Brønsted Acid-Catalyzed Stereospecific Dearomative Spirocyclization of Benzothiophenyl Analogues of Tertiary cis-β-Benzylstyrenes

Anargul Tohti, Victoria Lerda, and Benjamin J. Stokes†*

Department of Chemistry & Chemical Biology, University of California, 5200 N. Lake Road, Merced, CA 95343, USA

ABSTRACT: 3-Substituted benzothiophenyl analogues of tertiary cis-β-benzylstyrenes undergo triflic acid-catalyzed dearomative spirocyclization to afford vicinal quaternary center-containing compounds at room temperature. Hydroarylation of the styrene is a competing process that could be selected for in substrates possessing electron-rich styrenyl alkenes, or an indole in place of the benzothiophene.

The construction of quaternary carbons is an area of intense research interest in organic synthesis due to both the prevalence of quaternary centers in biologically active natural products and pharmaceutical agents as well as the challenge of forging congested C–C bonds.1–3 Synthetically, quaternary carbons can enhance rates of cyclization reactions and associated selectivity outcomes thereof.4 Medicinally, quaternary carbons are relatively metabolically stable.5 Among quaternary carbon-containing molecules, spirocycles have garnered particular medicinal attention in recent years6 and may be considered a privileged molecular motif in drug discovery as diversifying linkpins and thanks to their improved pharmaceutical properties compared to aspirocyclic or planar aromatic molecules.7 Dearomatization is likely the most common strategy by which spirocycles are prepared,8,9 including a few examples of Brønsted acid-catalyzed approaches.10 Syntheses of spirocycles are constrained by functional group incompatibility and the consequent limited functionality available for subsequent synthetic manipulation.11 Additionally, spirocyclizations that furnish vicinal all-carbon quaternary centers have not been reported to the best of our knowledge.

Stemming from our interest in catalytic intramolecular arylation of congested alkenes,12 particularly the cis-specific behavior of indole A (Scheme 1A),12b we observed that a benzothiophenyl analogue (1a, Scheme 1B) underwent dearomatized spirocyclization to form 2a with high chemoselectivity over styrene hydroarylation products including 3a, although styrene hydroarylation is favored for electron-rich styrenes. Herein, a variety of spiroheterocycles bearing vicinal quaternary centers and an intact alkene are prepared from the cis-configured isomers of benzol[b]thiophene derivatives of 1a through dearomative spirocyclization at room temperature with catalytic triflic acid.

Scheme 1. Brønsted Acid-Catalyzed Stereospecific Intramolecular Hydroarylation Reactions of Heteroaromatic Analogues of Tertiary β-Benzyl Styrenes.

A. Prior work: catalytic cis-specific regioselective intramolecular hydroarylation of indolyl analogues of tertiary β-benzylstyrenes12b

B. This work: catalytic cis-specific regioselective dearomative spirocyclization of benzothiophenyl analogues of tertiary β-benzylstyrenes

Reaction optimization (see the Supporting Information for details) revealed that spirocyclization could be accomplished in good yield using trifluoromethanesulfonic acid (TfOH) as a catalyst after 12 hours at ambient temperature in dichloromethane. We examined the substrate scope by decorating with various functional groups (Table 1). Catalytic triflic acid afforded dearomative spirocyclized products in good or excellent yield in many cases. For example, meta-substituted styrenes bearing F, Cl, Br or Me (1b–1e) afforded dearomative spirocycles 2b–2e in high yield with the new bond formed para to the functional group. Of note, m-fluoro substrate 2h afforded the best yield and chemoselectivity that we observed in this study.13 Variation of substituents para to the alkene revealed that the chemoselectivity could be inverted by electronic enrichment. Specifically, p-methyl substrate 1f afforded a 65:35 mixture of 2f and 3f, while p-phenyl analogue 1g afforded a 40:60 ratio of 2g and 3g, and most impressively p-methoxy substrate 1h selectively afforded the styrene hydroarylation product 3h in 77% isolated yield. Naphthyl analogue 1i afforded 46% yield of 2i at the less sterically hindered position. We also
evaluated two disubstituted styrenes, and fluoromethyl substrate 1j afforded 2j, which possesses the new C–C bond para to the F group. The 3,4-dimethyl analogue 1k afforded 67% yield of 2k.

The analogous 3-substituted indole and benzofuran analogues of benzothiophene do not undergo spirocyclization appreciably. Rather, indole substrate 4 afforded the hydroarylation product 5 in 39% NMR yield (eq 1), while benzofuran 6 decomposed unproductively (eq 2).

In summary, we have developed a Brønsted acid-catalyzed intramolecular dearomatative hydroarylation of benzothiophenyl analogues of tertiary cis-β-benzylstyrenes to access spirocyclic benzocycloalkanes. This is the first example of a spirocyclization furnishing vicinal quaternary centers that we are aware of. Hydroarylation of the styrene is a competing process that predominates for electron-rich styrenyl alkenes.

AUTHOR INFORMATION

Corresponding Author

Current address: Department of Chemistry & Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053

bstokes@scu.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This research was supported by the University of California, Merced and an award from the Hellman Faculty Fellows Fund.

REFERENCES
