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Abstract 

Thermoresponsive hydrogel formation upon cooling in aqueous media is rarely described for synthetic 

polymers in the literature. However, if the sol-gel transition occurs in the physiologically relevant range 

(0-40 °C), there are many possible applications in areas such as drug delivery and biofabrication. Here, 

we describe a new mechanism of a thermally induced order-order transition in polymer self-assembly 

of an ABA triblock consisting of hydrophilic A blocks and a hydrophobic aromatic B block. Small-angle 

X-ray scattering confirmed worm-to-sphere transition upon heating on the nanoscale level while wide-

angle X-ray scattering indicated a more uniform ordering of the macromolecular chains on the scale of 

4-7 Å. NMR spectroscopy showed reduced mobility of various polymer segments in the hydrogel state, 

especially in the hydrophobic aromatic region. More importantly however, solution and solid-state 

NMR investigations also revealed close proximity of hydrophobic and hydrophilic repeat units in the 

gel state, which is less pronounced in the sol state. This interaction between the hydrophilic and 

hydrophobic block is responsible for the order-order transition and –ipso facto– inverse 

thermogelation. This unusual interaction is supported in silico by molecular dynamics modeling.  

Changes in the structure of the hydrophilic A blocks can be used to tune the gel strength, persistence, 

and gelation kinetics. This order-order transition based on unexpected and previously not described 

interactions between the hydrophilic and the hydrophobic repeat units opens new avenues to control 

and design macromolecular self-assembly. 

  



Introduction 

Thermoresponsive phase separation of polymer solutions upon heating is an entropic effect and widely 

discussed in literature.1 Polymers displaying a lower critical solution temperature (LCST) are 

structurally diverse and can be found in the families of poly(ether)s, poly(acrylamide)s, poly(2-

oxazoline)s and many others. In contrast, examples of UCST (upper critical solution temperature) type 

phase separation are more rarely found, especially for UCST in purely aqueous media.2, 3 Such systems 

are discussed for different applications as smart biomaterials if the transition takes place at or around 

physiological temperatures and in physiological media. In some cases, physical hydrogel formation 

(sol-gel transition) can be observed instead of precipitation (coil-globule transition) due to changing 

aggregation patterns. Block copolymers with thermogelling properties are well-known in literature,4, 5 

with Pluronic® F127 being arguably the most prominent example.6 Mostly,  thermogelation relies on a 

thermally triggered disorder-order transition from random coils to polymer micelles forming dense 

colloidal packings.7  In contrast, Armes and co-workers described a thermogelling system based on an 

interesting and unusual heating induced worm-to-sphere order-order transition,8 which could be 

tuned with respect to the critical gelation temperature.9 Later, Penfold et al. described a pH- and 

thermosensitive system that combined pH-responsive vesicle-to-worm transition and thermosensitive 

worm-to-sphere transition.10 More recently, a thermoresponsive poly(N-(2-

hydroxypropyl)methacrylamide)-poly(2-hydroxypropyl)methacrylate) diblock copolymer was 

described, which formed spheres (4 °C, weakly turbid free flowing fluid), worms (22 °C, turbid free 

standing gel) or vesicles (50 °C, milky-white free flowing dispersion) in aqueous solution.11  

Very recently, we described a cooling induced and reversible sphere-to-worm and concurrent sol-gel 

transition in aqueous solution (Figure 1).12 A ABA-type block copolymer amphiphile poly(2-methyl-2-

oxazoline)-b-poly(2-phenyl-2-oxazine)-b-poly(2-methyl-2-oxazoline) (pMeOx-b-pPheOzi-b-pMeOx=A-

pPheOzi-A) featuring the novel aromatic PheOzi repeat unit. At 5 °C, the polymer exhibited long 

interconnected worm-like aggregates, which transformed into small, uniform and spherical polymer 

micelles upon heating. The temperature, at which the system liquified and its viscosity decreased 



several orders of magnitude was 32 °C.  While inverse thermoreversible gelation is well known for bio- 

or bioderived polymers such as agarose or gelatin, there are only few synthetic systems described in 

the literature.2 Arguably best known is poly(N-acryloyl glycinamide) (PNAGA), already described by 

Haas et al. in 1967.13  Fu and Zhao reported gels that form upon cooling of aqueous solutions of various 

poly(acrylamide-co-acrylonitrile)-b-poly(poly(ethylene glycol) methyl ether methacrylate)-b-

poly(acrylamide-co-acrylonitrile) (P(AAm-co-AN)-b-PPEGMMA-b-P(AAm-co-AN)14 as well as UCST-type 

nanogels.15 In addition, Lele and co-workers described hydrophobically modified copolymers that 

undergo inverse thermogelation.16 All these known systems have in common that intermolecular and 

intramolecular hydrogen bonding between polymer repeat units can occur, which is indeed the main 

driving force for the UCST phenomenon in general. In stark contrast, A-pPheOzi-A cannot undergo such 

hydrogen bonding between repeat units and neither pMeOx nor pPheOzi are thermoresponsive per 

se. In addition, we believe A-pPheOzi-A is the first example of a cooling induced sphere-to-worm 

transition. Therefore, the question is: what is the mechanism of this order-order and concomitant 

inverse thermogelation?  Using a variety of state-of-the-art analytic tools complemented by molecular 

modeling, we aimed to elucidate the molecular origins of this novel gelation mechanism in detail. We 

found that the order-order transition in self-assembly is based on a previously undescribed interaction 

between the hydrophilic MeOx repeat units and the hydrophobic, aromatic PheOzi repeat units, 

leading to a compaction of the former onto the latter, which in turn leads to the sphere-to-worm 

morphology transition as the packing parameter increases. Testing this suggested mechanism, 

variation of the hydrophilic repeat units could be successfully used to tune the gelation behavior. 



  

Figure 1ǀ Summary of the study. The polymer amphiphile poly(2-methyl-2-oxazoline)-b-poly(2-phenyl-2-
oxazine)-b-poly(2-methyl-2-oxazoline) (pMeOx-b-pPheOzi-b-pMeOx = A-PPheOzi-A = A-B-A) showed unique 
inverse thermogelling properties.12 In the liquid state, the polymer self-assembled into spherical micelles. Upon 
cooling an order-order transition into worm-like micelles was observed. (TEM images reprinted with permission 
from reference [12]).  In this study a detailed elucidation of the order-order transition is presented with the focus 
on polymer interactions on a molecular level. The color code on the right is used throughout this study to 
highlight the samples macroscopic state. 

 

  



Materials and Methods 

All chemicals and reagents were used from Sigma-Aldrich (Steinheim, Germany) or TCI-chemicals 

(Eschborn, Germany) and were used as received unless otherwise mentioned. The polymer pMeOx-b-

pPheOzi-b-pMeOx (= A-pPheOzi-A) was prepared and used as described previously.22 The monomers 

2-ethyl-2-oxazoline (EtOx) and 2-methyl-2-oxazine (MeOzi) were synthesized like described by Witte 

and Seeliger.17 Deuterated dichloromethane (d2DCM) and D2O as NMR solvent were obtained from 

Deutero GmbH (Kastellaun, Germany). Methyl trifluoromethylsulfonate (MeOTf), EtOx, MeOzi and 

PheOzi were refluxed over CaH2 for several hours and distilled under reduced pressure. Benzonitrile 

(PhCN) was dried over phosphorus pentoxide. 

Dynamic light scattering 

Dynamic light scattering (DLS) experiments were performed using an ALV CGS-3 multi detection 

goniometry-system (Langen, Germany) equipped with a He-Ne-laser (632.8 nm) and 8 optical 

avalanche photodiodes-detector with an angular detector spacing of 16 ° (correlation time 45 s, 3 

runs). Scattering angles between 20 ° and 147 ° were measured in 4 angle sets (4x8 detectors) and a 

5 ° angle interval for each detector at 15 °C and 40 °C. Prior to each measurement, samples were 

filtered in dust-free cuvettes using Millex-LG 0.2 µm filters under laminar flow. The polymer 

concentration was 0.1 g/L (2 mM aqueous NaNO3). All samples were stored at the measurement 

temperature for 24 h. The decay of the electric field-time autocorrelation function (ACF) was fitted 

using triexponential fit functions (equation 1) like described previously:18 
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with the amplitudes 𝑎𝑖  and the decay times 𝜏𝑖 =
1

𝑞2∙𝐷𝑖
 , where 𝑞 is the absolute value of the scattering 

vector. In the case of polydispersity, the translational diffusion coefficient 𝐷 was obtained by 

extrapolation to zero angle and in the limit of high dilution given by 
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Using the Stokes-Einstein equation the (apparent) hydrodynamic radius 𝑅ℎ was obtained by 



 
𝑅ℎ =

𝑘𝐵 ∙ 𝑇
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(3) 

with 𝑘𝐵 being the Boltzmann constant, 𝜂 is the viscosity of the solvent and 𝑇 the temperature (15 °C 

or 40 °C). 

Small- and wide-angle X-ray scattering (SAXS, WAXS)  

SAXS and WAXS experiments were carried out using an in-house setup, which was built by Fraunhofer 

EZRT (Fürth, Germany). It consists of a MicroMax-007 HF X-ray source (Rigaku, Japan) and a Eiger R 1M 

detector unit (Dectris, Switzerland). The sample-detector distance can be varied between 5 cm and 3.5 

m, which corresponds to possible Q-values between 0.005 and 5 Å−1. The complete setup is operated 

in a vacuum below 0.1 mbar to reduce air scattering. The sample solutions were placed in quartz 

capillaries (inner diameter: 1 mm, wall thickness: 10 µm) (Hampton Research, Aliso Viejo, California), 

which were positioned perpendicularly to the X-ray beam. The presented experiments were done at 

sample-detector distances of 57 mm, 565 mm and 1560 mm with an integration time of 15 min for the 

shortest distance and 240 min for the two longer configurations. All distances were calibrated using a 

silver behenate standard sample. For each sample, data was acquired for different temperatures 

between 5 °C – 50 °C. To achieve thermal equilibrium, the sample (10 wt.% aqueous solution) was kept 

at the desired temperature for 15 min prior to each measurement. The SAXS data, which was obtained 

at the two largest distances, was calibrated in terms of absolute intensities using glassy carbon as a 

secondary calibration standard.19, 20 The scattering curves of the hydrogels were obtained by azimuthal 

integration taking the samples thickness, X-ray transmission, detector accuracy, setup geometry and 

solvent scattering into account following the standard procedures described in literature.21 

Temperature dependent nuclear magnetic resonance (NMR) experiments in solution 

All experiments in solution were performed at a Bruker Avance III HD 600 spectrometer (Karlsruhe, 

Germany) operating at 600.4 MHz equipped with a BBFO 5 mm probe using a BCU-02 temperature 

control unit. 1H NMR experiments of a 20 wt.% A-pPheOzi15-A sample in D2O were acquired with a 30 ° 

flip angle and 8 or 16 scans without sample spinning. A series of variable temperature experiments 



was performed in the range from 2 °C to 39.15 °C in a step size of 3 to 5 °C. The sample was kept at the 

desired temperature for 10 minutes prior to each measurement. Temperature calibration was done 

using 4 % MeOH in MeOD and 80 % ethylene glycol in DMSO-d6. All recorded spectra were referenced 

using the temperature dependent HDO signal. For quantitative characterization of the temperature 

induced phase transition the fraction 𝑝 was calculated with the integrals 𝐼(𝑇) and 𝐼(𝑇0) at the 

respective temperatures 𝑇 and 𝑇0 using the following equation:22 
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The highest signal intensity was measured at 39.15 °C (𝑇0). Reductions of signal intensities are 

indicated by 𝑝 < 0. 2D 1H-1H nuclear Overhauser effect  NMR spectroscopy (NOESY) experiments at 

5 °C and 40 °C were recorded using the noesygpphpp pulse sequence (scans: 32, t1 increments: 256, 

relaxation delay: 2.5 s). To ensure discrimination between cross-relaxation and spin-diffusion different 

mixing times (40 µs, 60 µs, 80 µs, 150 µs and 250 µs) were used. For better visualization of the aromatic 

region, phase and baseline correction of 2D data was confined to the range of 6-8 ppm and TDeff was 

set to 2867 in the f2 dimension. Additionally, 1D slices of relevant aromatic regions were extracted. 1H 

spin-lattice relaxation times T1 were measured with the inversion recovery pulse sequence t1ir at 5 °C 

and 40 °C. For measuring the T1 relaxation times of HDO a variable delay from 1-50 s in 12 steps was 

used with a relaxation delay of 50.0 s. T1 relaxation times of polymer signals were recorded with a 

variable delay from 0.001-5.0 s in 16 steps and a relaxation delay of 5.0 s. The normalized decay curves 

for different polymer segments and the HDO signal were fitted using monoexponential fit functions. 

Solid-state nuclear magnetic resonance  

Solid-state NMR (ssNMR) measurements were performed using a 4 mm double-channel Bruker probe 

at 9.4 T using between 3 and 5.3 kHz magic angle spinning (MAS). The hydrogel sample was cooled to 

273 K prior to measurement. For the 13C CP MAS experiment, a 2 ms ramp (50 to 100 %) on the 1H 

channel was used during the cross-polarization (CP) contact time for all samples. 13C NMR spectra with 

direct excitation were recorded with short interscan delays of 1 s to probe mobile components. For 



heteronuclear decoupling during acquisition, SPINAL64 was employed with a 100 kHz nutation 

frequency (1H). The chemical shifts were referenced using adamantane (left signal at 38.48 ppm) by 

subsequent adjustment of the magnetic field. 

Raman spectroscopy 

The Raman spectra were recorded on an alpha 300R+ confocal Raman microscope from WITec GmbH 

(Ulm, Germany) equipped with a 50x objective (NA 0.8, Epiplan Neofluar, Zeiss, Germany) and a 532 

nm laser (39.4 mW). A 20 wt.% sample was measured after equilibration at 5 °C and 40 °C using a 

temperature controllable Peltier stage (LTS 120, Linkam Scientific Instruments Ltd., Tadworth, UK). 

Spectra are shown as average spectrum of 3 spectra at different locations on the same sample, which 

were recorded with an integration time of 5 s and 10 accumulations. The resulting data were processed 

with cosmic ray removal and background subtraction. The bulk water signals at 3100 cm-1 - 3700 cm-1 

were fitted using a Gaussian deconvolution method as described elsewhere.23, 24 

Fluorescence spectroscopy 

The amphiphilic fluorescence probe 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide (Daspmi) 

was purchased from Molecular Probes Inc., Life Technologies. The hydrophobic probe 4,4´-difluoro-4-

bora-3a,4a-diaza-s-indacene meso-substituted with para-dodecylphenyl (BPC12) was synthesized like 

described in previous studies.25 Gibco™ Dulbecco's phosphate-buffered saline (DPBS) pH 7.25 was 

purchased from Thermo Fisher Scientific (Massachusetts, USA). The steady-state fluorescence spectra 

of Daspmi (5 µM) and BPC12 (5 µM) in aqueous sol and gel samples at a polymer concentration of 20 

wt.% were recorded at different temperatures on a FLS-1000 spectrofluorometer (Edinburgh 

Instruments, UK) equipped with a thermocontrolled cuvette holder (λexc.(Daspmi): 460 nm, 

λexc.(BPC12): 490 nm) comparing the wavelength shift of emission maximum. Fluorescence intensity 

decay curves were obtained using a time-correlated single photon counting (TCSPC) system (PicoQuant 

GmbH) equipped with a temperature controlling cuvette holder using quartz cuvettes as described 

earlier (λexc.: 483 nm, cutoff filter > 490 nm).26 Monitoring wavelengths were 580 nm for Daspmi and 

520 nm for BPC12. The fluorescence decays were deconvoluted with the instrumental response to give 



the fluorescence lifetime with a resolution of approximately 100 ps. The obtained lifetimes were used 

for calculating microviscosity values at different temperatures (5 °C, 12 °C, 22 °C and 37 °C) using 

following equation: 

 log 𝜏𝑓 = log
𝑧

𝑘𝑟
+ 𝛼 log 𝜂 (4) 

where 𝜏𝑓 is the fluorescence lifetime of Daspmi or BPC1232 in the solution of a known viscosity 𝜂 , 𝑘𝑟 

is the radiative rate constant, and  𝑧 and 𝛼 are constants. The linear part of the log 𝜏𝑓 as a function of 

log 𝜂 plot was taken as a calibration function to calculate microviscosity values (Figure S3). The 

viscosities of different water/glycerol mixtures (80-100 wt.% of glycerol) at different temperatures 

were determined using a LOVIS 2000M rolling ball microviscosimeter from Anton Paar (Graz, Austria) 

with a LOVIS 1.8 capillary and a steel ball of 1.5 mm diameter. Prior to viscosity measurements, the 

density of the sample at the specific temperature was recorded using a DMA 4100M density meter 

from Anton Paar (Graz, Austria). For the corresponding lifetime measurements a concentration of 5 

µM of Daspmi and BPC12 were used.   

 

Micro calorimetry (µCAL) 

Micro calorimetry measurements were conducted with a Malvern MicroCal PEAQ-DSC 

microcalorimeter. The heat of the sample was measured relative to pure water and the enthalpy values 

were normalized to the molar concentration of the aromatic repeat units. After complete dissolution, 

the samples were stored in the refrigerator at 4 °C for about 48 h, degassed at 5 °C, transferred to the 

instrument precooled at 2 °C or 10 °C, and kept at the temperature for different times, as indicated, 

prior to heating. Each sample was heated with the rate of 1 °C/min to 100 °C, after which they were 

cooled again to the starting temperature with the same rate.  

 

Molecular modeling 

We modeled a system containing eight Me-pMeOx35-b-pPheOzi15-b-pMeOx35-EIP polymers (Me = 

methyl group, EIP = ethyl isonipecotate), in which the hydrophobic pPheOzi blocks faced each other to 



form a single inner strand along the Z axis and the hydrophilic pMeOx blocks were bent outwards. Four 

individual molecules made up the strand and were subsequently duplicated and moved next to the 

original polymers along the Z axis, ultimately resulting in two layers of polymers in our simulation box. 

The stretched out, hydrophilic pMeOx blocks were subjected to an energy minimization and a short, 

50 ps long simulation with the Noisé-Poincaré-Andersen method27, 28 (applying the Amber14:EHT force 

field29, 30 with the R-field implicit solvation model31) to yield a more compact starting conformation, 

while keeping the inner strand in a straight orientation. Figure S6A depicts the prepared structure. All 

modeling was performed with MOE (Molecular Operating Environment 2019.01).32 The setup was 

inspired by previous modeling studies regarding worm-like micelles of small molecules, in which the 

generation of a continuous micelle was also achieved via initial placement of hydrophobic parts in the 

inner and hydrophilic moieties in the outer regions of the threadlike structure, which was aligned along 

one axis of the simulation box.33-35 RESP partial charges36 of single monomers used as building blocks 

were derived from calculations with Gaussian 09 Rev. C.0137 (Hartree-Fock level of theory, 6-31G* basis 

set); parameters based on the Amber14ffSB29 and GAFF238 force fields were assigned via antechamber 

and parmchk2 of AmberTools18.39 During charge derivation monomer structures were capped with 

residues of the same type (except for the terminal groups, Me-MeOx and EIP, which were capped with 

a MeOx monomer). The calculated parameters were used to generate a polymer with an initial straight 

conformation using tleap.39  

Subsequent solvation of the starting structure with TIP3P water40 in a simulation box with a minimum 

border-to-polymer distance of 20 Å in the X and Y directions resulted in a system size of approximately 

16 x 18 x 10 nm3 with 76,730 solvent molecules. Water molecules found inside the inner hydrophobic 

strand after this initial placement were removed if the distance to the pPheOzi blocks was less than 10 

Å. Periodic boundary conditions with minimum image convention were applied during the simulation, 

which allowed for an infinitely sized worm-like micelle along the Z axis and ensured a sufficient distance 

between polymers of neighboring boxes along the X and Y dimensions. The simulation was performed 

using NAMD 2.1341 with 2 fs time steps. An initial energy minimization of 10,000 steps was conducted 

before slowly heating the system from 100 K to 278 K over the course of 500 ps. Harmonic constraints 



were initially applied on all polymers and gradually reduced over an additional 1.6 ns, allowing a rapid 

reordering of solvent molecules around the polymers. Langevin dynamics and the Nosé-Hoover 

Langevin piston method (1 atm) were used for temperature and pressure control in an NPT ensemble. 

After another 2 ns of equilibration, the production run was performed for 600 ns. Semi-isotropic 

coupling allowed for fluctuations along the Z axis, independent from the X and Y axes. The particle 

mesh Ewald method42 with a cutoff of 1.2 nm was applied and coordinates were saved every 10 ps. 

Subsequent analyses were performed using cpptraj43 and images were generated with VMD 1.9.344 

and PyMOL 2.4.1.45 Average densities for polymer groups around PheOzi monomers were retrieved as 

follows: All PheOzi residues were iteratively aligned onto the same monomer. Next, binned occupancy 

histograms of different moieties around the center of the aligned residue were calculated for the last 

100 ns using the grid command in cpptraj. This was performed on a 1.6 x 1.6 x 1.6 nm³ grid with a 1 Å 

resolution. After this procedure, the obtained values around each PheOzi monomer were added up at 

each grid element and divided by the number of analyzed frames (10,000) and monomers (104). Thus, 

densities represent the average amount of atoms of interest found at each grid element per frame 

around a single monomer. The first and last PheOzi monomer of each pPheOzi block (16 out of 120) 

were excluded from this calculation, as these are always situated near the neighboring MeOx residues. 

Additionally, we analyzed several distances between these PheOzi monomers and the other polymer 

residues, as well as the angle ω between the plane of nearby amide (N-(C=O)-C) groups and the phenyl 

ring plane for every 10 ps of the last 100 ns. 

 

Rheology  

All experiments were performed using an Anton Paar (Ostfildern, Germany) Physica MCR 301 system 

utilizing a plate-plate geometry (25 mm diameter) equipped with a solvent trap and Peltier element 

for temperature adjustment. All aqueous 15 wt.% samples were dissolved at room temperature 

stirring constantly and incubated at 5 °C for 48 h. In addition, pictures were taken to visualize the gels. 

A temperature-sweep was performed in oscillation mode from 5-50 °C (heating rate: 0.05 °C/s) using 



a fixed amplitude of 0.1 % and angular frequency of 10 rad/s. The long-time gelation experiment at 5 

°C was performed at an amplitude of 0.1 % and an angular frequency of 10 rad/s for several hours. 

 

Polymer synthesis 

To investigate the influence of the hydrophilic block on the gelation mechanism the polymers Me-

pEtOx35-b-pPheOzi15-b-pEtOx35-EIP and Me-pMeOzi35-b-pPheOzi15-b-pMeOzi35-PipBoc were 

synthesized as described several times using MeOTf as initiator and ethyl isonipecotate (EIP) or 1-Boc-

piperazine (PipBoc) as terminating agent, respectively.12 (Detailed characterization of the novel ABA 

type amphiphiles in SI).  

For standard analytics of the synthesized polymer, NMR spectra were recorder on a Bruker Fourier 300 

(1H: 300.12 MHz) spectrometer at 298 K from Bruker BioSpin (Rheinstetten, Germany) and calibrated 

using the solvent signal of d2DCM.  

 

Gel permeation chromatography 

Gel permeation chromatography (GPC) was performed on a Polymer Standard Service PSS (Mainz, 

Germany) system. Specifications: pump mod. 1260 infinity, MDS RI-detector mod. 1260 infinity 

(Agilent Technologies, Santa Clara, California, USA), precolumn: 50 x 8 mm PSS PFG linear M; 2 

columns: 300 x 8 mm PSS PFG linear M (particle size 7 µm; pore size 0.1 – 1.000 kg/mol) with 

hexafluoroisopropanol (HFIP, containing 3 g/L potassium trifluoroacetate (KTFA)) as eluent calibrated 

with PEG standards (molar masses from 0.1 kg/mol to 1000 kg/mol). The columns were held at 40 °C 

and the flow rate was set to 0.7 mL/min. Dried polymer powders were dissolved in eluent and filtered 

through 0.2 µm PTFE filters (Rotilabo, Karlsruhe, Germany). 

Differential Scanning Calorimetry (DSC)  

All measurements were performed using aluminum crucibles on a calibrated DS 204 F1 Phoenix system 

from NETZSCH (Selb, Germany) equipped with a CC200 F1 controller unit from -50 °C to 200 °C with 



three heating and two cooling phases and a cooling rate of  10 °C/min. The third heating cycle was 

used to analyze the glass transition temperature of dried polymer powders. 

Transmission electron microscopy  

For transmission electron microscopy (TEM) experiments, the polymers were dissolved in DI water to 

a final concentration of 20 g L−1 and stored at room temperature. 400 mesh copper–rhodium grids 

(maxtaform) with a homemade carbon layer were glow discharged in air for 1.5 min at medium power 

in a Harrick PDC-002 plasma cleaner. The 20 g L−1 sample was diluted (1/125 or 1/625) and 8 µL were 

incubated on the grids for 1 min before blotting (Whatman filter paper No. 50). The grids were washed 

with water (three times) and 2% w/v uranyl acetate (three times). After the last dose of uranyl acetate 

was applied, the grid was left to incubate for 5 minutes before blotting. A single-tilt room temperature 

holder in an FEI Tecnai G2 Spirit TWIN transmission electron microscope equipped with a tungsten 

emitter at 120 kV was used. Images were recorded with an Eagle CCD camera under low-dose 

conditions. The micrographs were binned two times resulting in a pixel size of 2.2 Å per pixel at 

specimen level. 

 

 

Results and Discussion 

As previously evidenced by cryoTEM investigations, the amphiphile pMeOx-b-pPheOzi-b-pMeOx 

reversibly forms worm-like micelles in aqueous media upon cooling.12 However, these images were 

recorded at dilute, non-gelling concentrations (cgel ≈ 5 wt.%). To confirm that this order-order transition 

also occurs at higher concentrations, we conducted temperature dependent small-angle X-ray 

scattering (SAXS) at above cgel (10 wt.%).  

The intensity I as a function of Q from the SAXS measurements was plotted for different temperatures. 

In the hydrogel state (5 °C), a pronounced structure peak (supporting information, Figure 2A, blue) is 

followed by two clearly defined regions with different slopes at intermediate and high Q-values, which 

can be assigned to different self-assembled species. Using a power-law expression46, the different 



slopes can be determined, indicating the presence of spherical micelles and worm-like micelles in the 

gel state. Above Tgel, the worm-like micelles disappear, confirming that the order-order transition 

found at low concentration also occurs at higher concentration. In addition, the structure peak is 

shifted towards higher Q-values indicating a lower particle/particle distance in the sol state due to the 

formation of small spherical micelles (supporting information, Figure 2A, vertical lines). This is a logical 

consequence of the disintegration of relatively few worm-micelles into much more numerous spherical 

micelles. The extrapolation of the absolute intensity I to Q0 (supporting information, Figure S1, 

horizontal lines) was used as a measure for relative mean particle size, corroborating once more larger 

particles in gel state (worm-like micelles) in comparison to the sol state (spherical micelles). The 

qualitative analysis of the SAXS scattering profiles is summarized in more detail in the supporting 

information (Table S1). 



  
 

Figure 2ǀ SAXS analysis, microviscosity, and polarity change of aqueous pMeOx-b-pPheOzi-b-pMeOx solutions. 
A) SAXS scattering curves at 5 °C (blue, hydrogel) and 40 °C (red, liquid) at 100 g/L. Two defined slopes regions 
can be defined (triangles). Further, the position of the structure (vertical lines) and absolute intensity of Q →0 
(horizontal lines) are different at 5 °C and 40 °C. B) Microviscosity values for Daspmi and BPC12 molecular rotors 
in a 20 wt.% aqueous polymer sample in fluorescence lifetime experiments as a function of temperature. Bulk 
viscosity of a 20 wt.% hydrogel was added for comparison using the data obtained in previous studies via 
oscillatory rheology experiments.12 Wavelength shift of BPC12 (C) and Daspmi (D) fluorescence emission in 
steady-state experiments as a function of temperature. In addition, the chemical structure of BPC12 and Daspmi 
are shown. The color code for the temperature represents the macroscopic state of the sample as described in 
Figure 1. 

Additionally, temperature-dependent wide angle X-ray scattering (WAXS) (Figure S1) provides insights 

into intra- and interpolymer interactions as previously described for biopolymers47 and thermogelling 



peptides48. In the gel state (5 °C, blue), a rather defined peak centered around 4.2 Å was observed, 

which could be interpreted to hint towards π-π interactions of the phenyl moieties.49 With increasing 

temperature, the peak position was maintained, but a noticeable broadening between 4.2 Å and 7 Å 

indicates reduced order and increased degrees of freedom. From a self-assembly point of view, a 

transition from spherical to worm-like assembly must correlate with a change in the volume fraction 

of the hydrophilic to the hydrophobic compartment. Specifically, the relative volume of the hydrophilic 

compartment has to decrease or the volume of the hydrophobic compartment has to increase upon 

cooling for a sphere-to-worm transition to occur. If the peak in the WAXS scattering curve corresponds 

to the hydrophobic compartment, it would suggest rather a decrease in volume due to denser packing. 

This is a first hint that the molecular origins of the order-order transition do not lie in the hydrophobic 

compartment (alone) and are not connected to π-π stacking as might be assumed.  

Infrared and Raman spectroscopy can provide functional group-selective information on non-covalent 

polymer interactions, conformations and self-assembly. Overall, the Raman spectra for the dried 

polymer powder, polymer hydrogel (20 wt.%, 5 °C) and polymer sol (20 wt.%, 40 °C) are quite similar 

(Figure S2A), but some distinct changes hint at differences in the polymer-polymer interactions 

between sol and gel state. At 1464 cm-1, a small but clearly distinguishable peak is exclusively observed 

in the gel (Figure 2B). Unfortunately, both aromatic ring vibrations as well as CH3 and CH2 deformation 

vibrations ubiquitous in the polymer backbone and hydrophilic sidechain appear in this region, making 

an unambiguous assignment challenging. 

The maximum amide band at 1608 cm-1 does not shift, but the signal has a slightly higher intensity in 

the gel state. In addition, the full width-half maximum decreases rather significantly by 25 % from 38 

cm-1 to 29 cm-1. Similarly, a peak at around 1580 cm-1, which is attributed to the phenyl ring of the 

hydrophobic repeat units shows increased intensity, becomes more defined, and in addition shifts 

slightly to lower wave numbers from 1584 cm-1 (sol) to 1582 cm-1 (gel) (Figure 2B). Albeit in a different 

system (graphene interaction with polystyrene), such a shift has been attributed to electron donation 

into the aromatic system as observed in π-π stacking.50 These observations support the observations 



made in WAXS, where a more narrow peak also indicates better defined molecular interactions. In 

addition, we observed one major differences in the fingerprint region of the Raman spectra. In the gel 

state, a sharp and moderately intense signal is observed at 731 cm-1, which is much weaker and barely 

resolved in the sol state. In this spectral region, we expect C-C stretching modes, which are abundant 

in our polymers.  At this point, we cannot hypothesize on the assignment of this signal without further 

understanding of the system, but will return later to this assignment. 

 A clear difference between sol and gel state is also observed in the OH region of 3100 cm-1 to 3600 

cm-1, originating from water molecules. The different types of bonding modes in water molecules can 

be categorized using Gaussian deconvolution to divide the OH region into areas with different binding 

strength.23, 51, 52 Our data suggest that water is less mobile in the hydrogel compared to the sol (Figure 

S2B) as indicated by the increased contribution of the peak at 3250 cm-1 (Figure S2B, red line, 1).  

However, arguably more interesting are the changes in macromolecular mobility with the change in 

self-assembly. Viscosity sensitive fluorescent probes, namely molecular rotors such as 4,4´-difluoro-4-

bora-3a,4a-diaza-s-indacene meso-substituted with para-dodecylphenyl, BODIPY-C12 (BPC12) and 2-

(4-(dimethylamino)styryl)-1-methylpyridinium iodide, Daspmi have been used in this context.26 The 

fluorescence lifetime of a molecular rotor is affected by the ability to rotate its structural segments 

with respect to each other, which in turn is strongly dependent on the immediate molecular 

environment. However, it has to be kept in mind that it is not always clear what this immediate 

molecular environment is. Here, microviscosities in the sol and gel states were determined by 

fluorescence lifetime data after appropriate calibration (Figure S3)53 at four temperatures (5 °C, 12 °C, 

22 °C and 37 °C). We intended to probe the temperature-dependent microviscosity of the hydrophobic 

and the hydrophilic compartment of the self-assemblies by using two different rotors, one being more 

hydrophobic (BPC12) and the other being more hydrophilic/amphiphilic (Daspmi). Interestingly, in 

contrast to bulk viscosity (macroviscosity) of the polymer, which is obviously higher in gel state, higher 

microviscosities were obtained in the sol state and the hydrophilic probe gave almost three times 

higher values than the hydrophobic one (Figure 2 D). The microviscosities decreased upon gelation and 



were similar for both probes below 25 °C. This suggests, albeit indirectly, a more profound change in 

the hydrophilic compartment upon gelation. Steady-state fluorescence spectroscopy complements the 

picture. Fluorescence intensity and λmax shift can provide information on polarity changes of the 

probe´s microenvironment.54 For both probes, a two-step bathochromic shift was observed at low 

temperature, indicating an increase in the polarity of the probe microenvironment upon gelation 

(Figure 2 E,F). This increase supports the suggestion that the probes can be partially expelled from 

polymeric self-assemblies and become more exposed to polar aqueous solvent. Interestingly, the first 

polarity change is at a temperature between 12 °C and 17 °C. Again, the change was much more 

pronounced for Daspmi. Ultimately, the time-resolved and steady-state fluorescence measurements 

clearly show that the microenvironment of both molecular rotors is more polar and less viscous in the 

gel state, suggesting that the gelation causes a probe migration out of the condensed polymeric 

assembly closer to the polymer-water interface. However, this remains indirect evidence.  

NMR spectroscopy is a versatile tool to further study the underlying molecular interactions of the 

order-order transition due to its more straightforward assignability of signals to specific moieties and 

sensitivity to short-range order phenomena. Therefore, we recorded 1H NMR spectra of a 20 wt.% 

polymer sample at different temperatures between 2 °C and 39 °C (40 °C).  In a first step, all signals in 

the 1H NMR spectra were assigned (Figure 3 A,B). Notably, the aromatic protons in the sidechain of the 

hydrophobic polymer block show a broad signal at 6.6-7.6 ppm (signal 5), which differs significantly in 

appearance between sol and gel state (Figure 3B). Four signal areas around 6.9 ppm, 7.2 ppm, 7.4 ppm 

and 7.5 ppm (signals 5.1-5.4) can be distinguished. In the hydrogel state (2 °C - 31 °C), an overall low 

signal intensity with a relatively defined peak at 7.5 ppm and a broad shoulder around 7.4 ppm is 

observed. Increasing the temperature above the sol-gel transition (34 °C - 40 °C) results in significantly 

increased signal intensities and reduced line widths suggesting a significant mobility increase for the 

polymer chains, including the aliphatic region (backbone and CH3 group of MeOx, signals 1-4). The p-

ratio (equation (3)) allows a more quantitative assessment of the relative decrease of the respective 

peak areas, or the mobility of the associated polymer segments (Figure 3C). 



 

Figure 3ǀ 1H NMR experiments of a 20 wt.% sample in D2O recorded at different temperatures. A) Structure of 
the amphiphilic ABA type triblock copolymer pMeOx-b-pPheOzi-b-pMeOx including numbering scheme. B) 1H 
NMR spectra at 2 °C (blue) and 39.15 °C (red) of a pMeOx-b-pPheOzi-b-pMeOx sample alongside signal 
assignment. C) Calculated p-ratio for the intensities of different polymer protons as a function of temperature. 
The color code for the temperature represents the macroscopic state of the sample as described in Figure 1. 

Clearly, the aromatic protons yield the highest p-ratio in the gel-state. Upon heating and coinciding 

with gel liquefaction, the p-ratio decreases drastically indicating a much more flexible and mobile 

hydrophobic compartment for the spherical micelles, which is in line with the WAXS data and in clear 

contrast to the fluorescence probe microviscosities. This strongly suggests that the molecular 

interactions in the hydrophobic compartment change significantly at or around Tgel. At lower 

temperature, more pronounced hydrophobic or π-π interactions lead to an improved packing and 

lower mobility. In addition, two minor steps where the p-ratio decreases are observed between 2 °C 

and 15 °C as well as 25 °C and 30 °C, which will be discussed below. Overall, the hydrophilic block and 

the backbone appear less affected by the transition corroborating results by Weberskirch et al. and 

Černoch et al. describing thermoresponsive POx-based homo- and copolymers.22, 55 However, also for 

the MeOx units a change in p-ratio is observed at 17-25 °C, followed by a plateau region (20-30 °C), 

before it drops to zero upon liquefaction. Interestingly, these steps agree with steps observed in steady 

state fluorescence. Mobility information for the different moieties can also be obtained through the 

comparison of 1H longitudinal relaxation times T1, which were determined for the sol and gel state, 

respectively (Figure S4, Table S2). The fact that all polymer segments yield the same trend of 

decreasing T1-values upon increasing temperature supports the assumption that all parts of the 



polymer act in concert in the aggregation process. In contrast, higher T1 values for water in the sol 

state indicates more mobile water molecules compared to the gel state, corroborating Raman 

spectroscopy and steady state fluorescence results discussed earlier.  

To obtain more insights into the spatial proximity between different moieties in the polymer, 2D 1H-1H 

NOESY NMR experiments were performed in the gel (5 °C) and sol (40 °C) state (Figure 4). 1D horizontal 

slices are also shown for better visibility. Stronger NOE signals are visible in the hydrogel state (Figure 

4, left, blue) compared to the sol (Figure 4, right, red), which agrees with the hypothesized reduced 

mobility and data from WAXS (Figure 2A).  

 

Figure 4ǀ 1H-1H NOESY NMR experiments of a 20 wt.% sample in D2O recorded with a mixing time of 40 µs. 5 °C 

(blue, gel state, worm like micelle). 40 °C (red, sol state, spherical micelle). For signal areas of interest 1D slices 

were extracted and the assignment in figure 6 for the specific polymer signals was used. 

Notably, in the sol and gel state, an intense NOE cross peak originating from the aromatic peak at 7.5 

ppm can be correlated to the backbone and MeOx sidechain protons. However, in the gel state an 

additional second cross peak of the aromatic region at 6.9 ppm with the backbone and MeOx sidechain 

protons is evident despite the overall lower 1H signal intensity in this area compared to the sol state 

(red square, Figure 4). The observation of an additional NOE signal and, therefore, increased spatial 

proximity of aromatic and hydrophilic units is a first, but crucial hint at a possible molecular mechanism 

to explain the unique assembly of this amphiphile into worm-like micelles at lower temperature. If the 

hydrophilic blocks interact with the hydrophobic block in any significant manner upon cooling, this 

could reduce the hydrophilic/hydrophobic volume ratio and lead to the observed sphere-to-worm 

transition. Due to its sensitivity to subtle changes in intermolecular interactions and packing on the 



molecular level, solid-state NMR is a versatile tool to improve our understanding of the potential 

contacts identified so far. 

Considering their nature as viscoelastic solids, hydrogels can generally characterized using solid-state 

NMR experiments.56 For shear thinning hydrogels such as the present system, one has to consider the 

possibility that magic angle spinning (MAS) can exert sufficient force to alter the samples properties, 

e.g. causing liquefaction. Here, 1H NMR experiments at different MAS frequencies (3-5.3 kHz) showed 

no significant differences (Figure S5). Two different 13C NMR spectra were recorded either through 

direct excitation (DE) with short interscan delay (1 s) showing predominantly mobile carbon 

environments (Figure 5A, grey spectrum), while 1H-13C cross polarization (CP) MAS experiments with a 

contact time of 2 ms reveal more rigid molecular entities due to their dependence on dipolar 

interactions (Figure 5A, black spectrum). In the spectrum obtained through DE, only signals that can 

be attributed to MeOx units were visible. No aromatic signals were observed, corroborating once more 

the reduced mobility of the latter. In the 13C CP MAS NMR spectrum significantly more and broader 

peaks as well as spinning sidebands (Figure 5A, asterisks in grey spectrum) were observed with phenyl 

moieties now clearly observable. A MAS rate of 5 kHz or higher is required to avoid substantial overlap 

between the carbonyl signal of the amide group and the phenyl spinning sidebands. The broader signal 

(compared to DE spectra) of the amide carbonyl is shifted slightly to smaller ppm values (orange arrow) 

and additional signals are visible at higher ppm values originating from the phenyl carbonyl groups. 

Most interesting, however, are two additional signals that are observed in the aliphatic region of the 

spectrum (red arrows). The signal at 38 ppm is close to the other backbone signals indicating a similar 

chemical environment, while another new and broad signal appears at 24 ppm adjacent to the signal 

of the methyl sidechain of the hydrophilic polymer block. In other words, there are two different MeOx 

populations, one quite mobile and one significantly less mobile. 



 

Figure 5ǀ Solid state NMR experiments of a 20 wt.% hydrogel sample. A) Overlay of the 13C NMR spectra 
recorded at 9.4 T and 5.3 kHz MAS using DE and short interscan delay of 1 s (grey) or CP MAS with 2 ms contact 
time (black). Spinning sidebands are indicated by asterisks. B) 1H-13C HETCOR MAS spectrum recorded at 9.4 T 
and a MAS rate of 5 kHz using a contact time of 2 𝑚𝑠. 122 t1 FID increments were acquired using a recycle delay 
of 2 s, each with 240 co-added transients. The corresponding 13C NMR spectra are shown at the bottom. Direct 
CH contacts are indicated by dotted grey lines.  

To better understand the nature of these new signals and investigate proximities through space in 

more detail, a 2D 1H-13C HETCOR experiment with a contact time of 2 ms was recorded (Figure 5B). 

Due to the relatively long contact time, intra- and intermolecular proximities can be observed in the 

2D spectrum as cross peaks. The 1H chemical shifts of the CH3 groups of MeOx, the backbone, and the 

two major phenyl environments are indicated by grey dotted, horizontal lines. The three signals 

highlighted in Figure 5A are indicated by dotted, vertical lines. For the carbonyl signal, cross peaks both 

in the aromatic and aliphatic backbone region are observed, but due to the polymer structure we 

cannot know whether the proximity is intramolecular or intermolecular. Furthermore, cross peaks 

between some of the backbone CH2 signals and the phenyl signal at higher ppm are also visible (black 

boxes). Considering the larger intramolecular distance between the backbone and the phenyl ring, this 

interaction is most likely through space. For the remaining carbon signals in the aliphatic region, it is 

clear that interactions must occur through space. The more rigid CH3 group of MeOx at 24 ppm only 



visible in the CP-MAS experiment is in a different polymer block than the phenyl moiety. Therefore, 

the cross peak at 24 / 7.2 ppm can only be explained by 1H-13C proximity through space (< 4 Å) between 

the hydrophilic and the hydrophobic block. In contrast, the more mobile CH3 group of MeOx at slightly 

lower ppm values does not show any cross peaks in the 2D correlation and thus represents the 

hydrated hydrophilic corona. With this, we can finally formulate a mechanism for the order-order 

transition and inverse thermogelation in aqueous solutions of pMeOx-b-pPheOzi-b-pMeOx. Our 

results show that this thermogelation is due to an unexpected interaction between repeat units in the 

hydrophilic pMeOx blocks and those in the aromatic hydrophobic pPheOzi block. This reduces the 

volume of the hydrophilic compartment allowing the order-order sphere-to-worm transition. Polymers 

that show UCST-type thermotransition typically exhibit H-bonding between polymer repeat units, 

however, this is not possible in the present case. When starting to investigate this mechanism our first 

hypothesis was that this transition could be linked to π-π stacking within the hydrophobic 

compartment, but this hypothesis had to be abandoned quickly. A look into the literature yields two 

other, we believe more probable candidates, the overlap of the lone electron pairs of the amide 

carbonyl and the aromatic LUMO: nAm→π*Ar or interactions of the π-orbitals of the amide and phenyl 

ring:  πAm•••πAr. In general, non-covalent n→π* interactions have been described to contribute to the 

thermostability of the proline-rich protein collagen.57 Interestingly, proline is the only proteinogenic 

amino acid that forms tertiary amides akin to the amide groups in POx and POzi. In addition, and even 

more closely related to the present system, n→π*Ar interactions have been described to contribute to 

the structure formation in peptoids58, which also contain tertiary amides.  

The analytically rather elusive n→π*Ar interactions are typically verified by crystallographic data or 

computational modeling. While the former can be ruled out for our system, we performed an all-atom 

molecular dynamics (MD) simulation of a single worm-like micelle consisting of full length pMeOx35-b-

pPheOzi15-b-pMeOx35 amphiphiles at 5 °C (Figure S7A). We modeled the pPheOzi blocks as a central 

inner strand, which is surrounded by the corresponding pMeOx blocks stretching out into the solvent 

(water). Throughout the 600 ns simulation a single worm-like strand of pPheOzi blocks is preserved. 



More interestingly however, the peripheral MeOx repeat units approach the initially solvent-exposed 

hydrophobic repeat units (Figure 6 A,B), clearly corroborating our model of a hydrophilic shell 

condensing onto the hydrophobic core. 

 

Figure 6ǀ Results of molecular modeling of a worm-like micelle comprising pMeOx-b-pPheOzi-b-pMeOx 

amphiphiles. A) Simulation snapshots showing PheOzi monomers as red and MeOx monomers as blue VDW 

spheres. The simulation box and about half of each neighboring image along the Z axis are illustrated, without 

solvent molecules depicted. B) Same illustration as seen in A) from an orthogonal perspective (along the Z axis). 

C) Occupancy density analysis around aligned PheOzi residues (white sticks), showing hotspots for different 

polymer structures as meshes from two different perspectives. In C-1/2 the violet density represents PheOzi 

sidechains and the grey density PheOzi backbone atoms (isovalues: 0.08). The two structures on the right in C-

3/4 depict densities (isovalues: 0.03) for MeOx backbone atoms (green) and sidechain atoms (orange) from two 

different perspectives. D) Two example snapshots D-1 and D-2, in which residues at the surface of the micelle 

overlap with occupancy hot spots depicted in C). pMeOx residues are shown with blue carbon atoms, pPheOzi 

residues with magenta carbon atoms and the aligned monomer of interest is highlighted in yellow. Densities are 

shown analogously to C). 

Consequently, the radius of gyration of the self-assemblies decreases quickly and reaches a narrow 

fluctuation range after about 40 ns (Figure S7B, left). While the overall structure becomes clearly more 

compact, not all pMeOx repeat units come into close contact with pPheOzi residues in silico, which in 

turn are also not completely shielded from the solvent at the end of the simulation, corroborating the 

observations made in solution NMR spectroscopy. In silico, about 53 % of all pMeOx repeat units keep 

a minimum average distance of more than 5 Å to the pPheOzi blocks over the last 100 ns (including 

hydrogen atoms for calculation). These would be attributed to the pMeOx repeat units, which were 



found more mobile in the 13C DE MAS NMR spectra and which did not show cross peaks with the 

aromatic rings of pPheOzi in the 1H-13C HETCOR spectrum. We analyzed the solvent-accessible surface 

area of all pPheOzi units and noticed that this value is mostly decreasing early in the simulation for the 

aromatic sidechains, indicating that pMeOx monomers are preferably shielding these moieties against 

water molecules (Figure S7B, middle). The amount of water within 5 Å around polymer residues also 

decreases quickly, especially for the pMeOx monomers (Figure S7B, right).  

 

Figure 7ǀ Distribution of computationally derived distances and angles between the amide group and the 
pheny ring centroid. Histograms for all distances up to 6 Å between PheOzi moieties and the nearest polymer 
atoms (excluding hydrogen atoms). An illustration describing the distances and the angle ω is given in the top 
right. Plots show the total amount of occurrences for all snapshots of all 104 pPheOzi residues which were used 
for density calculation. Numbers in the top left of each histogram illustrate the maximum bin value below 6 Å 
(bin size: 0.2 Å), as well as the sum of all occurrences between 0 and 4 Å. Additionally, the plot in the top left 



shows measurements of the angle ω for all pMeOx carbonyl oxygen atoms which are located nearer than 3.8 Å 
to the ring centroid (corresponding to distance D3). A histogram for this angle is depicted in the middle of the 
top row, with a 5 ° bin size. 

 

An illustration of the average occupancy densities of polymer moieties around pPheOzi moieties 

supports this observation (Figure 6B). The methyl sidechains  (of the hydrophilic pMeOx repeat units) 

are predominantly located close to the aromatic ring of PheOzi sidechains in close proximity to the 

PheOzi carbonyl group. In contrast, aromatic rings can be found below or above other PheOzi amide 

groups and near the phenyl ring in the volume which is turned away from the carbonyl group. The 

pPheOzi backbone atoms are mainly surrounded by other PheOzi residues, only a small fraction of the 

aromatic repeat units remains solvent-exposed: 17 out of 120 pPheOzi repeat units show an average 

minimum distance of over 3 Å to any pMeOx in the last 100 ns (taking hydrogen atoms into account). 

These could be interpreted as sticky patches, which help to mechanically connect different worm-like 

micelles, adding to the remarkably high storage modulus of the gels.12 The evidence of such sticky 

contacts in worm-like micelles was recently discussed by Thurn and Hoffmann.59 However, we cannot 

completely rule out that these patches result (in part) from an insufficient number of polymers in our 

model, as the exact composition of the micelle was not available as input a priori from experimental 

data. For the PheOzi residues analyzed during density calculation, we measured distances to the 

nearest polymer moieties, as well as the angle ω between the planes of nearby N-(C=O)-C amide 

groups and the aromatic ring (Figure 7). Distances D1 – D4 reflect the orange and green densities in 

Figure 6C. A notable number of distances D1 – D3 below 4 Å can be found, highlighting potential 

interactions between the MeOx sidechains and the phenyl ring. Overall, distances show distributions 

similar to the results of our WAXS experiments. The distance to the ring centroid is the lowest for the 

methyl group, while the backbone is situated further away. These measurements support hydrophobic 

interactions between the phenyl rings of pPheOzi and the methyl sidechain of MeOx repeat units as 

seen in NMR experiments. With regard to the MeOx carbonyl groups, nAm→π*Ar or πAm•••πAr 

interactions may be hypothesized. While it should be mentioned that the existence of specific 

interactions between lone pairs and aromatic systems was recently challenged63 and that the ability of 



classical force fields for capturing these can certainly be questioned, occurrences of an angle ω ≤ 90 ° 

in combination with a distance lower than 3.8 Å of the carbonyl oxygen to the ring centroid are in 

accordance with previously published measurements for potential nAm→π*Ar interactions, e.g. in 

peptoids.58, 60 We retrieved very low values for ω with a median of about 19 ° with the above 

mentioned distance cutoff, indicating suitable conformations for nAm→π*Ar or πAm•••πAr interactions. 

Exemplary simulation snapshots which overlap with the described densities illustrate the interactions 

between MeOx and PheOzi sidechains (Figure 6D). While some MeOx carbonyl groups showed 

conformations perpendicular to the ring plane (example D-1), in most cases the amide moiety is placed 

nearly parallel to the phenyl ring (example D-2). Accordingly, the additional stretching mode at 731 

cm-1 in the Raman spectra in the gel state should correspond to a C-C bond which is weakened 

compared to the sol state. We believe that this could be attributed to the C-C bond in the MeOx side 

chain, which, as the amide interacts with the phenyl ring is weakened, leads to an increased Raman 

shift. 

In summary, the MD simulation conclusively supports our extensive analytical data, in particular those 

obtained by WAXS and NMR spectroscopy, and the formulated mechanism of the hydrophilic MeOx 

interacting with the hydrophobic repeat units. This results in a notable condensation of the hydrophilic 

corona and, thus, enables the worm-to-sphere transition upon cooling. This process may be driven by 

pMeOx sidechains mainly interacting with aromatic systems of the pPheOzi blocks via hydrophobic, as 

well as possible πAm•••πAr and nAm→π*Ar interactions. 

We know from previous studies that small changes in the hydrophobic core prevent worm formation 

and thermogelation. Specifically, when pPheOzi is exchanged with poly(2-phenyl-2-oxazoline), poly(2-

phenyl-2-oxazine) or poly(2-benzyl-2-oxazoline), the resulting ABA triblock copolymers form only 

spherical micelles and low viscous liquids in water irrespective of the temperature.12 In contrast, ABA 

triblock featuring poly(2-phenethyl-2-oxazoline) or poly(2-benzhydryl-2-oxazoline)s from gels but do 

not undergo any order-order transition but remain spherical micelles.61, 62 Having derived this novel 

mechanism behind the order-order transition, we should expect that different hydrophilic blocks affect 



the order-order transition and thermogelation. To do so, ABA triblocks featuring slightly different 

hydrophilic blocks A, poly(2-methyl-2-oxazine) (pMeOzi) and poly(2-ethyl-2-oxazoline) (pEtOx) were 

prepared (see Table S3, Figure S7).  

 

Figure 8ǀ Modified ABA-type amphiphiles with varying hydrophilic A blocks and the aromatic pPheOzi B block 
and their thermogelation. A),B) Gel properties of 15 wt.% aqueous sol-gels of the polymers  pMeOx-b-pPheOzi-
b-pMeOx (dark blue), pEtOx-b-pPheOzi-b-pEtOx (light blue), pMeOzi-b-pPheOzi-b-pMeOzi (green). A) 
Temperature sweeps of the complex viscosity from 5-50 °C (heat rate: 0.05 °C). B) Gelation kinetics for 180 min. 
The gelation process was monitored at 5 °C by adding liquid samples at t=0 minutes. C)-H) Micro-DSC 
thermograms of 10 g/L solutions of C),F) pMeOx-b-pPheOzi-b-pMeOx, D),G) pEtOx-b-pPheOzi-b-pEtOx and E),H) 
pMeOzi-b-pPheOzi-b-pMeOzi. Solutions where held at 2 °C (C,D,E) and 10 °C (F,G,H) for time indicated prior to 
the thermoscan. 

 

In aqueous solution, both novel polymers undergo inverse thermogelation (Figure 8 A,B and Figure S8) 

and form worm-like micelles in the cold as evidenced by TEM investigations (Figure S9).  Dynamic light 

scattering at 5 and 40 °C confirmed a significant difference in self-assembly for all polymers (Figure 

S10, Table S4), similar as observed pMeOx-b-pPheOzi-b-pMeOx.  Accordingly, the thermogelation 

again coincides with an order-order transition after exchanging the hydrophilic blocks.   

However, significant differences in the complex viscosity at 5 °C (i.e. the gel strength), the Tgel upon 

heating (liquefaction temperature or gel persistence) and gelation kinetics (speed) were obtained in a 

temperature ramp experiment from 5 °C to 50 °C (polymer gels were stored at 5 °C for 48 h) and in a  

time sweep experiment for 180 minutes (pre-heated polymer solutions were transferred on a pre-

cooled 5 °C plate and subsequently measured). In all three “disciplines” pMeOx-b-pPheOzi-b-pMeOx, 

showed the best performance. It exhibits an approximately 7-fold higher complex viscosity value at 5 



°C compared to pEtOx-b-pPheOzi-b-pEtOx and pMeOzi-b-pPheOzi-b-pMeOzi. With respect to gel 

strength and persistence, only little differences were observed for the other two polymers. Only 

minutely higher gel strength (40 Pa*s) and slightly lower persistence (1-2 °C lower Tgel) was observed 

for the polymer pEtOx-b-pPheOzi-b-pEtOx in comparison to pMeOzi-b-pPheOzi-b-pMeOzi. In terms of 

gelation kinetics, pMeOx-b-pPheOzi-b-pMeOx undergoes a significant viscosity increase after 15 

minutes. In contrast, the gelation kinetics of pEtOx-b-pPheOzi-b-pEtOx and pMeOzi-b-pPheOzi-b-

pMeOzi are significantly delayed (approx. 5 to 8 times).  

Finally, micro-DSC gives us an insight into the thermodynamics of the order-order transition in aqueous 

media. Thermograms were obtained after cooling to 2 °C or 10 °C for different time intervals (Figure 8 

D-I). When hydrogels were incubated at 2 °C, the most prominent peak coincides for all three polymers 

with the sol-gel transition (Figure 8 D-F). The longer samples were cooled, the larger the signal, the 

maximum of which shifts to slightly larger temperature with longer incubation times. Interestingly, for 

both pMeOx-b-pPheOzi-b-pMeOx and pEtOx-b-pPheOzi-b-pEtOx, a smaller secondary peak starts at 

10 °C – 13 °C and has a maximum at 15 °C after short incubation times, which shifts notably to higher 

temperature with longer incubation. This transition coincides with the step between 12 °C and 15 °C 

observed in the microviscosity (Figure 2 C,D). In comparison to pMeOx-b-pPheOzi-b-pMeOx, the 

transition at lower temperature is shifted to slightly higher temperatures in the case of pEtOx-b-

pPheOzi-b-pEtOx while the larger transition at higher temperature is observed at lower temperatures, 

leading to a more pronounced overlap of both transitions. In the case of pMeOzi-b-pPheOzi-b-pMeOzi, 

only one major transition is observed upon liquefaction of the gel with only a shoulder (at 15-20 °C) 

emerging after cooling the sample 6 h or more. Interestingly, if the samples are cooled only to 10 °C 

instead of 2 °C, the secondary transitions at lower temperature are not observed at all (Figure 8 G-I). 

In addition while the height and integral of the main signal is attenuated by 20 % in the case of pMeOx-

b-pPheOzi-b-pMeOx, the attenuation for both pEtOx-b-pPheOzi-b-pEtOx and pMeOzi-b-pPheOzi-b-

pMeOzi is much more profound (70 % and 86 %, respectively). 



This strong influence of the hydrophilic blocks on the gelation kinetics and thermodynamics as well as 

macroscopic gel properties clearly give a synthetic proof that the hydrophilic blocks play a crucial role 

in the gelation mechanism as shown before using a variety of advanced analytical tools. This 

mechanism described here is rather unusual, as the dehydration of (highly hydrophilic) MeOx units 

occurs in favor of inter- and intramolecular interaction with hydrophobic repeat units, which is 

unexpected. Also, this is clearly not simply a hydrophobic effect, as this would then be stronger for the 

less hydrophilic EtOx and MeOzi. We believe this discovery of a novel self-assembly mechanism opens 

up new possibilities to design stimulus responsive materials and will generally help to improve our 

understanding of the complex interactions of polymers in solutions. 

 

Conclusion 

Using a wide selection of complementary analytical tools, we gained a detailed picture of a novel and 

unusual order-order transition in conjunction with an inverse thermogelation of aqueous solutions of 

a special group of amphiphilic block copolymers. SAXS analysis confirmed the previously described 

reversible worm-to-sphere transition upon heating. WAXS experiments elucidated small changes 

during sol-gel transitions at 4-7 Å. Advanced NMR spectroscopic studies, supplemented by Raman and 

fluorescence spectroscopy at different temperatures revealed novel and unexpected 

polymer/polymer interactions between the hydrophilic pMeOx blocks and the hydrophobic aromatic 

pPheOzi moieties in the hydrogel state. Comparison with similar, tertiary amide containing systems in 

the literature and in silico molecular dynamics modeling led us to propose nAm→π*Ar and/or πAm•••πAr 

interactions between the carbonyl moieties in the hydrophilic pMeOx block and the aromatic rings in 

the hydrophobic pPheOzi block to be responsible for the order-order transition and inverse 

thermogelation, likely in conjunction with more standard πAr•••πAr hydrophobic interactions. To the 

best of our knowledge, the described system is the only example of a sphere-to-worm order-order 

transition that leads to inverse thermogelling, and it is also the first example in which non-ionic, non 

H-bonding interactions between the hydrophilic and hydrophobic compartment are critically affecting 



the self-assembly in synthetic polymer amphiphiles. This mechanistic elucidation allowed us a tuning 

of this unusual system by changing the hydrophilic blocks leading to significant differences with respect 

to gel properties (strength and kinetics). 
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