidence. Although no model is entirely correct, 

here we show how useful models can be readily identified, even for prediction of complex 

properties. In addition, via model analysis, we have identified some key areas of improvement and 

likely sources of error. Future studies will focus on model optimization based on a larger training 

dataset with additional features, such as formulation processing features. This study, and its 

associated dataset, will foster the development of even more advanced, tailored, and accurate ML 

approaches for the prediction of drug release profiles. Overall, this proof-of-concept study sets the 

stage for a new era of data-driven development in advanced drug delivery research. The integration 

of these technologies into drug formulation development has the potential to not only inform 

decision making and accelerate development of promising drug formulations, but ultimately lead 

to the development of more innovative drug delivery platforms.  
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Figures/Tables: 

  

Figure 1: A) Scheme demonstrating selected routes of administration for FDA approved LAI formulations. B) Schematic 

depiction of a typical trial and error loop commonly observed during the development of LAIs, termed “Traditional LAI 

Development”. C) Summary of the workflow employed here to train various ML models to predict drug release from LAIs, 

termed “Data-Driven LAI Development”. C(i); Digitization of drug release curves obtained from the literature. C(ii); Summary 

of the overall results (i.e., RMSD and Pearson’s correlation coefficient) obtained following training of various neural networks 

(NNs) and mean variance estimation (MVE) networks, without (blue) or with (orange) explicitly parameterized sigmoid 

functions, using the leave one group out cross validation method. C(iii): Summary of the final input features, and their relative 

importance, following retrospective analysis of the optimal MVE model. 
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Table 1. Summary of drugs, polymers, and LAI properties for systems included in the external validation set. 

Drug 
Polymer 

(average molecular weight) 
Drug loading 

capacity 
Particle LAI size 

(average) 
Spherical or 

cylindrical LAI 

Dexamethasone  
(DEX) 

PEA (49 kD) 
PLGA (28 kD; L/G = 50/50) 
PLGA (13 kD; L/G = 50/50) 

15% 
8% 
8% 

14 μm 
20 μm 
20 μm 

Spherical  

Gefitinib  
(GEF) 

PLGA (44 kD; L/G = 50/50) 3 - 8% 5 - 130 μm Spherical  

Cannabidiol  
(CBD) 

PLGA (12 kD; L/G = 50/50) 
PLGA (51 kD; L/G = 50/50) 

PCL (42.5 kD) 

8% 
5% 
9% 

24 μm 
24 μm 
50 μm 

Spherical  

Tetrahydrocannabinol  
(THC) 

PCL (42.5 kD) 8% 50 μm Spherical  

Caffeine  
(CAF) 

PLGA (46 kD; L/G = 50/50) 6% 62 - 94 μm Spherical  

Lidocaine  
(LDC) 

PLGA (12 kD; L/G = 50/50) 
PLGA (48 kD; L/G = 50/50) 
PLGA (10 kD; L/G = 70/30) 

1 - 18% 
1 - 2% 

5 - 42% 

3 - 9 μm 
4 μm  

5 - 100 μm 
Spherical  

Etoricoxib  
(ETC) 

PCL (10 kD) 3% 16 μm Spherical  

Quercetin  
(QRC) 

PCL (14 kD) 3 - 4% 61 – 100 μm  Spherical  

Paclitaxel  
(PTX) 

PLA (106 kD) 
PLGA (57.5 kD; L/G = 50/50) 
PLGA (10.5 kD; L/G = 75/25) 

PVL-co-PAVL (15 kD) 
PVL-co-PAVL (32 kD) 
PVL-co-PAVL (39 kD) 

2% 
1 - 2%  
1 - 2% 
10 % 

10 - 20% 
10 - 20% 

0.6 μm  
0.4 - 0.6 μm  
0.3 - 0.7 μm  

3 mm×2 mm (D×L) 
3 mm×2 mm (D×L) 
3 mm×2 mm (D×L) 

Spherical  
Spherical  
Spherical  
Cylinder 
Cylinder 
Cylinder 

Triamcinolone acetonide  
(TAA) 

PLGA (18 kD; L/G = 50/50) 
PLGA (54 kD; L/G = 50/50) 

PVL-co-PAVL (15 kD) 
PVL-co-PAVL (32 kD) 
PVL-co-PAVL (39 kD) 

5% 
5% 

10% 
10 - 20% 

10% 

73 μm  
71 μm 

3 mm×2 mm (D×L) 
3 mm×2 mm (D×L) 
3 mm×2 mm (D×L) 

Spherical  
Spherical  
Cylinder 
Cylinder 
Cylinder 

Triamcinolone hexacetonide  
(TAH) 

PVL-co-PAVL (15 kD) 
PVL-co-PAVL (39 kD) 

10% 
10% 

3 mm×2 mm (D×L) Cylinder 

Curcumin  
(CCM) 

PVL-co-PAVL (15 kD) 10% 3 mm×2 mm (D×L) Cylinder 

Acetaminophen  
(ACE) 

PVL-co-PAVL (15 kD) 
PVL-co-PAVL (39 kD) 

10% 3 mm×2 mm (D×L) Cylinder  

Letrozole  
(LTZ) 

PLGA (57.7 kD; L/G = 65/35) 12 - 20% 0.6 - 1 μm  Spherical  

Diprophylline  
(DPP) 

PLGA (46 kD; L/G = 50/50) 5 - 7% 63 - 296 μm Spherical  

Ibuprofen  
(IBP) 

PLGA (46 kD; L/G = 50/50) 14 - 20% 91 - 383 μm Spherical 

  



 11 

  

Figure 2. A) Examples of experimental release profiles in comparison to the predicted profiles and associated uncertainty. 

B) Summary of the overall accuracy of the model in comparison to the accuracy for the individual drug-polymer 

combinations, C(i) drugs, and C(ii) polymers. The accuracies based on more than one prediction are ranked, in the left panel, 

in terms of their median values and the accuracies determined on only one prediction are ranked on the right.  
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