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Abstract: The ability to provide speciated and source-resolved PM2.5 estimates make chemical transport 18 

models a potentially valuable tool for exposure assessments.  However, epidemiological studies often 19 

require unbiased estimates, which can be challenging for chemical transport models. We use 20 

geographically weighted regression to predict and correct the bias in source-resolved PM2.5 species 21 

(elemental carbon, organic aerosol, ammonium, nitrate, and sulfate) across the continental U.S. for 2001 22 

and 2010. The regression models are trained using speciated ground-level monitors from the CSN and 23 

IMPROVE networks. A 10-fold cross-validation shows minimal bias across all simulated PM2.5 species (0 24 

– 3%) and improved agreement with ground-level monitors (R2 = 0.53 – 0.97). Corrections also improve 25 

the agreement between simulated and observed species mixtures on a fractional basis. The source-26 

resolved exposure estimates developed in this study are suitable for use in health analyses of PM2.5 27 

toxicity. 28 

  29 
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Introduction 30 

 31 

 Chronic exposure to fine particulate matter (PM2.5) is known to lead to negative human health 32 

outcomes (Pope et al., 2020; Pope and Dockery 2006) and is the leading contributor to morbidity and 33 

mortality among air pollutants (Lefler et al., 2019; Cohen et al., 2017). Air quality management in the 34 

United States has effectively reduced concentrations of PM2.5 (Zhang et al., 2018), with health benefits 35 

consistently exceeding the cost of regulations (U.S. EPA, 2012, 2011, 1999). Several studies suggest that 36 

further reductions of PM2.5 in the U.S. would lead to increased life expectancy (Bennet et al., 2019; Apte 37 

et al., 2018; Correia et al., 2013; Pope et al., 2009). To date, air quality regulations have targeted PM2.5 by 38 

total mass, with the implicit assumption that all PM2.5 is equally toxic. However, PM2.5 is a complex 39 

mixture with varying properties, including but not limited to size, phase, acidity, chemical composition 40 

and source. Given the various pathophysiological pathways for PM2.5-induced morbidity and mortality 41 

(Pope and Dockery, 2006), it is plausible for PM2.5 toxicity to be a function of its properties. Identifying 42 

more toxic components could lead to more effective regulations. However, prior work has been unable to 43 

conclusively identify the key drivers of PM2.5 toxicity (Kelly and Fussell, 2012; Harrison and Yin, 2000). 44 

To investigate this question further in epidemiological studies, accurate exposure estimates of PM2.5 and 45 

its properties are necessary. 46 

 Conventional PM2.5 exposure estimates for health studies are primarily derived from 47 

observations. Data from ground-level monitors and satellites are used with empirical models to provide 48 

accurate and consistent assignment of PM2.5 exposures in epidemiological studies. Additionally, land use 49 

variables and meteorological data, which can provide additional information on the spatiotemporal 50 

variability of PM2.5, have been successfully used in empirical models to enhance the accuracy, resolution 51 

and extent of exposure estimates. Because of their dependence on observations, empirical estimates can 52 

be sensitive to data availability and by definition lack a mechanistic basis. The latter can make it difficult 53 

for empirical models to estimate PM2.5 species, sources, and other properties with limited data. 54 

 Alternatively, chemical transport models (CTMs) readily predict a wide range of PM2.5 55 

characteristics and properties, such as chemical composition and source, that are often limited in 56 

observational datasets. Despite this, CTMs alone are unable to match the accuracy and consistency of 57 

empirical estimates. Known biases resulting from errors in emission inventories, chemical mechanisms, 58 

coarse grid resolution, large emissions gradients, complex terrain and meteorology make unprocessed 59 

CTM estimates unreliable for epidemiological analyses. The underlying causes of CTM biases can also 60 

change with space, resulting in different regions having characteristic biases and errors. A statistical 61 

technique that can identify and remediate regionally varying biases in CTM estimates could facilitate their 62 

use in epidemiological analyses, and provide much needed information on PM2.5 properties. 63 



3 

 

Geographically weighted regression (GWR) is a local spatial analysis technique that models the 64 

spatially-varying relationships between independent and dependent variables (Brunsdon et al., 1996). 65 

Regression coefficients in GWR are determined locally, which could allow for targeted identification of 66 

regional biases in simulated PM2.5. Several studies have used GWR to develop PM2.5 exposure estimates, 67 

primarily as a predictive tool to correct satellite AOD measurement to ground-level monitors (Hammer et 68 

al., 2020; van Donkelaar et al., 2019, 2016, 2015; Meng et al., 2019; Zhai et al., 2018; Li et al., 2017a; 69 

You et al., 2016; Song et al., 2014; Ma et al., 2014; Hu et al., 2013; Hu, 2009). A subset of these studies 70 

has also incorporated information from CTMs, like spatiotemporal extent of PM2.5 (Hammer et al., 2020; 71 

van Donkelaar et al., 2019, 2016, 2015; Meng et al., 2019; Li et al., 2017a). However, only one uses 72 

CTMs to predict the chemical composition of PM2.5 (van Donkelaar et al., 2019). In the broader literature, 73 

studies using techniques other than GWR have also incorporated CTMs in exposure estimates (Huang et 74 

al., 2021; Berrocal et al., 2020; Lyu et al., 2019; Geng et al., 2017, 2015; Wang et al., 2016; Lee et al., 75 

2012). However, most of these studies used CTMs to inform the spatiotemporal extent of total PM2.5 76 

mass, while only a few used information on chemical composition (Li et al., 2017b; Geng et al., 2017; 77 

Philip et al., 2014). To our knowledge, no study has generated exposure estimates that resolve multiple 78 

properties of PM2.5 across the entire continental U.S. 79 

In this work, we use GWR to correct biases in speciated and source-resolved CTM simulations. 80 

These estimates are developed by integrating CTM simulations, observations from speciated ground-level 81 

monitors, geographic variables and other empirical estimates. Briefly, PMCAMx is used to simulate 82 

PM2.5 over the continental U.S. for 2001 and 2010 using a methodologically consistent emissions 83 

inventory. The Particulate Source Apportionment Technology (PSAT) algorithm is used to tag 6 source 84 

categories which include EGU, non-EGU, on-road, non-road, biogenic and other emissions. Annually 85 

averaged simulations are corrected to speciated ground-level monitors by using GWR to predict the bias 86 

in simulated PM2.5 species, similar to work conducted in van Donkelaar et al. (2019). Geographic 87 

variables, empirical estimates and CTM estimates are used as predictors in the GWR model. Species 88 

corrected in this study include elemental carbon (EC), organic aerosol (OA), ammonium (NH4
+), nitrate 89 

(NO3
-) and sulfate (SO4

2-). Original source mixtures as predicted by the CTM are preserved and applied 90 

proportionally to the corrected estimates. Species- and source-resolved PM2.5 exposure estimates 91 

described in this work are freely and publicly available at www.caces.us. 92 

 93 

Methods 94 

 95 

PMCAMx Chemical Transport Model 96 

 97 

file:///C:/Users/Carlos/Box/CMU_Research/gwr_bias/manuscript/www.caces.us
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A brief description of the underlying CTM simulations follows, but they are more fully described 98 

in Skyllakou et al. (in review). We use the PMCAMx model (Karydis et al., 2010; Murphy and Pandis, 99 

2010; Tsimpidi et al., 2010; Posner et al., 2019) with a “source tagging” algorithm, PSAT (Wagstrom et 100 

al., 2008; Wagstrom and Pandis, 2011a, 2011b; Skyllakou et al., 2014, 2017), that facilitates tracking 101 

source apportionment in a computationally efficient way. The model domain covers the continental U.S., 102 

portions of Canada and Mexico, and nearby offshore regions at a horizontal resolution of 36 km. We 103 

perform simulations for the years 1990, 2001, and 2010 using a methodologically consistent set of 104 

emission inventories (Xing et al., 2013). Several broad source categories are resolved for this analysis. 105 

The EGU category includes emissions from electricity-generating units included in EPA’s Integrated 106 

Planning Model. Non-EGU includes other industrial point sources. The on-road category includes mobile 107 

emissions from roads in the continental U.S., while the non-road category includes all off-road mobile 108 

emissions in the model domain. Biogenic includes emissions from vegetation. The “other” category 109 

includes on-road vehicles from Canada and Mexico plus all other emissions. Emissions from the model’s 110 

boundary and initial conditions are also tracked as separate categories. Species predicted by the model 111 

and used in this work include SO4
2-, NO3

-, NH4+, EC, primary organic aerosol (POA) and secondary 112 

organic aerosol (SOA). PMCAMx uses an advanced treatment of OA that accounts for the semi-volatile 113 

nature of primary organic emissions and recent advances in our understanding of SOA chemistry 114 

(Murphy and Pandis, 2009; Robinson et al., 2007, Donahue et al., 2006). The model also predicts 115 

concentrations of sodium, chloride, and mineral dust, but these are excluded from this analysis due to 116 

large uncertainty in the emissions inventory and because speciated monitors for these species are not 117 

readily available. Meteorological data input to PMCAMx are taken from simulations performed with the 118 

Weather Research Forecasting model (WRF v3.6.1) for these time periods with boundary conditions from 119 

the ERA-Interim global climate re-analysis database. 120 

 121 

Ground-level Speciated PM2.5 Observations 122 

 123 

 Observations of PM2.5 species (EC, OC, NH4
+, NO3

-, SO4
2-) were obtained from the EPA 124 

Chemical Speciation Network (CSN) and the IMPROVE monitoring network for 2001 and 2010. 125 

Measurements were downloaded from the Federal Land Manager Environmental Database 126 

(http://views.cira.colostate.edu/fed/). Prior to the CSN transition period from 2007-2009, CSN and 127 

IMPROVE used different analytical and sampling protocols for carbon measurements, requiring 128 

harmonization across the datasets (Spada and Hyslop, 2018; Solomon et al., 2014; Malm et al., 2011). 129 

Most notably, pre-transition CSN monitors used the thermal optical transmittance (TOT) analytical 130 

protocol for carbon measurements, while IMPROVE and post-transition CSN monitors use the thermal 131 

http://views.cira.colostate.edu/fed/
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optical reflectance (TOR) protocol. We adjust 2001 CSN carbon measurements to match post-transition 132 

CSN protocols following the approach in Lordo et al. (2016). Additionally, a filter blank correction of 0.4 133 

μg m-3 is applied to organic carbon (OC) measurements in 2010. To account for differences in aging of 134 

organic aerosol in urban and rural areas, an OC:OA ratio of 1.4 and 1.8 was applied to OC measurements 135 

collected at CSN and IMPROVE sites, respectively. The number of speciated monitors used in the 136 

observational dataset is shown in Table 1. On average, 23 CSN and 92 IMPROVE monitors were used in 137 

2001, while 165 CSN and 146 IMPROVE monitors were used in 2010. The increase in speciated 138 

monitors from 2001 to 2010 is notable, particularly in the eastern U.S., and its effects on model training 139 

are discussed in the results section. 140 

 141 

Geographically Weighted Regression 142 

 143 

 In this study, GWR is used as a spatial extension of ordinary least squares (OLS) regression. 144 

Observations are weighted in the regression according to their proximity to a desired prediction point in 145 

space. A consequence of this formulation is that there is no global model (i.e., no global regression 146 

coefficients, which instead vary in space). Instead, the model is solved locally for every prediction point 147 

in space such that: 148 

𝑋𝑇𝑊(𝑖)𝑋𝛽(𝑖) = 𝑋𝑇𝑊(𝑖)𝑌 (𝑒𝑞𝑛. 1) 149 

where X is a matrix containing predictor variables, W is a weighting matrix (kernel) at location i, β is a 150 

vector of regression coefficients at location i, and Y is the dependent variable. The weighting matrix is a 151 

diagonal matrix, where each diagonal element is the weight assigned to an observation and is calculated 152 

by a user-defined weighting function (eqn. 2). Selection of the weighting function depends largely on the 153 

nature of the dataset. Weighting functions are typically calibrated to an optimal bandwidth, which 154 

controls the rate observations are down-weighted with distance. Weighting functions can also have cut-155 

offs, which exclude observations past a certain threshold. Common weighting functions include inverse 156 

distance weighting and a Gaussian function. The results presented in this paper use a Gaussian weighting 157 

function: 158 

𝑤𝑖𝑗 = exp(−𝛼𝑑𝑖𝑗
2 ) (𝑒𝑞𝑛. 2) 159 

where wij is the weight assigned to an observation in location j for predictions in location i, α is the decay 160 

coefficient or bandwidth, and d is the distance between location i and j. The bandwidth (α) is calibrated 161 

by minimizing the root mean square error in the GWR model. With eqn. 2, a bandwidth of zero leads to 162 

equal weighting for all observations, making the GWR model equivalent to OLS. 163 
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 GWR is used to predict the bias in simulated PM2.5 species, with GWR models being trained for 164 

each species and simulation year. Bias predictions are made at the centroids of U.S. census tracts and used 165 

to correct CTM simulations projected to census tracts. The GWR model form is: 166 

 167 

The left-hand side of eqn. 3 represents the CTM bias relative to speciated ground-level monitors (i.e., 168 

outcome variable), while the right-hand side contains predictor variables. SPEC represents PM2.5 species 169 

(e.g., EC, OA, NH4
+, NO3

-, SO4
2-). ED represents the sub-grid elevation difference, which is the 170 

difference between the elevation of a prediction point and the mean elevation of the overlying CTM grid 171 

cell. Elevation is determined by the NOAA ETOP1 global relief model (NOAA, 2009; Amante and 172 

Eakins, 2009). ED is used as a measure of sub-grid terrain complexity that may contribute to model error. 173 

IDU is the inverse distance to the nearest urban land cover as determined by using year-specific MODIS 174 

MCD12Q1 land cover data (Friedl and Sulla-Menashe, 2019). Higher spatial variability is expected in 175 

urban areas, potentially contributing to model error at a relatively coarse horizontal resolution of 36 km. 176 

A maximum limit of 2 km-1 is set for IDU to avoid arbitrary variations above that threshold.  IEGb is the 177 

total PM2.5 bias of the CTM relative to predictions of the Integrated Empirical Geographic (IEG) model 178 

from Kim et al. (2020). The IEG model estimates annual averages of total PM2.5 using ground-level 179 

monitor data, universal kriging and partial least squares of geographic variables which include land use 180 

variables and satellite estimates. IEGb serves as a useful initial guess of the bias, especially in regions 181 

where monitors are sparse. The final predictor variables, SPECc, are a subset of simulated species from 182 

the CTM. When predicting the bias of carbonaceous species, SPECc represents the subset of all 183 

carbonaceous species (EC, POA, SOA). Likewise, when predicting the bias of a non-carbonaceous 184 

species, SPECc represents the subset of all non-carbonaceous species (NH4
+, NO3

-, SO4
2-). This is meant 185 

to limit the number of predictor variables in the model. While the CTM provides predictions of POA and 186 

SOA, there is not enough information on the aged nature of measured OC in order to model biases in 187 

POA and SOA directly. Instead, GWR is trained to model biases in total OA, and simulated POA and 188 

SOA are used as separate independent variables when applicable. After total OA is corrected, primary and 189 

secondary fractions as predicted by the CTM are applied proportionally to corrected OA. While corrected 190 

estimates of OA, POA and SOA are made available, only those for total OA are fully evaluated in this 191 

study. 192 

 Predicting CTM biases at a census tract resolution accomplishes several objectives. Predicted 193 

biases can be used to downscale CTM estimates with relatively coarse horizontal resolution. Additionally, 194 

it efficiently targets urban and population-dense areas, where PM2.5 experiences greater spatial variability, 195 

for higher resolution corrections. Conversely, rural and low populations areas are given lower resolution 196 

(𝑠𝑖𝑚 𝑆𝑃𝐸𝐶 − 𝑜𝑏𝑠 𝑆𝑃𝐸𝐶) =  𝛽𝐸𝐷𝐸𝐷 + 𝛽𝐼𝐷𝑈𝐼𝐷𝑈 + 𝛽𝐼𝐸𝐺𝑏𝐼𝐸𝐺𝑏 + ∑ 𝛽𝑐  𝑠𝑖𝑚 𝑆𝑃𝐸𝐶𝑐

𝑐

  (𝑒𝑞𝑛. 3) 
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corrections. Finally, it facilitates population-weighted averaging to coarser census geographies, such as 197 

counties or metropolitan statistical areas (MSAs). This allows epidemiological analyses to be easily 198 

performed at the desired resolution. 199 

GWR models are evaluated using three cross-validation methods: 1) leave-one-out 2) 10-fold and 200 

3) a regional holdout cross-validation (CV). The regional holdout CV functions similarly to the leave-201 

one-out CV except that all monitors within a 400 km radius are excluded from model training. Because 202 

ground-level monitors tend to be spatially clustered, as opposed to randomly distributed, evaluations from 203 

a 10-fold CV may be less robust where monitors are absent. The regional holdout CV is designed to 204 

address this gap by rigorously testing model performance in areas with low monitor density. Model 205 

training, prediction and evaluation are performed on the R open-source software with community-206 

developed packages (R Core Team 2021). 207 

 208 

Results & Discussion 209 

 210 

CTM & GWR Evaluation 211 

 212 

 We compared estimates of total uncorrected PM2.5 from the CTM to those from the IEG model 213 

(Kim et al., 2020) and found significant regional biases in the raw CTM predictions. Spatially 214 

inconsistent biases are problematic for epidemiological studies because differences in PM2.5 exposures 215 

cannot be adequately attributed to differences in health responses. This underscores the importance of 216 

correcting biases in CTM estimates with the GWR model. 217 

Figure 1 shows the population-weighted bias between CTM and IEG model estimates at the 218 

county level. The leftmost panel illustrates the bias in uncorrected total PM2.5 as estimated by the CTM. In 219 

the eastern U.S., CTM estimates are generally overestimated by 2 to 4 μg m-3 when compared to the IEG 220 

model. In the western U.S., CTM estimates are generally underestimated when compared to the IEG 221 

model, with biases ranging from 0.1 to -1.6 μg m-3. The middle panel in Figure 1 illustrates the bias when 222 

crustal PM and sea salt are removed from CTM estimates. Removing crustal PM and sea salt decreases 223 

the bias by 4 to 7 μg m-3 in the eastern U.S., and by approximately 1 μg m-3 in the western U.S. This 224 

suggests that crustal PM and seal salt could be responsible for the CTM’s initial overprediction in the 225 

eastern U.S. Previous studies have noted large uncertainties associated with crustal PM in emission 226 

inventories (Xu et al., 2019, Appel et al., 2013), making their predicted source mixtures potentially 227 

unreliable. However, different regional biases persist after removing crustal PM and sea salt. On average, 228 

biases in the western U.S. are 0.8 μg m-3 lower than in the eastern U.S. In California, where CTM 229 
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underpredictions are most severe, biases are typically 2.9 and 3.7 μg m-3 lower than in the eastern U.S. for 230 

2001 and 2010, respectively.  231 

 GWR corrections address spatial inconsistencies in total PM2.5 bias and improve the performance 232 

of all species across several evaluation metrics. Model evaluations for uncorrected and GWR-corrected 233 

PM2.5 species are shown in Figure 2 a) and b) for simulation years 2001 and 2010, respectively. Results 234 

from the 10-fold CV are shown for GWR-corrected species in Figure 2. Uncorrected OA and NO3
- tend to 235 

be severely underpredicted in the west, often by a factor of 2 or more. Meanwhile, OA in the east tends to 236 

be slightly overpredicted, particularly in the southeast. GWR corrections improve R2 coefficients for 237 

simulated OA and NO3
- from 0.30 – 0.50 to 0.53 – 0.87. While overall error and bias are improved for 238 

OA and NO3
-, some error persists for western corrections, particularly for OA. This could reflect a need to 239 

find predictor variables that better explain the bias for OA and NO3
- in the western U.S. For NH4

+and 240 

SO4
2-, GWR corrections improve upon the already good performance of the original CTM results. In the 241 

west, NH4
+ tends to be underpredicted, while SO4

2- is slightly overpredicted. GWR addresses both biases 242 

and improves R2 coefficients from 0.70 - 0.97 to 0.84 - 0.97. Successfully modeling EC is challenging due 243 

to its highly variable nature and the CTM’s coarse resolution. However, GWR corrections do make 244 

significant improvements to simulated EC. Uncorrected EC simulations tend to be noisy and correlate 245 

poorly with monitors, with R2 coefficients of 0.38 and 0.52 in 2001 and 2010, respectively. GWR 246 

corrections significantly reduce error and bias and increase R2 coefficients to 0.62 and 0.71 in 2001 and 247 

2010, respectively. Despite geographic differences in the biases, GWR models successfully improve 248 

model performance in regionally specific ways. 249 

 GWR corrections are largely robust across the three cross-validation methods used. In Figure 3, 250 

uncorrected and corrected simulated species are evaluated against observations by summarizing fractional 251 

bias, fractional error, and R2 coefficients.  All three CV results show significant reductions in fractional 252 

bias, moderate reductions in fractional error, and improved correlations for all species. Results from the 253 

leave-one-out and 10-fold CV are nearly identical. Random folding may not provide additional insights 254 

beyond the leave-one-out CV, because ground-level monitors tend to be clustered in metropolitan areas. 255 

Therefore, the regional holdout CV is helpful in evaluating model performance when extrapolating to 256 

regions with fewer monitors, which tend to be remote. GWR performance does degrade with the regional 257 

holdout CV, but it still yields significant improvements over the uncorrected CTM despite the 400 km 258 

radius holdout. This suggests that GWR performance is potentially weaker in remote regions, compared 259 

to urban areas. However, epidemiological analyses would be less sensitive to estimates in remote regions 260 

due to lower population densities. 261 

 We also compare visual patterns in the observed and predicted biases to provide an additional, 262 

albeit qualitative, point of comparison. CTM biases calculated at monitor locations (i.e., observed biases) 263 
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and those predicted by GWR models are shown in Figures 4 and 5, respectively. In general, the GWR 264 

models replicate spatial patterns in observed biases. Biases for EC tend to be negligible or slightly 265 

negative in remote areas and positive in select metropolitan areas. In 2001, positive EC biases are 266 

observed in a greater number of metropolitan areas, resulting in positive bias predictions in the Midwest 267 

and eastern coast. Biases for OA are negative in the western U.S., particularly in the California central 268 

valley and positive in the eastern coast. For 2010, in particular, OA is overpredicted in the southeastern 269 

U.S., where biogenic emissions contribute significantly to OA production. In 2001, the OA bias in the 270 

southeast may not be as severe due to higher anthropogenic emissions that partially offset the bias, or due 271 

to insufficient monitors. Biases for NO3
- are negative in the western U.S., particularly in the California 272 

central valley, and positive in the eastern U.S. For 2001, predicted NO3
- biases in the Midwest are highly 273 

dissimilar, which may be due to the lack of monitors in the region. Under these condition, GWR models 274 

would assign equal weighting to western and eastern monitors, potentially causing this dissimilarity. In 275 

2010, the introduction of new monitors in the region shows that biases in the Midwest tend to be negative, 276 

which is reflected in the predicted biases. Biases of SO4
2- are relatively mild, but tend to be negative in the 277 

eastern U.S. and California central valley, and positive in the western U.S. Likewise, biases for NH4
+ are 278 

relatively mild, and tend to mirror the patterns observed for SO4
2-, except in the southeast. Since NH4

+ 279 

neutralizes both NO3
- and SO4

2-, positive biases for NO3
- in the southeast may also lead to positive biases 280 

for NH4
+. Corrected species are reconstructed in the rightmost panel of Figure 1, with crustal PM and sea 281 

salt still omitted. For both simulation years, the bias-corrected CTM estimates continue to be biased low, 282 

due to the omission of crustal PM and sea salt, but the bias is relatively uniform and no longer 283 

characterized by severe regional variations. GWR corrections improve the spatial consistency of CTM 284 

estimates and make them viable for exposure assignment in epidemiological studies. 285 

 286 

Compositional Evaluation 287 

 288 

 Some applications of the predicted composition fields may use the fractional composition of the 289 

PM2.5 rather than the speciated concentrations themselves. Therefore, as an additional point of evaluation, 290 

the fractional composition of simulated PM2.5 is compared to that observed in speciated ground-level 291 

monitors. Here, we are interested in examining the CTM’s performance to predict species mixtures on a 292 

relative basis and improvements made by GWR corrections. Fractional composition can be represented as 293 

a vector, where each dimension corresponds to the fractional contribution of a species. The degree of 294 

dissimilarity between species mixtures can be quantified by calculating the angle between their 295 

corresponding vectors. For reference, Figure S1 compares example monitor and CTM species mixtures 296 

with vector angles of 5, 10, 20 and 30 degrees between them. A vector angle below 10 degrees is 297 
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classified as showing good agreement between simulated and observed species mixtures. Changes in 298 

vector angles before and after GWR corrections are shown in Figure 6, with 10-fold CV results being 299 

presented. Figure 6 a) highlights a clear shift in the distribution of vector angles, with an average decrease 300 

of 2.3 and 5.5 degrees in 2001 and 2010, respectively. In 2001, the number of monitor locations with 301 

vector angles under 10 degrees increases from 56 to 70% as a result of GWR corrections. In 2010, the 302 

increase is greater, from 32 to 80%. Changes to vector angles at individual monitor locations are more 303 

clearly represented in Figure 6 b). In general, corrected estimates in eastern locations agree better with 304 

monitors than those in western locations. GWR corrections also improve agreement between CTM and 305 

CSN monitors. However, there appears to be a degradation in performance at some western IMPROVE 306 

locations. This is consistent with earlier results showing persistent error after corrections are applied to 307 

western OA and NO3
- estimates, and regional holdout CV results that suggest weaker predictive ability in 308 

remote regions.  309 

 310 

Impact of Spatial Aggregation 311 

 312 

 We intentionally developed exposure estimates to be easily used in various census geographies 313 

that are commonly used in assignments of PM2.5 exposures. In Figure S2, we reconstruct corrected PM2.5, 314 

without crustal PM and sea salt, and compare directly to IEG estimates at tract-, county- and MSA-level 315 

resolutions. Modest improvements in correlations and RMSE from tract level to county level suggest that 316 

spatial aggregation may potentially reduce some noise in the corrected estimates. Additionally, we note 317 

that the corrected CTM remains biased low relative to IEG estimates, as a result of omitting crustal PM 318 

and sea salt.  319 

 320 

Indirect Changes to Source Mixtures 321 

 322 

The nation-wide network of speciated ground-level PM2.5 monitors provide critical information 323 

on chemical composition, which is the basis for the corrections performed in this study. However, there 324 

are no data sources that detail the source apportionment of PM2.5 on a national scale. Therefore, analogous 325 

corrections to the source-resolution of PM2.5 are not possible. Instead, for each species, we preserve the 326 

original source mixture, as predicted by the CTM, in our corrected estimates. The fractional source 327 

mixture is calculated for each simulated PM2.5 species, and simply re-applied to the corrected estimates. 328 

However, because the quantity of each species has been adjusted, the source mixture for total PM2.5 is 329 

altered by GWR corrections. Figure S3 illustrates the changes in relative source mixture for each source 330 

category. In general, the changes to source mixture are minimal, with the exception of the on-road and 331 
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non-road source categories. GWR correction increases the contribution from on-road and non-road 332 

emissions in the west by approximately 50%. This is primarily due to the increase in NO3
- in corrected 333 

CTM simulations. On-road and non-road emissions tend to be concentrated in specific locations (e.g., 334 

roadways). Coupled with complex terrain in the western U.S., NO3
- emissions gradients tend to be large 335 

and poorly represented in coarse 36 km resolution grids. As a result, NO3
- from mobile sources are under-336 

predicted by the CTM, an error that is indirectly adjusted by GWR corrections. 337 

 338 

Conclusion 339 

 340 

In this paper, we present PM2.5 exposure estimates resolved by species and source for 2001 and 341 

2010 across the continental U.S. GWR corrections improve the spatial consistency of CTM simulations 342 

by leveraging valuable information from monitors, empirical estimates and other land use variables. In 343 

particular, significant improvements are made for estimates of EC, OA and NO3
-, which correct a 344 

significant portion of the initial error and bias in total PM2.5 estimates from the CTM. Going forward, we 345 

hope this enables CTMs to be more widely used for predictions, such as PM2.5 source, that are unavailable 346 

elsewhere at the same scale. The use of geostatistical methods, including but not limited to GWR, should 347 

also be considered when processing CTM simulations, with the aim of improving and further evaluating 348 

said estimates.  349 
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Tables and Figures 

 

Year Species CSN IMPROVE Total 

2001 EC 28 92 120 
2010 EC 151 147 298 
2001 OM 27 92 119 
2010 OM 153 145 298 
2001 NH4 20 91 111 
2010 NH4 174 146 320 
2001 NO3 20 91 111 
2010 NO3 168 145 313 
2001 SO4 21 91 112 
2010 SO4 175 146 321 
2001 Co-located* 18 91 109 
2010 Co-located* 140 144 284 

Table 1. Number of speciated monitors used in observational dataset. Data broken down by year, PM2.5 

species and monitoring network. *Number of instances where all 5 species are measured at the same 

monitoring location. 

 

 
Figure 1. Bias of CTM-predicted PM2.5 relative to IEG-predicted PM2.5 (i.e., CTM – IEG). Left-hand 

panel shows uncorrected CTM predictions, middle panel shows uncorrected CTM predictions without 

crustal PM and sea salt, right-hand panel shows corrected CTM predictions without crustal PM and sea 

salt. Top and bottom rows show annually-averaged biases for 2001 and 2010 predictions, respectively. 

Biases are county-level population-weighted averages. 
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Figure 2. Evaluation of CTM-predicted PM2.5 species against observations from speciated ground-level 

monitors. Figures a) and b) show evaluations of 2001 and 2010 simulation years, respectively. Values 

shown are annual-averages at monitor locations. RMSE represents the root mean square error. NMB 

represents the normalized mean bias. Solid lines denote a 1:1 slope. Dashed lines denote a 1:2 or 2:1 

slope.  
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Figure 3. Summary of CTM evaluations for uncorrected and GWR-corrected simulations trained under 

leave-one-out (LOO), 10-fold and regional cross-validation (CV) methods. Evaluation metrics are 

calculated for individual PM2.5 species across the continental U.S. 
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Figure 4. Bias of uncorrected CTM PM2.5 species relative to observations at speciated ground-level 

monitors (observed bias).  
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Figure 5. Bias of CTM PM2.5 species as predicted by GWR models (predicted bias). Values shown are 

county-level population-weighted averages. 
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Figure 6. Evaluation of vector angles before and after GWR correction. Vector angles are calculated 

when speciated monitors for EC, OC, NH4
+, NO3

-, and SO4
2-

 are all present. Corrected vector angles are 

based on results from the 10-fold cross-validation. Figure a) illustrates the change in vector angle 

distributions. Figure b) directly compares uncorrected and corrected vector angles. Red areas denote an 

increase in the vector angle. Blue areas denote a decrease in the vector angle. 
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Figure S1. Illustrative example of vector angles between monitor and CTM species mixtures. A vector 

angle of zero indicates equivalent species mixtures. Vector angle increases as species mixtures become 

more dissimilar. 
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Figure S2. Effect of spatial aggregation on GWR-corrected CTM predictions. CTM PM2.5 is 

reconstructed from the sum of GWR-corrected EC, OC, NH4
+, NO3

-, and SO4
2-. CTM predictions are 

compared against IEG model predictions. All values are annual-averages. County-level and MSA-level 

values are population-weighted averages. Solid lines denote a 1:1 slope. Dashed lines denote a 1:2 or 2:1 

slope. 

 

 
Figure S3. Indirect changes to source mixtures resulting from GWR corrections. Data points represent 

annually-averaged source mixtures at the county-level after population-weighted averaging. Solid lines 

denote a 1:1 slope. Dashed lines denote a 1:2 or 2:1 slope. 
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