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Embedding theory is a powerful computational chemistry approach to exploring the electronic structure and
dynamics of complex systems, with QM/MM being the prime example. A challenge arises when trying to
apply embedding methodology to systems with diffusible particles, e.g. solvents, if some of them must be
included in the QM region, for example in the description of solvent-supported electronic states or reactions
involving proton transfer or charge-transfer-to-solvent: without a special treatment, inter-diffusion of QM and
MM particles will lead eventually to a loss of QM/MM separation. We have developed a new method called
Flexible Boundary Layer using Exchange (FlexiBLE) that solves the problem by adding a biasing potential
to the system that maintains QM/MM separation. The method rigorously preserves ensemble averages by
leveraging their invariance to exchange of identical particles. With a careful choice of the biasing potential,
and the use of a tree algorithm to include only important QM and MM exchanges, we find the method
has an MM-forcefield-like computational cost and thus adds negligible overhead to a QM/MM simulation.
Furthermore, we show that molecular dynamics with the FlexiBLE bias conserves total energy and remarkably,
dynamical quantities in the QM region are unaffected by the applied bias. FlexiBLE thus widens the range
of chemistry that can be studied with embedding theory.

I. INTRODUCTION

A common strategy to modelling reactions in com-
plex systems is to use an embedding approach, in which
a chemically active region is treated with a high level
of theory (e.g. ab initio electronic structure) and the
remainder of the system is treated at a lower level of
theory. The most widely used embedding method, and
the subject of our first application, is QM/MM, which
invokes a Quantum Mechanical (QM) treatment of the
active region with the remainder of the system treated
with Molecular Mechanics (MM) forcefields;1–21 however,
QM-in-QM embedding has also seen significant interest
in recent years.22–25

QM/MM has found broad applications ranging from
enzymology, structural biology, materials science, and
spectroscopy, among others.20,26–32 Another impor-
tant use of QM/MM is in describing solution-phase
chemistry,28,33,34 since a solvent environment lends it-
self naturally to an MM description, with the solute
treated at a QM level. This approach can be com-
bined powerfully with ab initio molecular dynamics for
a first-principles description of reactivity in complex
systems.6,28,31,35,36 However, a problem arises when ap-
plying embedding theory to a system of diffusible parti-
cles, such as a solvent, if some of them are treated at the
QM level: a QM/MM boundary must be made between
identical molecules, and without special techniques, the
QM and MM molecules will inter-diffuse, leading to a loss
of QM/MM partitioning. Of course, one straightforward
way to avoid this issue is to treat the solvent entirely at
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the MM level; however, this is not always possible, for ex-
ample if the chemical process of interest involves proton
or charge transfer with the solvent. Other solvated sys-
tems that pose a challenge for traditional QM/MM ap-
proaches are solvent-supported electronic states, a prime
example of which are solvated electrons, which are excess
electrons embedded in a liquid solvent.37–40

There are two broad classes of approaches to solving
the boundary issue in QM/MM with diffusible particles:
Adaptive QM/MM and Constrained QM/MM. In the for-
mer approach, the treatment of particles changes dynam-
ically between QM and MM descriptions as the molecule
traverses the boundary. This is usually accomplished by
an interpolation of QM and MM energies and/or forces
between the regions, and several such methods have been
developed, differing in how the boundary is defined and
how the interpolation is achieved.3,7–9,11,14,16,18,21 Adap-
tive methods have the advantages that the number of
QM molecules need not be conserved and diffusional dy-
namics are captured. However, it is known that cur-
rent adaptive QM/MM methods suffer from structural
and dynamical artefacts at the boundary due to a mis-
match of QM and MM interactions, which must some-
how be corrected.21 High quality MM forcefields, such as
MBPol, show promise at overcoming this QM/MM mis-
match issue.41

In contrast to Adaptive QM/MM, Constrained
QM/MM methods use a fixed definition of QM and MM
atoms and apply some form of bias to the system to main-
tain their separation. Several methods fall under this
category, including the method we develop below. To
our knowledge, the first Constrained QM/MM method
was Flexible Inner Region Ensemble Separator (FIRES),
introduced by Rowley and Roux.10 FIRES adds a half-
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harmonic repulsion potential to MM molecules at the
boundary, whose location dynamically adjusts based on
the outermost QM molecule. The magnitude of bias
required to maintain QM/MM separation was however
found to be large, so the authors cautioned against us-
ing FIRES with a large QM region or for the predic-
tion of dynamical quantities.10 Shiga and Masia devel-
oped the Boundary based on Exchange Symmetry The-
ory (BEST) method which uses a carefully chosen bias
potential to achieve QM/MM separation while preserv-
ing ensemble average quantities.12,13 However, similar
to FIRES, a large magnitude of bias was required to
maintain QM/MM separation, necessitating the use of
small timesteps of 0.25 fs. These authors later developed
Quasi-boundary based on Exchange Symmetry Theory
(QUEST), which corrects for violations of exchange sym-
metry due to differences in the QM and MM potentials,
at the expense of additional QM calculations on the ex-
changed particle configurations.42 They found these cor-
rections improved the predictions of dynamical properties
for a toy system compared to BEST; however, a QM/MM
implemention of QUEST has not yet been described. The
Boundary Constraint with Correction (BCC) method,
developed by Takahashi and co-workers, applies a post-
processing correction to constrained QM/MM simula-
tions to remove effects of the bias from equilibrium prop-
erties, when the bias potential itself is not constructed
to preserve equilibrium properties;19 however, no correc-
tion for dynamical properties was developed. Based on
the current status of constrained QM/MM methods, it
is evident that there is room for improvement, in partic-
ular with respect to reducing the magnitude of required
bias so that dynamical quantities are minimally affected,
at least in the inner QM region and for sub-diffusional
timescales.

Building on the formalism introduced in BEST,12 in
this work we develop the Flexible Boundary Layer us-
ing Exchange (FlexiBLE) method. The key idea is a
construction of the biasing force that acts, in princi-
ple, on every QM and MM pair and all their possible
combinatorial exchanges. With a careful choice of bias-
ing potential, however, the biasing forces can be trun-
cated outside a narrow boundary layer of QM and MM
molecules, and the surviving terms can be efficiently enu-
merated with a tree algorithm. As a result, the influence
of the bias is highly localized to the boundary region,
and we demonstrate that ensemble and even dynami-
cal properties are preserved in benchmark one-electron
mixed/quantum classical (MQC) simulations of the aque-
ous solvated electron, e−(aq).

43,44 In the companion pa-

per, we use FlexiBLE to build an ab initio many-electron
QM/MM model of e−(aq) to explore its structural and elec-

tronic properties.

The remainder of the paper is as follows. In section
II A, we briefly review the formalism of BEST to provide
context for a description of the FlexiBLE method, which
is introduced in section II B. In section III, we benchmark
the method on equilibrium and dynamical properties of

a MQC description of the hydrated electron. Finally,
conclusions are drawn in Section IV.

II. THEORY

A. BEST

To provide the context for our development of Flexi-
BLE, we first review the formalism of BEST introduced
by Shiga and Masia.12 The starting point is the recogni-
tion that an ensemble average is invariant to exchanges
of like particles. Thus, by treating QM and MM sol-
vent particles as identical (necessarily an approximation
unless the MM potential perfectly mimics the QM po-
tential), one can perform a weighted ensemble average
wherein configurations that have MM and QM mixing
(exchanges) are included with a low weight, whereas
configurations that have MM and QM separation are
included with high weight. In particular, consider the
canonical ensemble average of observable X:

〈X〉 =

∫
X(R) exp(−βV (R)) dR∫

exp(−βV (R)) dR
, (1)

where V (R) is the system’s total potential energy, β =
1/kBT is the inverse of the temperature multiplied by
Boltzmann’s constant, and R = (· · · ,Ri, · · · ,Rj , · · · )
is a configuration of atomic positions. In Eq. 1, con-
figurations with an exchange of QM and MM particles
are averaged with equal weights. We could instead add
their contributions to the ensemble average with different
weights by introducing a normalized bias function with
the following properties:

fijk··· ≡ f(· · · ,Ri, · · · ,Rj , · · · ,Rk, · · · ) ≥ 0 (2)∑
L

P̂L(fijk···) = 1, (3)

where P̂L is an operator that permutes the indices ijk · · ·
and the second equality above ensures that f is normal-
ized after summing over all possible QM and MM ex-
changes. Shiga and Masia showed that with a bias func-
tion that satisfies Eqs. 2 and 3, and using the permuta-
tional symmetry of X and V , the ensemble average is for-
mally unaffected by the inclusion of the bias function:12

〈X〉 =

∫
X exp(−βV )fijk··· dR∫
exp(−βV )fijk··· dR

(4)

=

∫
X exp(−βṼ ) dR∫
exp(−βṼ ) dR

(5)

where the second equality results from incorporating the
bias function with an added bias potential:

Ṽijk··· = V + V bias
ijk··· (6)

V bias
ijk··· = −kBT log fijk··· (7)
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To ensure normalization, the bias function can be written
as:

fijk··· =
hijk···∑

L P̂L(hijk···)
, (8)

where hijk··· is an unnormalized penalty function, and the
denominator of Eq. 8 is a normalization factor that sums
the penalty function over all possible QM and MM parti-
cle exchanges, resulting in (NQM +NMM)!/(NQM!NMM!)
unique terms.

Eq. 5 holds true for any bias function satisfying Eqs. 2
and 8, and this provides a great deal of flexibility in
the choice of penalty, h, in Eq. 8, which we will take
advantage of below in our formulation of FlexiBLE. To
maintain QM/MM separation, h should be non-zero for
configurations with QM/MM separation and vanishingly
small for configurations with QM/MM mixing. In this
work, following Shiga and Masia,12 we take the QM re-
gion to be a sphere centered around the origin of the
system, with MM particles outside the sphere. General-
izations to other QM geometries are possible.12 Perfect
QM/MM separation is then achieved when the radial dis-
tance from the origin of every QM particle is less than
the radial distance of every MM particle. Shiga and Ma-
sia proposed the following penalty function to bias the
ensemble towards QM/MM separation:12

hij··· ,kl··· =

NQM∏
m=i,j,···

NMM∏
n=k,l,···

gmn (9)

gik =

{
1, xi < xk

exp(−α(xi − xk)), xi ≥ xk,
(10)

where xi and xk are the radial distances from the ori-
gin of the QM and MM particles respectively, and gik is
a pair function of QM and MM distances that is unity
for QM particles closer to the origin than MM particles
(thus favoring QM/MM separation), and decays expo-
nentially to zero with the distance of any QM particle
further from the origin than an MM particle (thus biasing
against QM/MM mixing). The exponent parameter, α,
controls the rate of decay of bias with QM-MM distance:
larger values of α achieve better QM/MM separation, al-
though as we show below, at the expense of requiring a
small MD timestep.

While Eq. 9 formally applies a biasing force to every
QM and MM particle, and therefore one might worry
that their dynamics are strongly influenced by the bias,
the product-of-exponentials form of the penalty function
means that for a large enough α, the dominant bias forces
will be imposed only on a single pair corresponding to
the furthest QM and closest MM particles. This mo-
tivated Shiga and Masia to develop a Single Exchange
(SE) approximation to the bias function, wherein Eq. 9
involves only the pair function between the furthest QM
and closest MM particles, which after normalization via

Eq. 8 leads to the following bias function:12,13

fSEi,k =
gik

gik + gki

=
1

1 + exp(+α(xi − xk))
, (11)

where i and k index the furthest QM and closest MM
particles respectively.

The pair function and resulting bias potential of BEST
in the SE approximation are shown as the black and red
curves respectively in Fig. 1(a). Here it is seen that in the
limit of large QM and MM separation, the bias potential
tends to a linear increasing function of distance, meaning
a constant bias force is applied to the furthest QM and
closest MM particles to restore QM/MM separation. The
magnitude of the restoring force is proportional to α,
which explains why BEST in the SE approximation can
fail to maintain QM/MM separation for small α.12
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FIG. 1. Pair functions (black curves, left axis) and bias po-
tentials (red curves, right axis) for a single QM and MM pair
as a function of their displacement difference, ∆x = xi − xk.
Panel (a) BEST (Eq. 10) with α = 30 Å−1, panel (b) Flexi-
BLE (Eq. 14) with α = 15 Å−1.

The SE approximation has the advantage that it avoids
the formally factorially scaling number of exchanges re-
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quired by Eq. 8, and the approximation can be made bet-
ter by increasing the value of α in Eq. 11. However, while
Eq. 11 is an analytic function for a given QM and MM
pair, since it is defined in terms of the furthest QM and
closest MM particles, whose identities can change dis-
continuously in the course of a dynamics simulation, fSE

is a non-analytic function of the particles coordinates,
and therefore using it as a biasing function in molecular
dynamics leads to energy non-conservation, as we show
below.

A step up in complexity from the SE approximation
is the Double Exchange (DE) approximation, which con-
siders pair functions involving the furthest two QM and
closest two MM particles.12 Then, following Eq. 9, the
penalty function becomes the product of four pair func-
tions:

hij,kl = gik × gil × gjk × gjl, (12)

and the bias function is normalized by a sum of (2 +
2)!/(2!× 2!) = 6 terms:

fDE
ij,kl =

hij,kl
hij,kl + hkj,il + hlj,ki + hik,jl + hil,kj + hkl,ij

,

(13)
where ij and kl index the two furthest QM and two clos-
est MM particles respectively. While the DE approx-
imation might be expected to improve over the SE ap-
proximation, we find below that it exhibits poorer energy
conservation than the SE approximation. This results
from the derivative discontinuity of the pair function in
Eq. 10 at xi = xk, shown as the kink in the black curve
in Fig. 1(a).

The issues of derivative discontinuities in the BEST
bias potential motivated us to explore alternative func-
tional forms for the pair potential, and led to the devel-
opment of the FlexiBLE method described in the next
section.

B. FlexiBLE

Our FlexiBLE method involves two key differences to
BEST. The first modification we make is to the pair func-
tion, gik, to ensure it applies an increasing bias force
with QM and MM distance while also having continuous
first and second derivatives. The second modification is
to include all non-negligible permuted penalty functions,
hij··· ,kl···, by truncating the denominator of the bias func-
tion in Eq. 8 using a tree algorithm. We provide details
of these developments below.

1. Pair function

As noted above, the BEST pair function, gik, in Eq. 10
leads to a constant bias force (being proportional to the
derivative of the pair function) between a pair of QM and
MM particles with large QM and MM separation (see

Fig. 1). The magnitude of the bias force that restores
QM and MM separation is furthermore proportional to
the exponent parameter, α, so if this parameter is too
small, QM and MM separation is not maintained (see for
example Fig. 4 of Ref. 12). Although this issue can be re-
solved by choosing a sufficiently large value of α, we find
below that the resulting large bias forces require a small
timestep of 0.25 fs for a stable MD simulation, and this
incurs a significant computational overhead unless a mul-
tiple timestep algorithm is used.13 To allow the use of a
smaller α parameter, it would be preferable to have a bias
force that increases with QM and MM separation. This
can be achieved by replacing the exponent in Eq. 10 with
a function that has a quadratic decay at large QM and
MM separation. Although a simple half-Gaussian func-
tion for xi ≥ xk would satisfy this property, the second
derivative of such a pair function would be discontinu-
ous at xi = xk and this would likely cause convergence
problems in geometry optimizations. After some exper-
imentation, we opted for the following rational form of
the pair function’s exponent:

gFlexiBLE
ik =


1, xi < xk

exp(− α3(xi − xk)3

1 + α(xi − xk)
), xi ≥ xk

(14)

The FlexiBLE pair function of Eq. 14 and the resulting
bias potential for a pair of QM and MM particles are
shown Fig. 1(b), where we see our choice of a rational
function exponent yields a smooth pair function (contin-
uous first and second derivatives) while also exhibiting
a quadratically increasing bias potential in the limit of
large QM and MM separation.

It is interesting to explore the behavior of the bias po-
tential for a pair of QM and MM particles with ∆x =
xi − xk ≤ 0. In this regime, the QM and MM particles
are not mixed, yet the bias potential is non-zero. This re-
sults from the normalization condition on the bias func-
tion (Eq. 8): as QM and MM particles approach each
other from ∆x < 0, the bias function with exchanged
QM and MM indices becomes non-negligible, so the mag-
nitude of the bias function is reduced from unity. Con-
tributions to the bias potential from QM and MM pairs
that have xi ≤ xk must therefore be considered; how-
ever, the bias potential is seen to decay rapidly to zero
for xi � xk suggesting a truncation of terms involving
exchanges between QM and MM particles with large neg-
ative displacement differences is possible. Furthermore,
the rapid increase of V bias with xi � xk strongly bi-
ases against a large number of QM and MM pairs having
∆x > 0, which always contribute to the bias potential,
again suggesting a truncation of terms is possible. In-
deed, we show below that the FlexiBLE bias function
can be aggressively truncated. Nevertheless, the form of
the bias function does permit a small degree of QM/MM
mixing around ∆x = 0 close to the QM/MM boundary.
This is true for any choice of pair function, including the
form used in BEST. The width of this mixing region is
controlled by how rapidly the pair function decays with
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QM/MM separation, and can thus be made negligibly
small with a suitably large value of α.

2. Truncating the bias function

The second modification to BEST we make is to in-
clude all non-negligible QM and MM exchanges in the
calculation of the denominator of the bias function in
Eq. 8. Since the total number of exchanges increases fac-
torially as (NQM + NMM)!/(NQM!NMM!), which would
introduce a computational bottleneck for QM regions of
more than a few particles, to make FlexiBLE practical,
we must aggressively truncate the sum over exchanges
in Eq. 8. The key to making this possible is a product
of pair function form of the penalty function, which we
retain from the BEST formalism:

hFlexiBLE
i′′j′′··· ,k′′l′′··· =

N imp
QM∏

m=i′′,j′′,···

N imp
MM∏

n=k′′,l′′,···

gFlexiBLE
ImIn , (15)

where i′′, j′′, · · · index important QM particles (to be de-

fined below) of which there areN imp
QM , and k′′, l′′, · · · index

important MM particles of which there are N imp
MM. Im is

the original index of the m-th important particle. Since
the bias potential favors QM/MM separation, most of
the QM and MM pairs give gFlexiBLE

mn = 1 and their con-
tributions therefore do not need to be included in the
penalty function. Furthermore, given the exponential
form of the pair function in Eq. 14, the magnitude of the
penalty function in Eq. 15 is dominated by the smallest
value of gFlexiBLE

mn , which comes from the pair involving
the furthest QM and closest MM particles after a par-
ticular exchange pattern. When the distance difference
between the furthest QM and closest MM particle is large
following exchange, the value of gFlexiBLE

mn , and therefore
also hFlexiBLE, for that exchange pattern can be safely
neglected from the denominator of Eq. 8.

The observations above imply two levels of trunca-
tion in forming the bias function: Firstly, most QM and
MM particles do not contribute to the denominator of
the bias potential, because they give gFlexiBLE

mn = 1 (and
therefore could be neglected in the evaluation of Eq. 15)
and gFlexiBLE

mn ≈ 0 when exchanged (and therefore yield a
value of hFlexiBLE that can be neglected from the denom-
inator of Eq. 8). Secondly, most exchange patterns in
the denominator of Eq. 8 can be neglected because they
involve multiple exchanges of QM and MM particles that
result in a negligibly small hFlexiBLE. The denominator of
the bias function can therefore be aggressively truncated
and the FlexiBLE bias function is thus:

fFlexiBLE =
hFlexiBLE
ij··· ,kl···∑

L∈Limp P̂L

(
hFlexiBLE
i′′j′′··· ,k′′l′′···

) , (16)

where Limp is the set of important QM/MM exchanges
which lead to a non-negligible contribution to the de-
nominator, i.e. for which P̂L (hi′′j′′··· ,k′′l′′···) > hthre,

where hthre is a threshold parameter. Note: the nu-
merator penalty function is evaluated for all QM and
MM pairs, without truncation (indicated by unprimed
indices). This is because the numerator could have a
value below the threshold parameter, but must not be
approximated as zero, or else the bias potential would
diverge.

The first type of truncation of the FlexiBLE bias func-
tion involves a pre-screening of important QM and MM
atoms that have at least one exchange resulting in a non-
negligible value of hFlexiBLE > hthre in the denominator
of Eq. 16. To find the important QM and MM particles
we start by reordering their indices based on the parti-
cle’s distance from the QM origin. Note: this reordering
might involve exchanges of QM and MM particles, but
as explained below, this is an exchange pattern that will
always be retained in the denominator of Eq. 16. Then,
as we show in Appendix C, a rigorous upper bound to
hFlexiBLE resulting from any exchange pattern (following
reordering) that exchanges the p′th particle from QM to
MM, and no closer QM particles, is given by the value
of the ordered penalty function with a single exchange of
the p′th particle with the innermost MM particle (with
index k′), i.e.:

hQM bound
p′ = hFlexiBLE

i′j′···k′··· ,p′l′···, (17)

where the primed indices indicate they have been re-
ordered. Likewise, an upper bound to hFlexiBLE resulting
from any exchange pattern that exchanges the q′th par-
ticle from MM to QM, and no further MM particles, is
given by its exchange with the outermost QM particle
(having index NQM):

hMM bound
q′ = hFlexiBLE

i′j′···q′,k′l′···NQM···. (18)

Furthermore, it is clear that the bounds decay mono-
tonically with increasing distance from the QM/MM
boundary, so that important QM and MM atoms can

be quickly pre-screened to satisfy hQM bound
p′ > hthre and

hMM bound
q′ > hthre.
The ability to pre-screen important QM and MM par-

ticles demonstrates that the FlexiBLE bias potential in-
curs non-negligible bias forces only on QM and MM par-
ticles within a thin layer at the QM/MM boundary. The
boundary layer’s radius depends on the instantaneous lo-
cation of the outermost QM and innermost MM parti-
cles (following reordering), and the width of the layer
depends on the bounds in Eq. 17 & 18. The boundary
layer is therefore flexible and allows for density fluctua-
tions in both the QM, MM, and their boundary regions.
A schematic of the boundary layer is shown in Fig. 2.

While pre-screening the important QM and MM par-
ticles is vital to an efficient implementation of FlexiBLE,
used alone it does not avoid a steeply scaling computa-
tional cost with number of QM particles (confirmed nu-
merically in Fig. 9 below). This can be understood from
Fig. 2: as the total number of QM particles grows, so too
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FIG. 2. Schematic of the FlexiBLE boundary layer. Parti-
cles are indicated by small circles (QM: red shade, MM: blue
shade). Important QM and MM particles that experience
bias forces are indicated by dark-shaded colors and form a
boundary layer (shaded in green).

does the number of important particles in the bound-
ary layer, which scales as the ratio of the QM region’s
surface area to its volume (NQM)2/3 for the spherical
QM/MM partitioning of interest. Thus, to reduce the
scaling, a second type of truncation must be performed:
to neglect small values of the exchanged penalty function,
P̂L (hi′′j′′··· ,k′′l′′···) in the denominator of Eq. 16, which
we achieve with a tree algorithm.

We initiate the tree by noting that the one exchange
pattern of QM and MM indices that is guaranteed to
have the largest contribution to the denominator of the
bias function is the exchange that results in an ordering
of QM and MM distances, i.e. perfect QM/MM separa-
tion, with a penalty function equal to 1. This exchange
pattern must always be included, and since the penalty
function from all other exchange patterns must be less
than or equal to the ordered penalty function, we take
this to be the root of the tree structure. The tree is then
traversed as follows: taking each node on the previous
level as a parent, we generate child nodes on the next
level by performing a single exchange between each QM
particle and the next immediate outer particle if it is
an MM particle. We avoid duplication of children with
each other by comparison against a growing list of vis-
ited child nodes on each level. Without truncation, the
tree would terminate on a single node corresponding to
complete MM and QM exchange, although of course this
would ordinarily correspond to a negligibly small penalty
function, and the tree could have been truncated many
levels before this.

We generate the tree in the above way for two reasons:
1) without any truncation, the procedure is guaranteed

to visit every unique QM and MM exchange, as proved
in Appendix A. 2) The penalty functions for child nodes
constructed as a single exchange between a QM and the
next outer particle (if MM) are guaranteed to be less than
or equal to the penalty function of their parent node, as
we prove in Appendix B. Thus, once a parent node is
below the penalty function threshold, hthre, no children
need to be generated and that branch of the tree can
be truncated: this is the key to avoiding strict factorial
scaling in the number of denominator terms.

In Fig. 3, we show a schematic of our tree algorithm
applied to a hypothetical system of 3 important QM and
3 important MM particles. As in this example, the zeroth
level always contains a single root node corresponding to
the ordered indices. In addition, the root node always
gives rise to a single child on the first level corresponding
to an exchange of the outermost QM and innermost MM
particle indices (3 and 4 respectively in this example). If
the displacement difference between the outermost QM
and innermost MM particle was sufficiently large com-
pared to α−1, the tree could be truncated at this level
(we do find this to occur occasionally during the MD tra-
jectories described below). In the hypothetical example
considered in Fig. 3 however, this is not the case, and
the second level thus has two children from exchanging
QM particle 2 with MM particle 3, and QM particle 4
with MM particle 5. These nodes then generate three
children on level 3 (note, one child is shared between the
two parents of level 2). At this level, our algorithm de-
tects that the node corresponding to hFlexiBLE

126,345 falls be-
low the threshold (indicated by the change of color to
red), and therefore no children are generated from this
node. At level 4, only a single child meets the thresh-
old criterion, while at level 5 no children are above the
threshold, and therefore the algorithm stops. All surviv-
ing nodes are summed to give the denominator of Eq. 16:
note, we include parent nodes that were below thresh-
old, since we had already computed their bias function;
however, their children are discarded. We provide pseu-
docode for the tree algorithm in the supporting infor-
mation. We verify numerically below that the number
of surviving child nodes exhibits sub-exponential scaling
with QM size, with a lower exponent power than without
truncation.

While the tree algorithm described above is an efficient
means to sum over important exchanges of the penalty
function in the denominator of the FlexiBLE bias func-
tion, the relation between the penalty function threshold,
hthre, and the error introduced by truncation of the de-
nominator is not immediately clear. In particular, since
the penalty function is always positive, truncation nec-
essarily leads to an underestimate of the true denomi-
nator. Furthermore, the number of neglected nodes in
the tree grows factorially with the number of important
QM and MM particles following pre-screening. While our
tree algorithm guarantees that each neglected node has a
penalty function below the threshold, one might be con-
cerned that an astronomical number of neglected nodes
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FIG. 3. The FlexiBLE tree algorithm applied to a hypotheti-
cal system of 3 important QM and 3 important MM particles.
Each node of the tree (ellipses) indicates a unique QM/MM
exchange pattern (shown by the indices of hFlexiBLE). Child
nodes are generated by performing a single exchange between
each QM particle and the next immediate outer particle if it is
an MM particle, indicated by arrows. Duplicate children are
not double counted. Yellow nodes indicate the bias function
is above the threshold, hFlexiBLE > hthre, and further children
are generated. Red nodes indicate hFlexiBLE ≤ hthre and no
children are generated (i.e. the branch is truncated). The
tree is terminated when all nodes on a level are below thresh-
old, which happens here on level 5. hFlexiBLE is summed over
all surviving nodes to give the denominator of Eq. 16.

sum to a non-negligible value. To allay this concern,
we use an adaptive thresholding, by sweeping through
the tree in an iterative fashion, and at each new itera-
tion, tightening the threshold, hthre, to 0.5 of its previous
value. The relative change in the denominator of Eq. 16
is monitored between iterations, and when below a con-
vergence parameter, γ, the iterations stop. Given the
logarithmic dependence of the bias potential on the bias
function (Eq. 7), γ directly provides an estimate of the
error in the bias potential due to truncation, in units of
kBT . We find a value of γ = 0.001 kBT yields stable MD
trajectories, and convergence is reached typically within
two or three FlexiBLE iterations, suggesting that the er-
ror in the denominator is typically no worse than an order
of magnitude larger than hthre.

Putting all the pieces together, we present pseudocode
for FlexiBLE in Algorithm 1 below. Note: analytical
bias forces on the QM and MM particles follow straight-
forwardly from chain-rule derivatives of the pair, penalty,
bias, and potential functions (Eqs. 7, 14-16) with respect
to particle coordinates. We thus evaluate and accumulate
bias force contributions simultaneously with the compu-

tation of each surviving hFlexiBLE term. With the pre-
screening of important QM and MM pairs, combined
with the tree-algorithm enumeration of important QM
and MM exchanges, evaluation of the bias potential and
forces has an MM-forcefield-like computational cost, and
thus adds negligible overhead to a QM/MM simulation.

III. RESULTS AND DISCUSSION

To benchmark the FlexiBLE method, we consider the
quintessential system exhibiting solvent-supported elec-
tronic states: the hydrated electron, e−(aq), which corre-

sponds to an excess electron embedded in liquid water.
We choose an MQC description of the system such that
all water molecules are identically treated at an MM level.
We can then divide the water molecules into inner and
outer regions (MM* and MM respectively), allowing us to
verify the accuracy of FlexiBLE without possible errors
arising due to a mismatch of QM and MM interactions,
and allowing a direct comparison of structural and dy-
namical properties against results from MQC simulations
without FlexiBLE partitioning. The low computational
cost of MQC also allows us to reach very large MM* sizes
and hundreds of picoseconds of sampling.

A. Computational details

We used a 20 Å radius spherical droplet model of the
condensed-phase e−(aq), containing 1035 water molecules,

with an excess electron solvated at the center of the
droplet. Although FlexiBLE is fully compatible with Pe-
riodic Boundary Conditions (PBC), we chose a spheri-
cal droplet model to match the many-electron FlexiBLE-
QM/MM model of e−(aq) that we develop in the com-
panion paper.45 Comparing our droplet results against
previous PBC MQC results shows the impact on both
structural and dynamic quantities from using a spherical
droplet model to be minimal.

An initial water droplet configuration was generated
from a previous PBC MQC simulation46 of the hydrated
electron with the Turi-Borgis (TB) potential44 by first
centering the electron at the origin, tiling space with pe-
riodic replicas of the cubic simulation cell, then prun-
ing to form a spherical droplet of the closest 1035 water
molecules based on oxygen distance from the origin. This
number of water molecules was chosen to be consistent
with the output of a SolvateCap command of the tleap
program in Amber18 for a water droplet radius of 20 Å.47

To prevent water evaporation into the surrounding vac-
uum, a half-harmonic confining potential was applied to
the oxygen atoms: V conf = 0.5kconf(rO − rdrop)2Θ(rO −
rdrop), where rO is the distance of the oxygen atom from
the origin, taken to be the center of mass of the system,
rdrop = 20 Å is the droplet radius, kconf = 10 eV/Å2 is
the confining force constant, and Θ(r) is the Heaviside
function.
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Algorithm 1 Complete FlexiBLE algorithm

1: y ← hFlexiBLE
ij··· ,kl··· . Compute numerator of bias function (Eqs. 16 & 14).

2: {i′, j′, · · · , k′, l′, · · · } ← OrderIndices({i, j, · · · , k, l, · · · }) . Reorder particle indices based on distance from center.
3: hthre ← γ
4: for a FlexiBLE iteration do
5: {Ii′′ , Ij′′ , · · · , Ik′′ , Il′′ , · · · } ← PreScreen({i′, j′, · · · , k′, l′, · · · }) . With current threshold, hthre, pre-screen to get the

N imp
QM and N imp

MM important QM and MM particle indices using bounds of Eqs. 17 & 18

6: da ←
∑

L∈Limp P̂L

(
hFlexiBLE
i′′j′′··· ,k′′l′′···

)
. Compute truncated denominator with tree algorithm.

7: if da − da−1 > γda−1 then
8: hthre ← 1

2
hthre; Continue

9: else
10: Break
11: end if
12: end for
13: V bias ← −kBT (log y − log da)

To be consistent with previous PBC MQC
simulations,46,48 the SPC/Flex water model was used
and the excess electron’s wavefunction was discretized
in a Fourier-Grid (FG) basis and the one-electron
Schrodinger Equation was solved with an iterative
diagonalization method (further details below). For
Ground-State (GS) simulations, we used 14 × 14 × 14
grid points with a spacing of 1.1034 Å. For excited-state
calculations, the grid was extended to 32 × 32 × 32,
keeping the grid spacing the same. Since the FG did
not span the entire simulation cell, following Ref. 49,
we periodically shifted particle positions by an integer
number of grid spacings in order to recenter the elec-
tron’s wavefunction, and avoid FG boundary artefacts.
Furthermore, a harmonic restraint with a force constant
of ke-COM = 10 eV/Å2 was placed on the electron
centroid using quantum-biased MD46,50 in order to
tether the electron to the center of the droplet, and
prevent it from diffusing to the droplet surface. Coulomb
and Lennard-Jones pair interactions were not truncated.

For each system (unbiased, BEST, FlexiBLE), we com-
puted observables from ten trajectories of 50 ps in length.
The initial configurations of each trajectory were sam-
pled at 5 ps intervals from another trajectory of 50 ps
in length, following an equilibration period of 10 ps. Ini-
tial velocities were randomly sampled from the Maxwell-
Boltzmann distribution, using a different random number
seed for each trajectory. Temperature was maintained at
298 K using the Bussi-Parrinello thermostat51 with a fric-
tion coefficient of 0.5 ps−1. Unless otherwise stated, the
velocity Verlet algorithm with a timestep of 0.5 fs was
used to propagate MD.52

At each MD timestep, the lowest eigenvalue of the
one-electron Hamiltonian with the TB potential was
solved iteratively using the Generalized Davidson (GD)
algorithm,53 as implemented in SLEPc 3.14.1.54 Forces
on the water molecules from the excess electron were
evaluated with the Hellmann-Feynman theorem,55 which
is exact for a FG basis. To analyze energy-gap fluctu-
ations, the lowest five electronic excited states of e−(aq)
were computed in an ex post facto fashion on snap-

shots taken from the GS MQC trajectories. However, for
these excited-state calculations, we found that the GD
algorithm occasionally had convergence problems and
would miss roots, so we instead used the Krylov-Schur
algorithm56 along with a second-order Chebyshev poly-
nomial spectral transformation of the eigenspectrum, de-
scribed previously.49

Unless otherwise stated, 64 inner water molecules were
treated as “QM” particles using either BEST or Flexi-
BLE; however, since these particles retained MM force-
fields, we label them MM* to avoid confusion. MM*
and MM particle distances from the origin, needed in
Eqs. 10 and Eqs. 14, were computed based on the wa-
ter oxygen distance from the center of mass of the entire
system. This choice maintained translation invariance of
the Hamiltonian.

B. Structural properties

1. BEST

We start by exploring how accurate BEST is for ensem-
ble averaged structural properties of e−(aq). The quantity

of interest is the Radial Distribution Function (RDF),
g(r), of the water atoms relative to the excess electron
centroid position. Fig. 4 plots the RDF for e−-oxygen
distances from BEST simulations in the SE and DE ap-
proximations (solid red and dashed blue curves of panel
(a) respectively). Here we used a high value of the expo-
nent parameter, α = 189 Å to match the previous BEST
work.12,13 With this choice, we found that a timestep of
0.25 fs was needed for stable MD propagation. Results
without a MM*/MM biasing potential are labelled “Full
system” and are shown as purple circles.

From Fig. 4, we see overall good agreement between
BEST and Full system results except for noticeable
artefacts at a radius of 7.5 Å, corresponding to the
MM*/MM transition region. Interestingly, BEST-DE
performs worse than SE. Evidence that derivative dis-
continuities in the BEST potential (discussed in Section
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FIG. 4. RDF of e−-oxygen distances from constrained
MM*/MM simulations with 64 inner MM* water molecules.
Panel (a): BEST using the single exchange or double ex-
change approximations (solid red and dashed blue curves re-
spectively) with α = 189 Å−1. Panel (b): FlexiBLE-DE (dou-
ble exchange) with α = 15, 25, 40 Å−1 (solid green, dashed
red, and blue dotted curves respectively). Unconstrained
“Full system” results are indicated as purple circles.

II A) are the source of the problem is seen in Fig. 5, which
reveals noticeable drifts in the total energy of∼ 0.8 eV/ps
for BEST-SE (red curve) and worsening to ∼ 1.7 eV/ps
for BEST-DE (blue curve). We note that these problems
were not observed in the original BEST work,12,13 which
however used much smaller QM (or MM*) regions of 12
or fewer water molecules, compared to 64 in this work.
In Fig. S1, we verify that BEST-SE conserves energy
and reproduces full system results with MM* = 4. The
derivative discontinuity problems therefore seem to be-
come appreciable only for large QM regions. This makes
sense, since a large QM region will experience frequent
exchanges between the furthest QM and second furthest
QM particle, leading to derivative discontinuities result-
ing from the SE approximation. The DE approximation
also apparently fails to ameliorate this problem, since the
pair function it relies on (Eq. 10) itself has a derivative
discontinuity, which is not perfectly cancelled out, unlike
in the SE approximation.
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FIG. 5. Total energy drift along a 10-ps trajectory for
BEST-SE, BEST-DE, and FlexiBLE simulations (red, blue,
and green curves respectively) in the NVE ensemble with a
timestep of 0.25 fs. The BEST simulations used α = 189 Å−1,
and FlexiBLE used α = 15 Å−1.

The lack of energy conservation in BEST leads to a
temperature gradient, with the MM* region heating up
relative to the MM region, as shown in Fig. 6. This is
despite the use of a thermostat, and the resulting non-
equilibrium condition explains why ensemble quantities
like the RDF in Fig. 4 do not agree with full system re-
sults. It is possible that the temperature gradients in
BEST could be ameliorated with a more aggressive ther-
mostating, in particular by associating an independent
thermostat with each particle, and increasing the fric-
tion coefficient from our choice of 0.5 ps−1. However,
such an approach would strongly affect dynamical quan-
tities, which we wish to preserve.

2. FlexiBLE

We now turn to the performance of FlexiBLE in de-
scribing the RDF of e−(aq). We consider first FlexiBLE

within a double exchange approximation (FlexiBLE-DE),
i.e. with a bias function of Eq. 13, but using the Flex-
iBLE pair and penalty functions of Eqs. 14 and 15. As
Fig. 4(b) shows, when the exponent parameter is chosen
to be too small, such as α = 15 Å, FlexiBLE-DE also
exhibits artefacts in the RDF at the boundary region,
indicating the DE appoximation breaks down for small
α. However, as the exponent parameter is increased to
α = 25 Å, agreement with Full system results (purple cir-
cles) improves, and perfect agreement is seen for α = 40
Å. This shows that the FlexiBLE pair function in Eq. 14
is one of the key improvements to BEST, and allows for
large QM regions to be studied.

While FlexiBLE-DE is a useful method, our finding
that a large exponent parameter of α = 40 Å and
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FIG. 6. Temperature distribution for BEST-SE, BEST-DE
and FlexiBLE simulations (red long dashed, blue dashed, and
green dotted curves respectively) as a function of distance
from the excess electron. Full system results are shown as
the solid black curve. A noticeable temperature gradient is
observed for the BEST simulations, while FlexiBLE main-
tains thermal equilibrium, in agreement with the full system
results.

therefore a small timestep of 0.25 fs are needed means
that the method comes at significant computational ex-
pense, since without the FlexiBLE-DE biasing potential,
a timestep of 0.5 fs would be acceptable for liquid wa-
ter. This motivated us to develop the FlexiBLE method
described in Section II B, i.e. retaining all important
QM/MM exchanges according to Eq. 16.

RDFs from FlexiBLE simulations using α = 15 Å and
a timestep of 0.5 fs are shown in Fig. 7, where we see
perfect agreement between FlexiBLE and Full system re-
sults for both e−-O and e−-H RDF in panels (a) and (b)
respectively. This explains the failure of BEST-DE for
small α (as seen in Fig. 4): exchanges beyond only the
furthest two MM* and closest two MM particles must be
retained. FlexiBLE recovers all the important MM*/MM
exchanges in a computationally efficient manner. In fact,
as we show in the Supporting Information, FlexiBLE al-
lows for an even smaller α = 5 Å and a timestep of 1.0
fs, while still maintaining QM/MM separation.

We further show a decomposition of the RDF into
MM* and MM contributions (solid red and blue shaded
regions respectively in Fig. 7), which demonstrates that
FlexiBLE successfully maintains MM*/MM separation.
The small amount of overlap between MM* and MM
contributions to the e−-O RDF in panel (a) largely re-
sults from density fluctuations that dynamically move
the location of the MM*/MM boundary, resulting in a
smearing out of their distributions in the ensemble aver-
age. The MM* and MM e−-H distributions in panel (b)
display more overlap than the e−-O distributions since
the bias potential is applied to the oxygen atom only,
i.e. some MM water molecules can rotate their hydrogen
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FIG. 7. RDF of e−(aq) from FlexiBLE simulations with α = 15

Å−1 (solid black curves) compared to unbiased Full system
simulations (green circles). Panel (a): e−-Oxygen distribu-
tions. Panel (b): e−-Hydrogen distributions. Also shown
is a breakdown into MM* (red) and MM (blue) contribu-
tions. FlexiBLE reproduces full system results and success-
fully maintains MM*/MM separation.

atoms to be within the MM* region. This is expected and
desirable behavior: applying orientational constraints on
MM particles would lead to an artificial structuring at
the boundary, so we apply boundary constraints only on
a single atom (or virtual site) of each MM* and MM
molecule. We confirm that FlexiBLE perfectly conserves
energy (green curve of Fig. 5) and does not exhibit tem-
perature gradients (green curve of Fig. 6).

C. Dynamical properties

Having seen that FlexiBLE successfully reproduces
structural properties of e−(aq) compared to simulations

without a bias, we next consider dynamical properties.
Of particular interest is the energy gap autocorrelation
function, since this reports the dynamical couplings be-
tween the solvent and QM solute, and can be used to
predict the absorption spectrum of e−(aq), including nu-
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clear quantum effects.57 The gap correlation function for
state i is defined as

Ci(t) =
〈δEi(t) · δEi(0)〉
〈δEi(0)2〉

, (19)

where δEi(t) = (Ei(t)−E0(t))−〈Ei−E0〉, and Ei is the
adiabatic energy of state i (0 indexes the ground state).

Fig. 8 shows C(t) for the first and fifth excited states
(panels a and b respectively). Full system results (green
dot dashed curves) agree with previously published PBC
MQC simulation results using the TB potential,57 where
we see that both state 1 and 5 exhibit rapid decorrela-
tion, reaching ∼10% of their initial values by t = 500
fs. Fourier transforms of the correlation functions reveal
that the energy gaps of either state are predominantly
coupled to translational and librational motions of wa-
ter; however, the gap to state 5 exhibits stronger coupling
to higher frequency vibrational modes.57 The difference
between the gap correlation functions for state 1 and 5
results from the cavity localized nature of the ground
state and state 1, so that their energies are modulated in
a fairly parallel fashion by first-solvent-shell intramolec-
ular motion. On the other hand, state 5 is delocalized
and weakly coupled to solvent motions, such that its en-
ergy gap fluctuations are dominated by the ground-state
energy, which is more strongly coupled to vibrations of
the first solvent shell.

We test FlexiBLE’s ability to reproduce dynamical
quantities by first considering a very small MM* region
of 2 water molecules. This choice places the MM*/MM
partition in the first solvent shell of e−(aq) and would be

expected to alter its dynamics. Indeed, we see notice-
able deviations between the correlation functions from
FlexiBLE 2MM* (dotted black curve) and full-system re-
sults (dot-dashed green curve), although the differences
are modest. In particular, the gap correlation functions
for both state 1 and state 5 decay slower for FlexiBLE
2MM*, presumably because first solvent shell transla-
tions and librations are hindered by the biasing poten-
tial. Remarkably however, upon extending FlexiBLE to
include 16 MM* molecules (two solvation shells), the
computed gap correlation functions (solid red curves) are
indistinguishable from full system results. Similar agree-
ment is found also for larger MM* regions.

The electronic structure of e−(aq) is strongly coupled

to solvent motions (being a solvent-supported species),
particularly via translational and librational modes that
should be most strongly affected by the FlexiBLE poten-
tial, so the fact that we do not observe any detectable in-
fluence of the bias potential on the dynamics of e−(aq) gives

us confidence the technology could be used to study the
dynamics of many other solutes at a FlexiBLE-QM/MM
level, providing a sufficiently large QM region is chosen.
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FIG. 8. Gap Correlation Function, C(t), for e−(aq) from MQC

simulations with FlexiBLE MM*/MM partitioning. Panel
(a): ground to State 1 energy gap correlation function. Panel
(b): ground to State 5 energy gap correlation function. Re-
sults are shown with two different sized MM* regions: 2 MM*
(dotted black curves) and 16 MM* (solid red curves), with the
latter in excellent agreement with full system results (dot-
dashed green curves).

D. Computational scaling

We finally consider the computational scaling of Flex-
iBLE. Without truncation, the cost of the method is ex-
pected to scale as the number of penalty function terms
in the denominator of Eq. 16, Nterms, so we consider this
quantity first. As described in Section II B, there are two
stages of truncation: first a pre-screening of important
MM* and MM particles, then a truncation of exchanges
between the surviving important MM* and MM parti-
cles in the denominator of Eq. 16. We considered the
scaling of Nterms following both of these truncations by
performing a series of e−(aq) simulations with the number

of MM* waters varied from 4 to 384. An exponent pa-
rameter of α = 15 Å−1 was used for all simulation. 50
ps of dynamics was propagated and Nterms was averaged
along the trajectory. All simulations were performed on
a single core of an Intel Xeon E5-2630 v4 2.20GHz chip.

In Fig. 9 we plot how Nterms scales with the size of the
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QM region, taken here to be the number of MM* water
molecules. The black curve shows the total number of ex-
changes after a pre-screening of important MM* and MM
particles. As expected based on theoretical grounds (see
Supporting Information), following pre-screening, Nterms

scales as 2a(N
QM)

2
3 , where a is a free parameter. The rel-

atively high power of (NQM)
2
3 means that for MM* re-

gions of greater than ∼200 QM particles, the FlexiBLE
boundary potential evaluation would become the most
computationally expensive part of the MQC calculation.
This motivates the truncation of QM/MM exchanges
with our tree algorithm (dashed red curve), which we
see dramatically reduces Nterms and lowers their scaling

to ∼2b(N
QM)0.53 , with b a free parameter.
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FIG. 9. Scaling of number of FlexiBLE denominator terms
(Eq. 16), Nterms with QM size. The effects of two types
of truncation are shown: the black curve shows the num-
ber of terms following a pre-screening of important QM and
MM particles. The dashed red curve shows the number of
terms following truncation of the denominator according to
the FlexiBLE tree algorithm. Equations of best fit are shown.

The computational cost of FlexiBLE is explored in
Fig. 10, which plots the average CPU time per timestep
spent on FlexiBLE and its breakdown into different op-
erations. The first operation is to sort QM and MM
indices (red squares): this is seen to have a low cost that
is constant with QM size, since the cost of sorting de-
pends on the total number of particles, NQM + NMM,
which is fixed in our simulations. The next operation is
the pre-screening of important QM and MM labels (black
circles). This also has a low cost that fits to a sublinear
power law with QM size. The evaluation of the FlexiBLE
numerator penalty function in Eq. 16 (purple upward tri-
angles) also has a negligible cost that does not scale with
QM size. The two operations that dominate a Flexi-
BLE calculation are thus the evaluation of denominator
penalty function terms (turquoise downward triangles),
with a scaling that matches Fig. 9, and the bookkeeping
associated with maintaining a growing child-node history
to avoid their duplication (blue diamonds). Since both
of these operations happen in the inner loop of the Flexi-

BLE algorithm, they exhibit similar sub-exponential scal-
ing. As we see, it is the computations associated with the
child history that dominate the total cost of FlexiBLE.
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FIG. 10. Computational cost of FlexiBLE with varying QM
size, and its breakdown into different contributions, in order
of operation. CPU times report averages per timestep. Red
squares: cost associated with sorting particle indices by dis-
tance from center. Black circles: pre-screening of important
QM and MM indices. Purple upward triangles: numerator
of Eq. 16. Turquoise downward triangles: denominator of
Eq. 16. Blue diamonds: bookkeeping of child history to avoid
duplication of denominator terms.

That the bookkeeping associated with avoiding child
node duplication in the FlexiBLE algorithm should dom-
inate the calculation is a testament to how significantly
our truncation algorithm has reduced the number of
surviving denominator penalty function terms: with-
out truncation, they would overwhelm the computational
cost. Maintaining a child history is the remaining expen-
sive operation since at every level of the tree, each new
child must be compared against a growing list of previ-
ously visited children on that level, and the number of
children grows steeply with the depth of the tree, even
with truncation. We have made this operation as effi-
cient as possible by using a binary representation of the
QM and MM labels of each node. As a result, the ob-
served overall sub-exponential scaling of FlexiBLE has a
sufficiently small prefactor that the method has a CPU
time of <1 s even for QM sizes of ∼400 atoms, which
is certainly negligible compared to the cost of ab initio
electronic structure calculations on QM regions of this
size. Nevertheless, the sub-exponential scaling of Flex-
iBLE, compared to the polynomial scaling of electronic
structure, means that a crossover point will occur for QM
regions of sufficiently large size, after which the computa-
tional cost of FlexiBLE would dominate. The crossover
point depends on the level of electronic structure, but ap-
pears to be in the thousands of QM particles, for which
AIMD is already infeasible, without considering the cost
of FlexiBLE, and this will likely remain true for the fore-
seeable future. Thus, we consider FlexiBLE to be prac-
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tical for some time to come.

IV. CONCLUSIONS

In this paper, we developed a new constrained
QM/MM method called FlexiBLE, which allows for a
QM/MM partitioning between identical diffusible par-
ticles such as a solvent or gas. We demonstrated that
the method maintains QM/MM separation while rigor-
ously preserving ensemble averaged quantities. FlexiBLE
improves on the BEST constrained QM/MM method12

in several ways: 1) by a careful choice of pair function
(Eq. 14) that has a quadratic exponent for large distance,
QM/MM separation is maintained even for small bias ex-
ponents of α = 5 Å, allowing for MD timesteps of 1.0 fs,
compared to 0.25 fs in BEST. 2) with the new pair func-
tion, combined with a tree-algorithm enumeration of all
important QM and MM exchanges, FlexiBLE conserves
total energy, and does not display temperature gradients
as seen in BEST, even for large QM sizes of hundreds
of molecules. 3) Our choice of pair function in Eq. 14
leads to bias forces that are small in magnitude per par-
ticle, yet highly localized to a narrow layer of QM and
MM particles close to the boundary. As a result, the bias
forces minimally perturb the dynamics of the system and
we demonstrated that FlexiBLE reproduces full system
energy gap time correlation functions of e−(aq), providing

that at least two solvation shells are included in the QM
region.

We expect that FlexiBLE embedding will be broadly
useful in simulating static and dynamic equilibrium prop-
erties of complex systems. As a first showcase of the
method, in the companion paper,45 we apply FlexiBLE
to the dynamics and electronic structure of e−(aq) at a

many-electron QM/MM level. Although the initial focus
of the method has been on solvated systems, the bias
function can be easily modified to describe surface ge-
ometries, allowing a description of heterogeneous inter-
faces. Furthermore, since the FlexiBLE bias potential is
a function of nuclear coordinates only, and has an MM-
forcefield-like computational cost, the approach is en-
tirely compatible with other embedding schemes, such as
polarizable,58–61 density,22,23 and mean-field embedding
theories.24 We thus believe that constrained QM/MM
partitioning, as in FlexiBLE, is a promising alternative
to adaptive QM/MM.

SUPPLEMENTARY MATERIAL

See the supplementary material for further details on
our tree algorithm, the computational scaling of Flex-
iBLE, a comparison of BEST with small versus large
QM regions, BEST versus FlexiBLE energy conservation,
FlexiBLE with a small bias exponent, and FlexiBLE with
a large QM region.
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Appendix A: Proof that tree visits all QM/MM exchanges

Here we prove that all QM/MM exchanges are visited
by the tree algorithm described in Section II B. We start
by summarizing our algorithm in the language of graph
theory.

• With the set of important particle indices, U :=
{1, . . . , N imp

QM + N imp
MM}, we consider the directed

graph G = ({hS0
, . . . , hS , . . .}, E), where S0 :=

{1, . . . , N imp
QM } and for every set S ⊆ [U ] of size

N imp
QM , we define the node hS to represent hFlexiBLE

S,U\S .

• There exists a directed edge from hS to hS′ if S′

is obtained by removing some a ∈ S from S and
adding the corresponding a+ 1 /∈ S into S.

Claim. There exists a direct path from hS0
to every node

in the graph.

Proof. For every hS , let dS denote the difference between
the sum of elements in S and the sum of elements in S0

(i.e. dS is the level of the tree). We will prove the claim
inductively according to dS . The base is true because S
must be S0 itself when dS = 0.

Assume that for integer n ≥ 0 there exists a directed
path from hS0 to any hS with dS = n. Now we prove
that hS′ can be reached for any S′ with dS′ = n + 1. It
suffices to show that there exists a directed edge between
S′ and S for some S with dS = n. Then we can have a
path from S0 to S′ by extending the path from S0 to S
via this edge.

Let a1 < · · · < aN imp
QM

denote sorted elements in S′ and

b1 < · · · bN imp
MM

denote sorted elements in U \ S′. Observe

that b1 < aN imp
QM

(otherwise S′ can only be S0 and dS′ =

0). Then there must exist i, j such that ai = bj + 1.62

Hence, by swapping ai and bj , we will obtain the desired
S with dS = n.
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Appendix B: Proof of tree hierarchy

To simplify the proofs of inequalities involving the
FlexiBLE penalty function, hFlexiBLE (Eq. 15), we first
introduce a new notation to identify the QM and MM
particle indices that the penalty function depends on.
To start, we assume that all QM and MM particles have
been ordered by distance from the center of the QM re-
gion, as discussed in Section II B. A QM/MM list used
to build hFlexiBLE is then defined as [AA · · ·ABB · · ·B]
where A and B are QM and MM particle labels respec-
tively, and the location of the label in the list indicates
the particle index. Perfect QM/MM separation corre-
sponds to the situation where all A labels are on the
left of B labels. Each unique list therefore corresponds
to a unique hFlexiBLE function. For example, a list of
[AABABB] corresponds to hFlexiBLE

124,356 .

By the definitions of Eq. 14 and 15, the root of the
FlexiBLE tree, hFlexiBLE

root , which has perfect QM/MM

separation, is:

hFlexiBLE
root = h[AA · · ·ABB · · ·B] = 1. (B1)

hFlexiBLE
root is the largest term in the denominator because

all of its pair functions, gmn, are 1.
According to the tree algorithm discussed in Section

II B, we define a child node by performing on its par-
ent a single exchange between a QM particle and the
next immediate outer particle if it is an MM particle.
Thus, the only child generated from the root node is
h[AA · · ·ABABB · · ·B], with a value of gNQM,NQM+1 ≤ 1.
Thus we see that the first-level node of the tree is guar-
anteed to be equal to or less than the zeroth-level node.

To show that the hierarchical nature of the tree holds
generally for any parent and child, consider a parent node
of [· · ·AB · · · ], where A is the ith particle and B is the
(i+ 1)th particle. Suppose that there are N B labels to
the left of i with indices {n1, n2, ..., nN} and M A labels
to the right of i+1, with indices {m1,m2, ...,mM}. Note:
there can be an arbitrary number of A labels to the left
of i and an arbitrary number of B labels to the right of
i + 1. Upon exchange of i and i + 1 labels, the relation
between the value of the child node and parent node is:

hFlexiBLE
child = hFlexiBLE

parent × gi+1,i ×
gn1,i+1

gn1,i
× gn2,i+1

gn2,i
× · · · × gnN ,i+1

gnN ,i
× gi,m1

gi+1,m1

× gi,m2

gi+1,m2

× · · · × gi,mM

gi+1,mM

, (B2)

where we have retained only non-unit terms. Since gmn

is monotonically decreasing from 1 to 0, we have the fol-
lowing relations for any exchange:

gi+1,i ≤ 1,

gna,i+1 ≤ gna,i,∀ na,
gi,mb

≤ gi+1,mb
,∀mb, (B3)

which together with Eq. B2 proves that any child node
has a value equal to or less than its parent:

hFlexiBLE
child ≤ hFlexiBLE

parent . (B4)

Appendix C: Proof of FlexiBLE penalty function bounds

As discussed in section II B, the number of hFlexiBLE

terms can be aggressively truncated by including only
the important QM/MM particles that always contribute
at least one pair function gFlexiBLE (Eq. 14) that is
neither exactly 1 nor results in a penalty function be-
low the truncation threshold, hthre. This allows a pre-
screening of particles, and reduces the size of system from

(NQM,NMM) to (N Imp
QM ,N Imp

MM) based on the upper bounds

to hFlexiBLE in Eqs. 17 and 18.
To see how pre-screening works, consider the specific

case of 4 QM particles and 4 MM particles. The denomi-

nator of Eq. 16 involves a sum over hFlexiBLE terms result-
ing from all possible QM and MM exchanges. However,
if every exchange producing a QM label at the eighth
particle results in hFlexiBLE below the threshold, hthre,
these terms are truncated, and the only surviving terms
all have an MM label at the eighth particle position. Fol-
lowing Eq. 15, every surviving pair function, g, involving
particle 8 is exactly 1 and does not alter hFlexiBLE, thus
particle 8 can be excluded entirely in the construction of

hFlexiBLE, and N Imp
MM can be reduced by one.

To efficiently pre-screen particle indices, we seek an
upper bound to hFlexiBLE following any exchange pat-
tern that leaves the outermost QM label at the parti-
cle position under consideration. In the 4 QM, 4 MM
example, it is clear that the largest hFlexiBLE value is
h[AAABBBBA] (using the notation introduced in Ap-
pendix B). Any further exchanges (indicated below with
“X” labels) will lead to a smaller h, according to the tree
hierarchy relation in Appendix B. Therefore, starting
from perfect QM/MM separation, the single exchange
between the outermost QM label (particle 4) and the
eighth particle label (MM) serves as the upper bound for
pre-screening:

h[XXXXXXXA] ≤ h[AAABBBBA] =

g84 × g85 × g86 × g87 = hMM bound
8 . (C1)
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Generalizing to arbitrary NQM and NMM, the MM
bound for particle q′ is:

h[ X · · ·X︸ ︷︷ ︸
q′−1≥NQM

AB · · ·B] ≤ h[A · · ·A︸ ︷︷ ︸
NQM−1

B · · ·B︸ ︷︷ ︸
q′−NQM−1

AB · · ·B] =

q′−1∏
i=NQM

gq′,i = hMM bound
q′ . (C2)

This proves Eq. 18. The proof of Eq. 17 follows similarly.
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