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Abstract

Capturing the autonomous self-assembly of molecular building blocks in computer

simulations is a persistent challenge, requiring to model complex interactions and to ac-

cess long time scales. Advanced sampling methods allow to bridge these time scales but

typically require to construct accurate low-dimensional representations of the transition

pathways. In this work, we demonstrate for the self-assembly of two single-stranded

DNA fragments into a ring-like structure how autoencoder architectures based on un-

supervised neural networks can be employed to reliably expose transition pathways and

to provide a suitable low-dimensional representation. The assembly occurs as a two-

step process through two distinct half-bound states, which are correctly identified by

the neural net. We exploit this latent space representation to construct a Markov state

model for predicting the four molecular conformations and transition rates. Our work

opens up new avenues for the computational modeling of multi-step and hierarchical

self-assembly, which has proven challenging so far.
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As an alternative to the top-down manipulation of a material’s nano(colloidal) con-

stituents, directing its autonomous organization through the judicious design of building

blocks has proven to be a viable strategy.1–4 Considering the myriad number of ways these

(macro)molecular building blocks can be combined, sufficiently specific yet reversible in-

teractions are required to achieve the desired target structures.5 This challenge has been

mastered by nature, where, e.g., amphiphilic phospholipids self-assemble into bilayer cell

membranes, and the amino acid sequence of a protein dictates its folding and subsequent

biological function. Following this design principle, enormous progress has been made in the

past decades to engineer and leverage the self-folding of elongated (macro)molecules (typi-

cally DNA) into predetermined complex shapes, stabilized by native contacts programmed

into their base-pair sequences (“DNA origami”).4,6,7 The specificity offered by designing base-

pair sequences has also been exploited for the self-assembly of “patchy” colloidal particles

coated with complementary DNA strands.8–15 Such patchy colloids can also be viewed as a

highly coarse-grained representation of folded proteins;16 although this simplified description

might seem too reductionist at first glance, previous simulations have demonstrated excellent

agreement between the phase diagrams of such patchy particles and experimental results for

γ-crystallin and lysozyme.17

Accurate yet efficient numerical methods are indispensable to, inter alia, elucidate mi-

croscopic pathways and scan (often vast) parameter spaces to guide experiments. However,

the inherent multiscale aspect of self-assembly (from the molecular building blocks to ex-

tended mesoscale structures) poses a formidable challenge. In particular, the large time-scale

separation between the atomistic motion of the building blocks and the time on which the

mesoscopic target structure is assembled needs to be bridged. An arsenal of advanced sam-

pling techniques has been devised for this purpose, including forward-flux sampling,18–20
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umbrella sampling,21 transition path sampling,18,22,23 and the Wang-Landau algorithm.24

However, these methods typically rely on the a priori knowledge of reaction coordinates

or at least a suitable low-dimensional representation of the system (called order parame-

ters or collective variables).25 Dimensionality reduction through constructing physically and

chemically informed collective variables requires detailed insights and extensive verification.

Moreover, multiple barriers and competing pathways pose severe challenges for the majority

of existing methods.

While data-driven modeling and machine-learning techniques play an increasing role also

in computational soft matter,26–30 their systematic use in self-assembly is still largely unex-

plored. A promising route to construct a suitable low-dimensional space in an unsupervised

manner are autoencoder architectures.31,32 These neural networks consist of an encoder sec-

tion, which compresses the input data to a so-called latent space, and a decoder section,

which reconstructs the reduced data to its original size. Both parts are trained simulta-

neously to minimize the deviations between input and reconstructed data. To make this

approach viable, as an intermediate step raw particle configurations are mapped onto struc-

tural descriptors that ensure simple symmetries (e.g, invariance with respect to translation,

rotation, and permutation).29 These structural descriptors are the input data to the au-

toencoder so that each point in the latent space parameterizes a manifold of structurally

indistinguishable configurations.

Here, we study the hybridization of two single-stranded DNA fragments, which are de-

signed such that they can self-assemble into a ring as shown in Fig. 1. This system exhibits

two competing pathways from an unbound to a fully bound state that are insufficiently

resolved by standard collective variables. Identifying long-lived molecular conformations

and transition pathways requires a suitable distance metric for the latent space represen-

tation. One successful candidate for this task is sketch-map,33 which orders points in a

low-dimensional space so that their relative distance reflects the relative distance of points

in the input space of structural descriptors. EncoderMap, the combination of an autoen-
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Figure 1: (a) Nucleobase sequence of the long (top) and short (bottom) ssDNA molecule.
The major and minor sides are indicated by solid and dashed boxes, respectively. (b-e) Rep-
resentative snapshots of the (b) unbound (UB), (c) fully bound (FB), (d) 7-half-bound (HB7),
and (e) 8-half-bound states (HB8).

coder with the objective function of sketch-map has recently been applied to identify distinct

(albeit rarely occurring) clusters of conformations in folding simulations of the Trp-cage pro-

tein.34 In this work, we demonstrate that this approach can be leveraged to numerically

predict the self-assembly of multiple (bio)macromolecules into a desired superstructure.

Results and Discussion

DNA self-assembly

We study one single-stranded DNA (ssDNA) molecule with 40 nucleobases and one molecule

with 15 nucleobases through molecular dynamics (MD) simulations of a coarse-grained rep-
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resentation,35 see Methods. By visually inspecting the simulations, we can already classify

the system into four well-defined macro-states: All simulations start in the unbound state

(UB), where the two molecules do not form hydrogen bonds (H-bonds) and thus can move

independently. There are two different hybridized half-bound states due to the asymmetry

of the nucleobase sequences (Fig. 1): The 8-half-bound state (HB8), where the major sides

of the short and the long molecule hybridize, and the 7-half-bound state (HB7), where their

minor sides hybridize. The fourth state is the fully bound state (FB), where both the major

and minor sides of the two ssDNA molecules hybridize into a ring-like structure.

In a first attempt to quantify the hybridization states, we introduce two order parameters:

The end-to-end distance dcl of the long ssDNA molecule (a small value indicates that it has

bent into a circle), and the average base pair distance

〈dbp〉 =
1

Nbp

Nbp∑
i=1

dbp,i, dbp,i = |ri −Ri| (1)

between the Nbp = 15 binding pairs on the two DNA strands. Here, Ri and ri are the

positions of the i-th nucleobase on the long and small molecule, respectively (counting only

bases in the binding regions of the DNA strands). To determine whether two nucleobases

have bound, we first compute the distribution of base pair distances in the FB state. We

find a rather sharp maximum at 〈dbp〉FB ≈ 10.4 Å with only negligible variations for the

different base pairs. We then go through all configurations and count the number of base

pairs (nbp ≤ Nbp) with dbp,i ≤ 10.8 Å. Figure 2 shows the number of bound base pairs, nbp,

in the plane of the two variables dcl and 〈dbp〉. These two order parameters work reasonably

well to separate the UB state from the other configurations, but the remaining three states

(HB7, HB8, and FB) are poorly separated from each other.
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Figure 2: End-to-end distance dcl of the long ssDNA molecule vs. average base pair distance
〈dbp〉 [Eq. (1)]. Each dot represents a different configuration with the color indicating the
number of bound base pairs nbp (see scale on the right).

Latent space as order parameter

To optimize the classification of the different states, we employ the EncoderMap34 dimension-

ality reduction algorithm, which is based on a neural network autoencoder in combination

with a non-linear distance metric. This machine-learning approach reduces the input data to

a low-dimensional latent space, from which it is expanded again to its original dimensionality

while minimizing the loss between the input and output data. This bottleneck structure is

a key attribute of the network design, which constrains the amount of information that can

traverse the full network, forcing a learned compression of the input data.36,37 As input data,

we use the Nbp = 15 nucleobase pair distances dbp,i serving as a high-dimensional structural

descriptor.

The first step is to transform the Nbp distances through

ζi = π

[
1 + exp

(
−x dbp,i
〈dbp〉FB

+ y

)]−1

(2)

with 〈dbp〉FB ' 10.4 Å being the average base-pair distance in the FB state. We set x = 3

and y = 7 so that nucleobase pair distances larger than 3 times 〈dbp〉FB will result in a

value close to π. We thus map the configurations of the UB state with large (and for the
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transitions irrelevant) distances to similar values ζi ' π, while at the same time amplifying

differences for smaller distances through the non-linear function.

In contrast to linear techniques such as principal component analysis, EncoderMap can

capture non-linear features in the input data through the sketch-map cost function33

Csm ∝
∑
j<k

|f(Rjk)− f(rjk)|2 (3)

with Euclidean distances rjk in latent space and distances

Rjk =

√√√√Nbp∑
i=1

∣∣∣ζ(j)i − ζ
(k)
i

∣∣∣2 (4)

in the input parameter space, where ζ
(j)
i is the i-th input parameter of the j-th configuration.

The longest possible distance between two configurations is
√
Nbpπ2 ' 12.17, which is

reached between the FB and UB state. The histogram of the calculated distances Rjk is
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Figure 3: Histogram of the Euclidean distances Rjk [Eq. (4)] between different configurations
(left axis). The different colors indicate the pair of states to which the configurations corre-
spond. The orange line is the sigmoid function f(R) for the weight of the input parameters
(right axis).
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shown in Fig. 3 for all relevant configuration pairs.

The basic premise of sketch-map is that not all pairwise distances are equally important.

The statistics of both very small and very large distances contains little information, and

sketch-map selects intermediate distances through the sigmoid function f(x) = 1 − [1 +

(2a/b − 1)(x/σ)a]−b/a, where σ defines the inflection point, a determines the left slope and b

the right slope. Specifically, for Rjk the parameters are set to σ = 7, a = 7, and b = 5 so

that the inflection point of the sigmoid function lies close to the transitions between the HB

states and the UB and FB states, hence prioritizing these regions when learning the latent

space representation [Fig. 3]. Distances in latent space are mapped using σ = 1, a = 2, and

b = 5.

The hidden layer of the neural network consists of two fully connected layers with 128

neurons each, a bottleneck layer with 2 neurons, followed again by two layers with 128

neurons each, which are connected to an output layer with Nbp = 15 neurons. The network

is trained with data from 32 different MD runs each with 180,000 time steps, where the two

DNA strands either hybridize via the HB7 state, via the HB8 state, or remain unbound.

The two-dimensional latent space is spanned by two real numbers Φ1 and Φ2, where each

point (Φ1,Φ2) represents a manifold of indistinguishable molecular configurations. Note that
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Figure 4: Latent space representation of the configurations showing a subset of the training
data. Each dot represents one configuration and the color visualizes the number of bound
nucleobases nbp.
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Figure 5: (a) Latent space free energy F(Φ1,Φ2). The magnitude of F is indicated by
the color bar, with dark blue and yellow representing the lowest and highest free energy,
respectively. The red bin contains all configurations with 〈dbp〉 > 3〈dbp〉FB where the two
fragments are fully unbound. The free energy of this bin strongly depends on the molecular
concentration. (b) Metastable basins in latent space. Each color indicates one of the four
basins identified by the PCCA+ clustering and is labeled according to Fig. 1.

the actual numbers do not carry a physical meaning but the latent space preserves relative

distances, i.e., pairs of configurations that are close in input space are also close in latent

space.

The latent space representation of the training data is shown in Fig. 4. We now observe

a clear separation of the four hybridization states, roughly corresponding to the four corners

of a rhombus: Points in the bottom left corner of this graph (Φ1 ' −0.5, Φ2 ' −0.25)

belong to UB states, while points in the top right corner (Φ1 ' 1.5, Φ2 ' 1.0) represent

FB states. These two regions are connected by two pathways corresponding to the binding

processes via the HB8 and HB7 states, respectively: The left branch belongs to transitions

where first the two major sides and then the minor sides hybridize, while the right branch

undergoes the transitions with the opposite binding order. Hence, the two order parameters

Φ1 and Φ2 uncovered by the autoencoder architecture clearly separate the different molecular

conformations and pathways in contrast to our previous ad hoc representation in terms of

the end-to-end distance dcl and average base pair distance 〈dbp〉, cf. Fig. 2.
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Markov state modeling

Employing the latent space of the autoencoder as a suitable low-dimensional representation of

the assembly process, we now construct a Markov state model (MSM) to identify metastable

states and estimate the kinetic rates.38,39 To construct the MSM, we first compute the two-

dimensional latent space representation for all 256 trajectories and discretize the resulting

order parameter space into 49× 49 bins (note that some of the bins are empty since we use

a regular grid for the discretization). Including all non-empty bins, we then compute the

transition probability matrix for this discretized representation using PyEMMA.40 The lag

time is set to 10000∆t = 151.5 ps.

From the stationary probability P(Φ1,Φ2), we calculate the free energy F = −kBT lnP

for each bin. The resulting two-dimensional free energy landscape is shown in Fig. 5(a), where

we have shifted the energy scale so that F∗(FB) = 0 in the FB state. The fully unbound

state is indicated by a red bin, which represents all configurations with an average nucleobase

pair distance 〈dbp〉 > 3〈dbp〉FB. The minimal free energy of the UB state F∗(UB) ' 0.17 kBT

is very close to that of the FB state. To rationalize this finding, let us consider the difference

in free energy going from the UB to the FB state (at the same temperature T ), given by

∆F = ∆U−T∆S in the canonical ensemble. In the FB state, the system gains ∆U ≈ 16 kBT

in potential energy due to the hybridization of complementary nucleobases (' 1.077 kBT per

hybridized pair41). In the UB state, the two ssDNA fragments can move independently

from each other, whereas they move as a unit in the FB state. Hence, the difference in

translational entropy between the UB and FB configuration is ∆St = kB ln(1/φ) ≈ 7 kB,

with molecular volume fraction φ ≈ 10−3 in our simulations. Further, the conformational

entropy of the system is smaller in the FB state since large portions of the two strands are

locked into position [see Fig. 1(e)]. Of course, this calculation is just a rough estimation,

which neglects, e.g., the change in bending energy as the two ssDNA fragments form a ring.

Nevertheless, it serves as a useful check for the consistency of our MSM.

Out of the UB state, the free energy increases as the base pairs start to approach due to
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the reduction of translational and configurational intramolecular entropy. However, as more

base pairs hybridize, the gain in potential energy starts to outweigh the loss in entropy so that

the free energy again decreases after crossing the barrier, reaching the minima F∗(HB7) '

−0.16 kBT and F∗(HB8) ' 0.59 kBT . We observe the same qualitative behavior as the

remaining open halves of the two DNA strands bind.
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Figure 6: (a) The 11 largest eigenvalues of the transition matrix obtained from the dis-
cretized latent space. The eigenvalue with index zero is exactly unity and corresponds to
the stationary state. Note the gap between fourth and fifth eigenvalue (arrow). (b) Fuzzy
partition coefficient [Eq. (5)] as a function of the number nc of metastable basins.

In Fig. 6(a), we plot the sorted eigenvalues of the transition matrix. As ensured by the

Perron-Frobenius theorem, the largest eigenvalue is unity corresponding to the stationary

state plotted in Fig. 5(a). The next three eigenvalues remain close to unity and correspond to

the slowest modes, whereas the following eigenvalues are substantially smaller. The dynamics

projected onto the latent space thus exhibits a separation between slow collective degrees of

freedom and fast relaxation. Each of the slow eigenvectors describes a hierarchical division

of the latent space into basins that we identify as long-lived metastable states.39 For three

slow eigenvectors we thus expect four basins. This is corroborated by the fuzzy partition
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coefficient (FPC)42

FPC(nc) =
1

m

nc∑
α=1

m∑
j=1

u2iα, (5)

where uiα is the probability to find bin i in the basin α, m is the number of non-empty bins,

and nc is the number of metastable basins. The value of FPC thus varies from 1/nc for

equal membership (completely fuzzy) to unity (for each bin the value of one probability is

unity and the rest are zero). To calculate uiα, we employ the robust Perron cluster analysis

(PCCA+) algorithm. In Fig. 6(b), the FPC is plotted as a function of nc. It exhibits

a non-trivial maximum close to unity at nc = 4, which confirms that the configuration

space is optimally partitioned into four metastable basins. Figure 5(b) shows the resulting

identification of these metastable basins in the latent space (membership is determined by

the maximal probability uiα). We see that each basin represents a connected manifold of

bins and thus configurations that are structurally similar. Importantly, each basin includes

one local minimum of the free energy and basins are separated by free-energy barriers. The

configurations contributing to the four minima exhibit H-bonds according to the UB, HB7,

HB8, and FB states (Fig. 1), and we identify the four basins with these conformations.

Transition pathways

With this low-dimensional representation, we now discuss the two competing pathways from

the UB to the FB state via either the HB7 or the HB8 states. We construct the corresponding

two minimum free energy paths (MEPs) as follows: Starting from the fully unbound state

[the red bin in Fig. 5(a)], we choose the neighboring bin with the smallest free energy as the

next position and repeat this procedure until the FB state is reached.

The resulting MEPs F∗(s) are shown in Fig. 7 as functions of the length s of the path.

Both paths are qualitatively similar with two barriers on the order of ∆F ≈ 7− 11 kBT that

have to be overcome to bind the two ssDNA fragments. The specific value of s does not have

a direct meaning but it conveys how similar two configurations are along the MEP. All four
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barriers are asymmetric along s, with a slow approach toward the barriers and a sudden drop

into the following minimum. Moreover, we find that the maxima of the MEPs separate the

metastable basins, indicating that the latent space indeed is a connected representation of the

slowest degrees of freedom. Figure 8 shows configurations representing the four transition-

state ensembles at the free energy barriers. Looking more closely at the values of s when base

pairs bind, we find a qualitative difference between the first and second barrier: Coming from

the UB state, base pairs fully close (establish H-bonds) only after crossing the free energy

barrier [cf. Fig. 8(a,c)], whereas the closing events are spread along the flatter approach to

the FB barrier. At the barrier, all base pairs have bound [cf. Fig. 8(b,d)], quickly falling

into the FB state.

The final MSM comprising the four metastable basins is shown in Fig. 9, for which the

transition probability matrix is computed again using PyEMMA.40 Staying in the current

basin has the highest probabilities (' 0.99), implying that transitions are indeed rare, which

is in agreement with the timescale separation. Also, direct (fast) transitions between the UB

and FB states, as well as between HB7 and HB8 states, are suppressed (the probabilities are

at least one order of magnitude smaller than the smallest probability for UB→HB8). The

probabilities to enter or leave the FB state are of the same order (' 10−4), with a larger
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Figure 7: Minimum free energy paths F∗(s) of the competing pathways UB→HB7→FB and
UB→HB8→FB as functions of the Euclidean path length s in latent space units.
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Figure 8: Transition configurations. First row (a) from UB to HB8 and (b) from HB8 to FB.
Second row (c) from UB to HB7 and (d) from HB7 to FB. The configurations shown have the
smallest residual mean-square displacement to the average (centroid) of all configurations
contributing to the corresponding bin of the barrier.

probability to occur via the HB8 state. The probabilities that the half-bound states dissolve

to the unbound state are of the same order as reaching the FB state. Figure 9 shows that the

kinetic bottleneck is reaching one of the half-bound states from the fully unbound state with

probabilities that are one (UB→HB7) or two (UB→HB8) orders of magnitude smaller than

reaching/leaving the FB state. This finding agrees qualitatively with the MEPs shown in

Fig. 7, where the barriers separating the HB7 state are first smaller and then higher (between

the half-bound and fully bound states) compared to the HB8 barriers.

Conclusions

We have demonstrated how unsupervised machine learning can be employed to gain molecu-

lar insight into the self-assembly of two single-stranded DNA (ssDNA) fragments. Somewhat

similar to the folding of biomolecules, we can think about the self-assembly process in terms
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Figure 9: Final Markov state model for the four clustered states of Fig. 5(b). The values
inside the configurations are the transition probabilities to stay in the same state. The outer
(green) arrows indicate the transition probabilities toward a more bound state, while the
outer (red) arrows symbolize the transition from a more bound state to a less bound state.
In the center, the transition from the UB to the FB state is indicated by the right (green)
arrow and the left (red) indicates the opposite direction. The dashed arrows represent the
transition probabilities between the two half-bound states HB7 and HB8.

of long-lived molecular conformations and rare transitions. To identify these conformations,

we employ an autoencoder neural network to compress a set of structural descriptors into

a two-dimensional latent space representation. Our setup differs from other approaches to

learn Markov State models (MSM) through machine-learning techniques. First, we do not

“learn” the dynamics as, e.g., time-lagged autoencoders43 but apply a two-step process in

which we first determine the mapping of structural descriptors to a latent space and then

construct the MSM in this low-dimensional space. This separation allows us to inspect the

suitability of the latent space coordinates as order parameters. Second, we endow the latent

space with a metric that forces configurations that are close in the original space to remain

close in latent space, which is an important ingredient to preserve the kinetic connectivity of

the high-dimensional space.44 For the ssDNA fragments, we find that the metastable basins
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are compact sets in the latent space well-separated by free energy barriers. Although the la-

tent space has been determined from structural descriptors alone, the agreement between free

energy barriers and the boundaries of metastable basins identified through a MSM strongly

indicates that the latent space is a close representation of the slowest degrees of freedom.

Extracting one-dimensional minimum free energy paths allows to study transition pathways

and in principle to apply tools from transition state theory.45

The techniques described here will also be useful to study self-assembly into extended

d-dimensional periodic structures,46 the theory of which is closely related to nucleation.47

Even for simple systems, it is challenging to uncover reaction coordinates for such highly

cooperative transitions as occurring in nucleation and self-assembly. While optimal lin-

ear combinations of a set of candidate order parameters have been determined through

maximum-likelihood methods,48–50 autoencoder architectures have the potential to uncover

strongly non-linear optimal mappings to reaction coordinates. Our results show that a com-

prehensive computational understanding for multi-step and hierarchical self-assembly is in

reach through a combination of unsupervised dimensionality reduction of a set of structural

descriptors with Markov state modeling.

Methods

We perform molecular dynamics (MD) simulations in the NV T ensemble using the oxDNA2

coarse-grained model,35 which treats ssDNA as a string of rigid nucleotides moving in an

implicit solvent (the specific base pair sequences are taken from an example shipped with

the code). The temperature is fixed to T = 303 K using an Andersen-like thermostat.51

The edge length of the cubic simulation box is 340.72 Å, with periodic boundary conditions

applied to all three Cartesian directions. The salt concentration of the aqueous solution is

0.5M , resulting in strongly screened electrostatic interactions with a Debye length of roughly

4 Å. The equations of motion are integrated using a time step of ∆t = 15.15 fs, and we let
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the systems evolve for approximately 30µs to 45µs in simulation time. To collect data, we

perform 256 independent simulations, each starting from a configuration in which the two

DNA strands are well separated from each other.
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43. Wehmeyer, C.; Noé, F. Time-lagged autoencoders: Deep learning of slow collective vari-

ables for molecular kinetics. J. Chem. Phys. 2018, 148, 241703.
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