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Abstract
Certain molecular design tasks benefit from
fast and accurate calculations of quantum-
mechanical (QM) properties. However, the
computational cost of QM methods applied
to drug-like compounds currently makes large-
scale applications of quantum chemistry chal-
lenging. In order to mitigate this problem,
we developed DelFTa, an open-source toolbox
for predicting small-molecule electronic prop-
erties at the density functional (DFT) level
of theory, using the ∆-machine learning prin-
ciple. DelFTa employs state-of-the-art E(3)-
equivariant graph neural networks that were
trained on the QMugs dataset of QM proper-
ties. It provides access to a wide array of quan-
tum observables by predicting approximations
to ωB97X-D/def2-SVP values from a GFN2-
xTB semiempirical baseline. ∆-learning with
DelFTa was shown to outperform direct DFT
learning for most of the considered QM end-
points. The software is provided as open-source
code with fully-documented command-line and
Python APIs.

Introduction
The electronic structure of drug-like molecules
is responsible for various drug-relevant prop-
erties, such as molecular recognition in pro-
tein–ligand complexes,1–5 drug-induced photo-
toxicity,6,7 reactivity for covalent ligand-protein
interaction,8–10 cell membrane permeabil-
ity,11,12 or three-dimensional (3D) conforma-
tion energies,13 to name a few.
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Figure 1: Overall idea behind the DelFTa soft-
ware package. Equivariant ∆-learning models
were trained to predict the correction (∆) be-
tween observables of a lower-cost semiempirical
baseline method (GFN2-xTB) and the corre-
sponding DFT-level reference method (ωB97X-
D/def2-SVP). Visualization inspired by refer-
ence 14.
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Despite advances in density functional the-
ory (DFT) approaches,15,16 which are widely
regarded as an attractive compromise between
chemical accuracy and computational cost,17,18
calculating quantum-mechanical (QM) prop-
erties at the DFT level of theory for many
or for sizable molecules remains a computa-
tionally expensive task. Cheaper alternatives
such as force fields19 and semiempirical meth-
ods20,21 have become popular alternatives,
albeit with reduced accuracy. To overcome
some of these issues, there has been a recent
surge of interest in quantum machine learn-
ing (QML), a set of techniques which try to
approximate quantum observables through sta-
tistical modeling approaches.22–26 Geometric
deep learning in particular, a discipline fo-
cused on the investigation of neural network
architectures that incorporate symmetry infor-
mation into their design,27–29 has become an
active topic of research. Recent advances in
geometric deep learning, such as the develop-
ment of E(3)-equivariant neural networks, have
led to improved prediction accuracy of ener-
gies,30–37 forces for molecular dynamics simula-
tions,31,38,39 and wave functions in the form of
local bases of atomic orbitals.40,41

In parallel to these developments, the so-
called ∆-QML (delta-QML) approaches, which
aim to learn corrections (∆ values) between
computationally inexpensive QM methods and
more accurate, albeit more expensive, ones
have shown to deliver useful results.42 Machine-
learned corrections of this kind have been
reported for both coupled cluster theory43,44

via DFT, and for DFT via the semiempiri-
cal family of methods GFN-xTB.45,46 However,
there are no open-source implementations of
∆-QML or readily available trained models,
which severely limits their widespread adop-
tion. Addressing this need, we here present
DelFTa, an open-source deep-learning tool-
box that enables both fast and accurate ap-
proximations of molecular electronic proper-
ties on the ωB97X-D/def2-SVP47,48 level of
theory. DelFTa is trained on the QMugs49
dataset, which enables ∆-learning between a
comprehensive array of QM observables both at

semiempirical and DFT levels of theory (Fig-
ure 1). Specifically, DelFTa learns to pre-
dict QM observables on the ωB97X-D/def2-
SVP level of theory, either directly or via ∆-
learning through corrections to the semiempiri-
cal GFN2-xTB method.21,50–52 DelFTa employs
E(3)-equivariant message-passing neural net-
works (EGNN), which are able to learn proper-
ties at the global graph (molecule), node (atom)
and edge (bond) levels29 (Figure 2). The utility
of the presented work is threefold:

1. DelFTa expands the ∆-QML prediction
landscape for drug-like molecules by pro-
viding access to commonly-used proper-
ties, such as formation energies, as well
as previously-unreported ones, such as
Mulliken partial charges, Wiberg bond
orders, energies of the highest occupied
and lowest unoccupied molecular orbitals
(HOMO and LUMO, respectively), HO-
MO/LUMO gap, and dipole moments.

2. Results show that ∆-ML achieves higher
prediction accuracy compared to direct
learning for most of the considered QM
endpoints, in both multi- and single-task
paradigms.

3. DelFTa provides an open-source pack-
age with both command-line and Python
APIs, as well as extensive documenta-
tion and tutorials, so that interested re-
searchers are able to use the provided
models, train new ones, or build upon
them.

We believe that the provided application,
which enables access to a variety of QM prop-
erties at close-to-DFT accuracy, both in a fast
and user-friendly manner, can be routinely used
in numerous relevant applications in molecular
modeling and design.

Methods

Reference dataset

DelFTa builds upon the QMugs49 data collec-
tion, which features ∼2M conformers of over
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Figure 2: Schematic of the DelFTa concept. A three-dimensional (3D) molecular conformation is
used as an input to either single- or multi-task trained E(3)-Equivariant Graph Neural Networks
(EGNNs). When a ∆-learning endpoint is requested, an additional GFN2-xTB calculation will be
carried out, and the network is tasked with predicting the correction (∆) between this baseline value
and its ωB97X-D/def2-SVP analogue. If a direct-learning prediction is requested, the network will
output an approximation to the ωB97X-D/def2-SVP value, without using the GFN2-xTB baseline.

665k molecules extracted from the ChEMBL
database (release 27),53 to extract training,
validation, and test sets. It includes QM
properties at two levels of theory, namely the
semiempirical method GFN2-xTB21,50–52 and
DFT (ωB97X-D/def2-SVP47,48).

Neural network architecture and
training

The E(3)-Equivariant Graph Neural Network
(EGNN) architecture32,54 was used for learning
the desired QM endpoints. EGNNs implement
a specific neural message-passing mechanism55

that has the advantage of transforming learned
features equivariantly under the actions of the
E(3) Euclidean symmetry group. These include
coordinate equivariance under rotations, trans-
lations and reflections in 3D Cartesian space,
as well as permutations (i.e., node ordering).29

∆-learning models for all endpoints yi, at ei-
ther global, node, or edge levels, associated with
the i-th molecular conformation, were trained
to learn the difference between DFT-computed
properties (yDFT

i ∈ Rk) and GFN2-xTB equiv-
alents (yGFN2−xTB

i ∈ Rk), specifically:

y∆
i = yDFT

i − yGFN2−xTB
i . (1)

Direct-learning models were trained to pre-
dict yDFT

i . In the proposed architecture, and
for most of the considered endpoints, molec-
ular conformations were represented as fully-
connected graphs G = (V , E ,R), alongside their
corresponding nodes vi ∈ V , edges eij ∈ E
and the respective Cartesian coordinates in
3D space ri ∈ R3. Nodes were featurized via
a linear embedding of their respective atom
types and initial edge features with sinusoidal
and cosinusoidal encoding of their pairwise di-
atomic distances ‖ri − rj‖2

2 (i.e., a Fourier-like
encoding scheme). Contrary to other published
∆-learning approaches, e.g., OrbNet,45,46 no
explicit GFN-xTB edge or node features were
used in the DelFTa models, as these did not
show substantial performance improvements in
preliminary experiments.

An Equivariant Graph-Convolutional Layer
(EGCL) is applied over all edges eij of the
graph. It uses the node embeddings of vl

i at
layer l as well as their respective atomic posi-
tions ri to produce updated node latent repre-
sentations vl+1

i :
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vl+1
i = EGCL

(
vl
i, ri, E

)
, (2)

using the following message-passing mecha-
nism:

mij = φe

(
vl
i,v

l
j, rij

)
,

mi =
∑
j

mij,

vl+1
i = φh

(
vl
i,mi

)
,

(3)

where φh,e are node and edge non-linear trans-
formations modeled with multilayer Percep-
trons non-linearized with the SiLU activation
function,56 rij are the pairwise Euclidean dis-
tance features between nodes i and j, vi and
vj their respective atom-level embeddings, mij

the computed edge message features, and mi

the aggregated message features per node.

Networks for all endpoints, and for both
direct- and ∆-learning paradigms, were trained
using the Adam stochastic gradient descent op-
timizer57 with a starting learning rate of 10−4

and a mean-squared-error loss. Node features
vi were mean-pooled after five message-passing
steps and then mapped to their corresponding
target shapes via an additional multi-layer Per-
ceptron. In the specific cases of the node-based
endpoints (i.e., Mulliken partial charges), the
learned node-level features vi were used di-
rectly for prediction without pooling. In the
specific case of Wiberg bond orders, the only
considered edge-based endpoint in this study,
networks were trained on covalently-connected
graphs, using the learned message features mij.

The following network hyper-parameters were
used in all models considered in this study: (i)
node dimension vi: 128, (ii) message passing
dimension mij: 32 for molecular and atomic
models and 64 for the Wiberg bond order mod-
els, (iii) sinusoidal and cosinusoidal distance en-
coding features: 32, (iv) number of equivariant
graph-convolutional layers: 5, and (v) number
of global multi-layer Perceptrons: 3, each con-
taining 256 hidden units. Furthermore, since
most of the considered endpoints feature dif-
ferent numerical ranges which could cause op-

timization instability issues during the training
of the multi-task models, a min-max standard-
ization strategy was applied using the 1st and
99th percentiles of each endpoint, thereby also
avoiding outlier scaling problems. Additional
technical training details are reported in the
Supporting Information to this manuscript.

Model validation

While the production models available in the
DelFTa application were trained on the en-
tire QMugs dataset, model performance was
benchmarked for different training set sizes
featuring both single molecular conformations
per molecule (100, 1k, 10k, 100k and ∼547k
training samples) as well as multiple ones
(∼1.6M individual conformers of ∼547k dis-
tinct molecules). All models were trained
using the Adam stochastic gradient descent
optimizer,57 with an early-stopping strategy
that monitored the monotonic decrease of the
chosen loss function on a validation set that
consisted of ∼29k randomly-selected molecules
(∼88k individual conformers). Each molecule
in the QMugs dataset, associated with a unique
ChEMBL identifier, was assigned to either the
training, validation or test sets, with all con-
formers of one molecule becoming part of the
same set. All optimized models were tested
on three similarly-sized and non-overlapping
test sets of ∼29k molecules each (∼88k individ-
ual conformers). In the QMugs dataset, some
molecules with distinct ChEMBL53 identifiers
are represented with the same SMILES58 no-
tation (i.e., the same 2D molecular graph). In
order to avoid information leakage from the test
sets, all molecules that shared their SMILES
representation with another one were assigned
to the test sets (see reference 49 for details).
The remaining test set molecules were chosen
at random from the QMugs dataset.

Finally, with the exception of the non-global
models considered in this study (i.e., Mul-
liken charges and Wiberg bond order models),
the performance of single-task versus multi-task
learning was investigated.
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Figure 3: Learning curves of both ∆- and direct-learning for different training set sizes. Orbital
energies and dipole moment learning curves are shown for both single- and multi-task learning.
MAEs computed on the three test sets, each comprised of ∼29k molecules (∼88k conformers).

Results
Test-set learning curves evaluated using mod-
els trained with varying training-set sizes are
shown in Figure 3. For most of the considered
endpoints, the ∆-learning models consistently
achieved a better predictive performance than
the direct-learning models, as measured by
lower mean absolute errors (MAEs) w.r.t. DFT
reference values. This performance gap was re-
produced for most training set sizes, which
also highlights the potential usefulness of ∆-
learning in low-data regimes. The multi-task
models generally outperformed their single-
task counterparts, with the notable exception
of formation energy (not shown). Due to this
discrepancy, the DelFTa production applica-
tion code implements single-task inference by
default for this endpoint, and multi-task infer-
ence for the remaining ones, trained explicitly
without formation energy data.

The predictive performance of the models
trained on 1.6M training conformers was an-
alyzed in more detail. Table 1 shows MAEs

w.r.t. the ωB97X-D/def2-SVP reference val-
ues obtained for the test sets, and compares
them to MAEs of the utilized baseline method
GFN2-xTB. For all considered endpoints, the
DelFTa application approximates the ωB97X-
D/def2-SVP reference values more closely than
the semiempirical GFN2-xTB baseline. The
direct-learning approach achieved a slightly
lower MAE (0.0350 eV) on the prediction of
HOMO energies than its ∆-learning counter-
part (0.0367 eV). Scatter plots showing ∆-
predicted properties versus their DFT reference
values are provided in Figure 4.

We compared the implementation of the
EGNN models used in this work to the one orig-
inally reported.32 With that goal, we provide
results on the QM9 dataset,59 a well-known
benchmark used in previous QML studies which
features quantum observables for ∼134k small
molecules. The same model architecture used in
this application for the direct-learning of forma-
tion energies was retrained on the QM9 train-
ing set (composed of 100k molecules), validated
and tested on its respective validation and test
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Table 1: Benchmark results showing MAEs (± 1 standard deviation) w.r.t. ωB97X-D/def2-SVP
reference values for ∼88k molecules (∼263k conformers) from the three test sets. Relative energy
difference computed as the average pairwise energy difference between the individual conformers of
a molecule. Wiberg bond order results for covalent bonds only. Bold numbers highlight the method
with the lowest MAE w.r.t. reference values.

Property Unit GFN2-xTB DelFTa
∆-learning direct-learning

Formation energy eV 86.34 (± 0.04) 0.0983 (± 0.0004) 0.513 (± 0.001)
HOMO energy eV 2.1154 ± (0.0005) 0.0367 (± 0.0001) 0.0350 (± 0.0001)
LUMO energy eV 7.7730 (± 0.0007) 0.0278 (± 0.0002) 0.0368 (± 0.0002)
HOMO-LUMO gap eV 5.658 (± 0.001) 0.0473 (± 0.0002) 0.0529 (± 0.0001)
Total molecular dipole D 0.622 (± 0.002) 0.0946 (± 0.0006) 0.1588 (± 0.0006)
Mulliken partial charges e 0.0610 (± 0.0000) 0.0027 (± 0.0000) 0.0029 (± 0.0000)
Wiberg bond orders - 0.0634 (± 0.0001) 0.0017 (± 0.0000) 0.0021 (± 0.0000)
Conformer pairwise energy difference eV 0.0736 (± 0.0004) 0.0612 (± 0.0004) 0.197 (± 0.001)

sets (each comprised of ∼15k molecules). The
trained models achieved an MAE of 15.1 (±0.4)
meV on four independent model runs, which is
roughly in the same ballpark as the originally-
reported performance (12 meV), and suggests
that the chosen architecture was successfully
reimplemented. The lower overall error of the
models trained on QM9 compared to those
trained on QMugs can be attributed to two key
differences between the sets, namely atom type
diversity (10 different atom types in QMugs, 5
in QM9), and molecular size (up to 100 and
9 heavy atoms for QMugs and QM9, respec-
tively).

Listing 1: A small snippet highlighting the
main predictive capabilities of the DelFTa
Python package and its integration with Py-
bel. Molecules, with or without associated 3D
geometry, can be supplied via a wide array of
file types.

from delfta.calculator import
DelftaCalculator

from openbabel.pybel import
readstring

mol = readstring("smi", "CCO")
calc = DelftaCalculator ()
predictions = calc.predict(mol)
print (predictions)
# >> {" E_form ": -1.2982624 , "E_lumo

": 0.18278737 , ...

Software
DelFTa is fully implemented in the Python
programming language60 and uses the Py-
Torch package61 (version 1.8.0) and PyTorch
Geometric package62 (version 1.7.2) to en-
able model training and inference. A min-
imalist code example for the usage of the
package is provided in Listing 1. Semiem-
pirical calculations at the GFN2-xTB21,50–52

level of theory are computed via open-source
xtb binaries. All molecular manipulation rou-
tines are integrated into DelFTa and handled
via the Pybel package63 and OpenBabel64
Python bindings. The DelFTa package is fully
open-sourced, available on GitHub (https:
//github.com/josejimenezluna/delfta) un-
der a permissive AGPLv3 license, and dis-
tributed through the conda package manager.65
A Docker66 container is also provided for easier
accessibility and to ensure long-term function-
ality. Furthermore, DelFTa provides extensive
documentation for its code and APIs. Tuto-
rials in the form of several didactic Jupyter
notebooks67 are also available.

On a computer with a single Nvidia GTX
1080Ti graphics processing unit, DelFTA pre-
dicts all considered endpoints at a speed of
approximately 50 and 5 molecules per second
for the direct and ∆-learning models respec-
tively, with the latter approach mostly bot-
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Figure 4: Scatter plots illustrating the accuracy of the predictions provided by the trained ∆-
learning models and the GFN2-xTB baseline, w.r.t. DFT reference properties (ωB97X-D/def2-
SVP) for ∼88k test set molecules (∼263k conformers). ∆-learning predictions obtained using the
models trained on the 1.6M conformer training set, and with single-/multi-task settings as described
in the Methods section. MAEs w.r.t. DFT reference. Wiberg bond orders for covalent bonds only.
Colorbars scaled individually for each property.

tlenecked by the additionally-required baseline
GFN2-xTB calculations.

Discussion
The models provided under the DelFTa appli-
cation pave the way for large-scale applications
of quantum chemistry in molecular modeling
for small-molecule drug discovery by provid-
ing fast and accurate property predictions at
close-to-DFT accuracy. The trained machine-
learning models were validated for both ∆- and
direct-, as well as single- and multi-task learn-
ing paradigms. The results shown in this study
suggest that the DelFTA application shows im-
proved accuracy over its GFN2-xTB baseline in
approximating ωB97X-D/def2-SVP reference
values for many of the considered endpoints
on previously unseen bioactive molecules, at
roughly the same computational cost.

These models enable fast and accurate ac-
cess to drug-relevant QM features for many
molecules, thereby facilitating their integration
into small-molecule computational pipelines
for both predictive and generative tasks. For
instance, featurization with quantum-derived
properties, such as partial charges and nuclear
magnetic resonance shifts, was shown to in-
crease the performance of reactivity predic-
tion with graph neural networks in low-data
regimes.68 As the electronic structure of drug-
like molecules governs many related proper-
ties, many of such effects can be anticipated
in medicinal chemistry. Potential examples
include the influence of (i) HOMO/LUMO
energies on phototoxicity,6,7 (ii) dipole mo-
ments on aqueous solubility69,70 as well as on
membrane permeability,11,12 (iii) formation en-
ergies on 3D-conformer ensembles11 or site-
of-metabolism prediction,71 and (iv) partial
charges and bond orders on non-covalent inter-
actions.72
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Future prospective application will reveal the
practical applicability and usefulness of DelFTa
for drug discovery-related tasks. The current
limitations are twofold, concerning the mod-
elling performance and applicability domain.

With regards to modelling performance, we
note that while the ∆-learning approach af-
fords substantial improvements over the direct-
learning approach w.r.t. ωB97X-D/def2-SVP,
this does not hold in the case of HOMO ener-
gies. Additionally, while the conformer pairwise
energy ∆-learning model clearly outperforms
its direct-learning analogue, the performance
of the former is arguably close to that one of
GFN2-xTB. This issue could be mitigated in
future work by the use of a loss function that
explicitly takes into account conformer energy
differences at the training stage.45,46,73 Finally,
the previously-mentioned conclusions do not
necessarily hold for reference values computed
with a more comprehensive basis set, namely
those obtained via ωB97X-D/def2-QZVP. A
preliminary test computed for 2, 874 conforma-
tions corresponding to 958 distinct molecules
did not indicate superior performance of ∆-
learning over direct learning (see Supporting
Information). Furthermore, Mulliken partial
charges and conformer pairwise energy differ-
ences on the ωB97X-D/def2-QZVP level of
theory were better approximated using GFN2-
xTB than with either of the provided DelFTa
models.

Limitations in regards to applicability do-
main issues mostly stem from the underlying
QMugs training dataset, as it was conceived
with medicinal chemistry applications in mind.
For example, it does not feature organometallic
complexes, polymers, crystalline structures, or
molecular systems which include dimers, radi-
cals, excited electronic states, higher order spin
states, charged molecules, or off-equilibrium
structures. Predictive models for these types
of molecular structures would require train-
ing data that specifically covers the respective
chemical space, and therefore remain a subject
of future work.
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