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Abstract 

Chromatography is often used as a method for reducing sample complexity prior to analysis by mass 

spectrometry, the use of retention time (RT) is becoming increasingly popular to add valuable supporting 

information in lipid identification. 

The RT of lipids with the same headgroup in reverse-phase separation can be predicted using the effective 

carbon number (ECN) model.  This model describes the effect of acyl chain length and degree of saturation 

on lipid RT, which increases predictably with acyl chain length and degree of saturation.  Furthermore, we 

have found a robust correlation in the chromatographic separation of lipids with different headgroups that 

share the same fatty acid motive.  By measuring a small number of lipids from each subclass it is possible 

to build a model that allows for the prediction of the RT of one lipid subclass based on another.  

Here, we utilise ECN modelling and inter-class retention time conversion (IC-RTC) to build a 

glycerophospholipid RT library with 481 entries based on 136 MS/MS characterised lipid RTs from NIST 

SRM-1950 plasma and lipid standards.  

The library was tested on a patient cohort undergoing coronary artery bypass grafting surgery (n=37).  A 

total of 129 unique circulating glycerophospholipids were identified, of which, 57 (4 PC, 24 PE, 4 PG, 15 

PI, 10 PS) were detected with IC-RTC, thereby demonstrating the utility of this technique for the 

identification of lipid species not found in commercial standards. 
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Introduction 

Lipids are a complex class of molecules that play a pivotal role in the structure and function of living cells, 

including membrane structure, energy storage, inflammation, protein folding and aspects of second 

messenger signaling [reviewed in (1–3)]. The well-established role of circulating cholesterol contained in 

low-density lipoproteins (LDL) has been essential to developing our current understanding of 

atherosclerotic cardiovascular disease and continues to be used as a surrogate measurement for 

cardiovascular disease risk in clinical practice (4, 5). Improvements in mass spectrometry (MS) technology 

and data analysis methods have caused an influx of clinical cardiovascular lipidomics research (6). Among 

other findings, lipidomics has identified lipoprotein subclass-specific moieties which may contribute to 

aggregation or inflammation (7), identified total- and LDL-cholesterol independent changes in the 

circulating lipidome that are correlated with atherosclerotic cardiovascular disease (8–12), and has been 

shown to improve recurrent event prediction in patients with clinical cardiovascular disease (13).  

Traditional analysis of the lipidome often relies on the generation of fragmentation information from 

nominated masses to identify compounds with MS techniques. This is rigorous and allows for thorough 

compound characterization; however, targeted acquisition methods (e.g., multiple reaction monitoring 

(MRM)) require the selection of target lipids before analysis, and any compounds not specified are not 

measured. Conversely, the identification of compounds from untargeted data, such as MS-only, time of 

flight (ToF) data, is difficult without MS/MS data for verification. Therefore, most MS approaches must 

consider the advantages and disadvantages between targeted and untargeted methodologies before 

acquisition. 

In recent years, major advances have improved the sensitivity and selectivity of MS based methods for the 

analysis of lipids. Alongside this, utilizing the chromatographic dimension of separation allows for the 

prediction of retention times (RT) of compounds based on their physicochemical properties, which has been 

explored extensively in metabolomics and lipidomics previously (14–21). Reverse-phase separation allows 

for the prediction of RT by using the effective carbon number (ECN) model, which describes the tendency 

of species to elute earlier with fewer carbons in the acyl chain and as the degree of unsaturation increases 

(22–24) 

Despite these advances, there is a great degree of heterogeneity between measurement techniques, sample 

preparation, and use of internal standards in MS-based lipidomics protocols (25, 26). Therefore, appropriate 

method validation must be performed to determine the reliability and accuracy of measurements. The most 

widely applicable methods for verification involve the use of stable isotope-labelled internal standards for 

quantification, and standard reference materials to check measurements against established consensus.  
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Here we describe an approach that leverages hydrophobic interaction (HILIC) chromatography, which is 

selective for lipid headgroup rather than acyl chain, to identify abundant phosphatidylcholine (PC) species 

in the National Institute of Standards (NIST) Standard Reference Material-1950 (SRM 1950) pooled blood 

plasma. Abundant species were analyzed with Quadrupole-ToF (QToF)-MS/MS with reverse phase 

chromatography to build a retention time library. We then utilize the predictable RT behavior of lipids in 

reverse-phase liquid chromatography to predict the RT of lysophosphatidylglycerol (LPG), 

lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC), phosphatidylethanolamine (PE), 

phosphatidylglycerol (PG), phosphatidylinositol (PI) and phosphatidylserine (PS) species from the gradient 

conditions of a previously published method (19) to create a glycerophospholipid (GPL) RT library. The 

use of interclass-retention time conversion (IC-RTC), demonstrated for the first time here, also allows for 

resolution of acyl chain composition for several lipid species without using MS/MS, where they are 

separated in the chromatographic dimension. Additionally, this method preserves the data from unannotated 

compounds detected by ToF-MS, allowing for retrospective identification of new compounds. By 

combining ECN and IC-RTC, it is possible to generate large, accurate lipid databases from a much smaller 

set of thoroughly characterized measurements. This can be used to expand the number of lipid species 

measured from a sample cohort post acquisition. To determine the efficacy of IC-RTC in a clinical context, 

we applied this technique to detect circulating lipid species that could not be detected in the NIST SRM-

1950 plasma sample. 

Materials and Methods 

Chemicals 

EquiSPLASH and UltimateSPLASH ONE lipidomics standards were purchased from Avanti Polar Lipids 

(Alabaster, AL). Formic acid, ammonium formate, 2-propanol, acetonitrile, and water were purchased from 

Honeywell (Charlotte, NC). All reagents used were LC-MS grade.  

 A stock solution of EquiSPLASH solution was prepared in a 1:173 v/v dilution in 1:1 v/v isopropyl alcohol: 

acetonitrile for lipid extraction (Extraction Buffer). 

Plasma Samples 

NIST SRM-1950 blood plasma standard was purchased from Merck (Darmstadt, Germany). Human blood 

plasma was collected from patients undergoing coronary artery bypass grafting (CABG) surgery at the 

Royal Adelaide Hospital (n = 37). Clinical data were gathered from patient records and case notes at the 

time of consent. Specimen and data collection were in accordance with approved human ethics (CALHN 

ethics number R20180206). All patients were fasted for 8 h prior to sample collection. Patient 
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characteristics were as follows: the mean age was 65.7 ± 9.5 years, 73% of participants were male, and 54% 

of patients had diabetes. 

Clinical samples were assigned an internal ID and injected in the following sequence: six reagent blank 

injections to bed in the column, two injections of extracted NIST SRM 1950 plasma sample (one spiked 

with internal standard, one without), one injection of EquiSPLASH internal standard spiked extraction 

buffer, followed by the clinical samples in randomized order. NIST SRM 1950 plasma was used as a quality 

control (QC) sample and injected after every 10 samples, immediately followed by a reagent blank.  

Lipid Extraction 

Plasma samples were removed from -80°C storage and were thawed at 4°C overnight prior to extraction. 

174 µL of internal standard spiked extraction buffer was added to 6 µL of blood plasma. Samples were 

vortexed for 3 s and centrifuged for 15 min ca 16,000 × g and the supernatant aliquoted into QuanRecovery 

plates (Waters, Milford, MA). NIST SRM-1950 spiked with EquiSPLASH aliquots were used for library 

building. For the identification of retention characteristics of other GPL sub-classes, 1 μL of 

UltimateSPLASH ONE was spiked into 173 μL of extraction buffer, which was used to extract an aliquot 

of NIST plasma. For characterization of the effects of double bond position and stereochemistry on RT, 

three separate 1:500 dilutions of 1 mg/mL Avanti PC 18:1(9E)/18:1(9E) (850376), PC 18:1(9Z)/18:1(9Z) 

(850375), and PC 18:1(6Z)/18:1(6Z) (850374) standards (in methanol) were spiked into EquiSPLASH 

spiked extraction buffer. 

HILIC-MS Candidate Discovery 

Samples were mass analyzed on a Xevo G2-XS Q-ToF (Waters, Milford, MA) coupled to an Acquity I-

Class-FTN UPLC system (Waters, Milford, MA) in negative ion mode. Lipids were separated with a 100 

mm Waters Acquity BEH HILIC column (2.1 mm ID, 1.7 µm particle size). Sample chamber temperature 

was set to 8 °C and the column heater was set to 50 °C. 10 μL of extracted NIST SRM 1950 plasma was 

injected on column. Mobile Phase A was a 10 mM ammonium acetate solution in 95:5 acetonitrile:water 

v/v. Mobile Phase B was a 10 mM ammonium acetate solution made up in 50:50 acetonitrile:water v/v. 

Gradient conditions are described in Table 1. 

Samples were mass analyzed in negative ion MSE acquisition mode, where collision voltage was switched 

between elevated and low energy every 0.1 s and the resultant data written to two different functions. 

Capillary voltage was set to 3.0 kV. Collision voltage was set to 6 V in the low CE channel and set to 30 V 

in the elevated CE channel.  Prior to data acquisition the mass spectrometer was calibrated between 50-

2000 Da with sodium formate, with an RMS residual mass error of 0.4 ppm. Mass calibration was 
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maintained using leucine enkephalin lockspray which was sampled for 0.2 s every 30 s. Purge solution was 

composed of 1:1:1:1 water:acetonitrile:isopropyl alcohol:methanol. Seal wash solution was 10% methanol 

in water. Needle wash solution was 50% acetonitrile in water. 

Time (min) 

Flow Rate 

(mL/min) 

% Mobile 

Phase B 

0.0 0.4 90 

0.1 0.4 43 

5.0 0.4 50 

5.2 0.4 54 

7.2 0.4 70 

7.4 0.4 99 

 

Table 1: LC gradient for HILIC method.  

RP-LC-MS & MS/MS Conditions 

Lipid extracts were separated using a 100 mm Waters Acquity Premier CSH C18 column (2.1 mm ID, 1.7 

µm particle size) heated to 55 °C. Mobile phase A was prepared by combining 1200 mL of acetonitrile, 800 

mL of water, 2 mL of formic acid, and 1260.3 mg of ammonium formate. Mobile phase B was prepared by 

combining 1800 mL of isopropyl alcohol with 200 mL of acetonitrile, 2 mL of formic acid and 1260.3 mg 

of aqueous ammonium formate (dissolved in 2 mL of water).  Sample chamber temperature was set to 8 °C. 

Conditions for the LC gradient are specified in Table 2. 

Time (min) Flow Rate (mL/min) 

% Mobile 

Phase B 

0.0 0.4 40 

2.0 0.4 43 

2.1 0.4 50 

12.0 0.4 54 

12.1 0.4 70 

18.0 0.4 99 

20.4 0.4 99 

20.5 0.4 40 

22.5 0.4 40 

   

Table 2: Gradient conditions for reverse-phase LC method. 
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The mass spectrometer was calibrated between 50-2000 Da with 20 μg/mL sodium formate in 50% 

acetonitrile with 0.1% formic acid. RMS residual mass error was 0.7 ppm before acquisition. For MS/MS 

analysis, a quadrupole isolation window of ca ±0.6 Da was set using the LM/HM settings of 20/15. 

Candidate masses were analyzed in sets of 15 unscheduled MS/MS transitions with 30 V collision voltage 

and 0.019 s scan time, where one transition in each injection always contained the PC 18:1(d7)/15:0 internal 

standard present in the extraction buffer. Mass calibration was maintained using leucine enkephalin 

lockspray which was sampled for 0.2 s every 30 s. A 2 μL EquiSPLASH-spiked extraction of NIST SRM-

1950 plasma was used for library building. For clinical samples, analysis was performed using negative ion 

MSE acquisition mode with 0.1 s scan time. Capillary voltage was set to 3.0 kV. Collision voltage was 

turned off in the low CE channel and 30 V in the elevated CE channel. A 2 μL injection of UltimateSPLASH 

ONE spiked NIST SRM-1950 plasma was used for retention prediction with the MSE method.  

Selection of Candidate Ions for Spectral Library generation 

Mass spectral peaks were extracted from a RT range of 2.9 to 3.3 minutes from the HILIC experiment.  

This chromatographic region contains the PC 18:1(d7)/15:0 standard and several other common PC 

candidate masses (Figure 1). An MS/MS-candidate list was generated using the criteria that: the nominal 

m/z of the 12C isotope was even; the peak height was over 1x103 counts and that the Kendrick mass defect 

fell between .4 and .8 Da. Putative PC were identified in descending precursor ion intensity order based on 

intensities in the NIST SRM-1950 sample. The criteria set for identification are listed in Table 3. Other 

GPL species were selected for MS/MS analysis based on the NIST community consensus paper (20). LPC 

species were identified based on exact mass and the neutral loss of the acetate ion in the elevated collision 

energy channel of the MSE data.  



7 

 

Figure 1: Typical mass chromatogram of NIST SRM-1950 plasma obtained using HILIC 

chromatography with the region containing the PC 33:1 (d7) internal standard highlighted. M/z   

values found in the highlighted region were used as precursor masses for MS/MS in subsequent reverse-

phase chromatography experiments 

Raw Data Preprocessing  

An overview of data processing methods is given in Figure 2. Raw feature lists were extracted using 

MZMine2 version 2.52 (26). A mass list was generated from spectra using the selection criteria that peaks 

had to have peak heights greater than 500 counts and fall in the 100 to 1000 m/z range. Chromatograms 

were built from mass lists using the ADAP chromatogram builder module, where a minimum peak height 

of 1000 counts was required for detection, and a minimum of 5 points with height greater than 500 counts 

were required for inclusion. An m/z tolerance of ±0.015 Da was set for inclusion of points to the same peak. 

Extracted peaks were smoothed with an 11-point smooth and deconvoluted with the wavelets (ADAP) 

chromatogram deconvolution module (27). A signal-to-noise (S/N) threshold of 10 was set with intensity 

window S/N estimation. A minimum feature height of 1000 counts was selected with a coefficient/area 

threshold minimum of 50. Peak duration range was set between 0.05 min and 0.50 min. RT wavelet range 

was set from 0.00 - 0.15.  
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Figure 2: Overview of Data Processing Methodology. Chromatograms extracted with MZmine2 are 

retention corrected based on exact mass and RT of deuterated internal standard mixture. Lipids are 

identified based on mass charge and RT. Unidentified features are aggregated based on exact mass and 

RT. Peak areas from both datasets are normalized to the peak area of the PC 33:1 (d7) internal standard, 

where missing peaks in data are imputed with either QRILC or RF imputation, depending on their peak 

area. Lipid identifications are converted back to peak area and normalized to the intensity of their 

respective subclass internal standards.  
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RT Calibration & Lipid Identification Logic for Clinical Samples 

Retention calibration was performed individually on the two linear sections of the solvent gradient 

corresponding to the elution of lyso- and diacyl lipid species respectively. The RTs of the lysolipid-region 

of chromatograms were calibrated with a flat calibration using stable isotope labelled LPC and LPE internal 

standards (0.5 min - 2.0 min).  The diacyl-region RTs were similarly calibrated using labelled PC, PG, PI, 

PE, and PS internal standards (2.1 min - 12.1 min). Library matching criteria for RT correction standards 

were: m/z within ±10 mDa of theoretical value and chromatographic RT within 7.5% of the library value.   

RT correction factor was calculated as the relative change in RT for the internal standards between all 

standard peaks. A linear regression of time vs change in RT was calculated to identify a drift coefficient, 

which was used to standardize RTs to those in the library in the diacyl-region of the gradient. 

 This correction was applied on a per-sample basis to account for any potential inter- and intra-batch RT 

variation. Potential sources of variability include: chromatographic column equilibration, variable rates of 

solvent evaporation from mobile phase reservoirs and measurement inaccuracies in the preparation of new 

batches of mobile phases. 

There are two potential situations that can occur when identifying species with the same sum-composition. 

In the case of lipids that are baseline-separated chromatographically in the acquired MS/MS data peaks, 

were annotated as distinct measurements, e.g. PC 36:4 can be split into PC 18:2_18:2 and PC 18:1_18:3, 

with RTs of 5.00 min and 5.15 min respectively. In the case where multiple lipids co-elute within 3 s of 

other species with the same sum-composition, an aggregate measurement was recorded and assigned only 

to the total carbon and double bond level. For example, PC 32:0 with a single chromatographic peak at 7.12 

min cannot be further resolved with MS-only data, although from MS/MS data is known to be a combination 

of PC 16:0_16:0 or PC 18:0_14:0. All lipids were normalized to the peak area of the internal standard in 

the same subclass. From RT-aligned data, lipids were identified based on the RT and identification criteria 

specified in Table 3.  Mass tolerance was set to ±15 mDa, and corrected RT tolerance was set to ±3 s. Lipid 

identifications were binned to the nearest .7 min to simplify complex regions of the diacyl chromatography 

and aggregate sn-1 and sn-2 lyso-lipids. 
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Headgroup Adduct 

Candidate Masses for 

MS/MS Characteristic Fragment Ions 

PC [M+HCOO]- 105 [FA1-H]-, [FA2-H]-, [M-CH3]-  

PI [M-H]- 12 [FA1-H]-, [FA2-H]-, [IP - H2O - H]- 

PE [M-H]- 18 [FA1-H]-, [FA2-H]- 

PG [M-H]- 3 [FA1-H]-, [FA2-H]- 

PS [M-H]- 1 [FA1-H]-, [FA2-H]- 

Table 3: Identification characteristics for glycerophospholipid species in negative ion mode. FA1 and 

FA2 are fatty acids. IP is inositol mono-phosphate.  

 

Untargeted Data Processing 

Detected peaks from samples were normalized to the peak area of the PC 33:1 (d7) internal standard. 

Normalized peak areas were sorted in descending order and iteratively identified with ± 0.015 m/z and ± 

0.05 min tolerances. 

Missing Value Handling 

To account for missing values in data, an approach was adopted from Wei et al, which uses a hybrid of 

quantile regression imputation of left-censored data (QRILC) and random forest imputation and to handle 

values which were below LOD and missing at random, respectively (28). 

After compound identification, raw peak areas of identified lipids were normalized to the PC 33:1(d7) 

internal standard, to allow comparison with the untargeted data processing. The complete dataset was 

combined, and missing values were handled based on their minimum recorded intensity (see Figure 2).  

For features that had a minimum intensity below 5% of the peak area of the internal standard and were 

detected in more than 70% of samples, missing values were assumed to be left-censored missing data (i.e. 

below LOD), where missing data points were imputed with QRILC, using the impute.QRILC function from 

the imputeLCMD R package (29). 

For features detected in more than 70% of samples and minimum intensity higher than 5% of the internal 

standard, missing values were attributed as missing at random or missing completely at random, where 

random forest imputation was used to calculate missing values using the MissForest package in R (30) 

Fully processed data was mean-centered and scaled using the scale function in base R. 
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Data Analysis and Visualization 

PCA plots were generated using the base prcomp function in R and visualized using the ggplot2 package 

(31).  

Results  

Lipid Identifications  

A total of 74 PC species were identified using MS/MS from 105 candidate masses (Table 4). Of these, 35 

were resolvable to the acyl-chain composition level (i.e., no evidence of other fatty acids with the same 

elution profile). An additional 6 structural isomers were identified that separated chromatographically. For 

non-PC subclasses, 14 PE and 5 PI species were observed, along with a total of 22 LPC, 14 LPE, and 5 

LPG species. 

Headgroup IC-RTC Formula 

Observed 

(MSMS) Predicted  

Total 

Lipids 

IC-RTC difference 

from observed value 

(Mean (min) ± SD) Adduct 

LPC - 22 0 22 - [M+HCOO]- 

LPE x * 1.0794 – 0.0337 14 8 22 0.01 ± 0.01 [M-H]- 

LPG x * 0.9796 + 0.0119 5 17 22 0.00 ± 0.02 [M-H]-  

PC - 74 9 83 - [M+HCOO]- 

PE x * 1.0804 - 0.0175 14 69 83 0.02 ± 0.03  [M-H]- 

PG x * 0.7652 + 0.3578 0 83 83 - [M-H]- 

PI x * 0.7071 + 0.375 5 78 83 0.01 ± 0.03  [M-H]- 

PS x * 0.7466 + 0.282 0 83 83 - [M-H]- 

Total - 134 347 481 - - 

Table 4: Identified phospholipids in NIST SRM 1950 blood plasma. Predicted PC species were 

calculated based on their fit to the ECN model. RTs for other species were predicted based on the PC and 

LPC identifications using IC-RTC. 

 

Linear Elution of PC species in RP-LC-MS 

The elution of PC species was observed to be predictable with a second order polynomial trendline, as 

previously reported (17,18). Here, we observed an increase in RT as the carbon number increased, while 

keeping the number of double bonds consistent (Figure 3). The inverse relationship was also true when 

plotting RTs against double bonds, while keeping the carbon number consistent. Low abundance lipids 
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were resolved by utilizing this relationship to provide narrowed RT windows for identification (Figure 3).  

Furthermore, we also analyzed three PC standards that only differed in their double bond position and/or 

stereochemistry (Figure 4). We found that PCs containing the 18:1(9Z) were baseline separated from the 

18:1(6Z) and 18:1(9E) species, which co-elute in reverse-phase LC-MS/MS.  
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Figure 3: Retention behavior of monounsaturated PC species. Graph demonstrating the predictable RTs 

of monounsaturated species in RP-LC-MS from NIST SRM-1950 plasma standard. All species were 

verified by MS/MS. Red boxes highlight the theoretical RTs of PC 33:1 and 35:1. Fitted to a second-order 

polynomial trendline. 

Figure 4: Elution of Stereoisomers in Reverse-Phase LCMS. Elution of PC stereoisomers in RP-LC-MS 

from 3 sequential injections of PC (18:1_18:1) standards with known stereochemistry. PC 18:1(9Z) elutes 
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with complete baseline separation from 9E and 6Z counterparts. The 9E and 9Z species coelute and are 

unresolvable using LC-MS/MS.  

Prediction of Non-PC GPLs in Reverse-Phase Chromatography with IC-RTC 

The RT of different GPL subclasses relative to PCs with the same acyl chain composition was plotted to 

study the effect of differing headgroups on RT. The resulting trendline was linear with an R-squared value 

of 1.0 for all observed GPL subclasses (Figure 5). This relationship was used to predict RTs of GPL 

subclasses from PC identifications (Table 4). To predict the RT of a non-PC GPL, the equations listed in 

Table 4 were used with the RT of the PC with the same acyl chain composition as the lipid of interest e.g 

to calculate the RT of PE 16:0_20:4, the known RT of PC 16:0_20:4 (5.71 min) was substituted into the 

equation RTPE = RTPC * 1.0804 – 0.0175, giving a predicted RT of 6.15 min. Characteristics of species 

predicted solely from the RTs of other species are listed in Table 5.  

Headgroup 

Mean RT Difference 

(min ± SD) 

Lipids Identified 

with IC-RTC and 

ECN RT prediction 

Mean Normalised 

Peak Area (Mean% 

± SD of IS Area) 

Min (% of 

IS Area) 

Max (% of 

IS Area) 

PC 0.03 ± 0.02 4 36.8% ± 35.5% 1.3% 120.0% 

PE 0.02 ± 0.02 24 6.4% ± 8.3% 0.3% 80.2% 

PG 0.02 ± 0.01 4 0.6% ± 0.1% 0.2% 0.9% 

PI 0.02 ± 0.01 15 7.3% ± 1.4% 0.1% 110.0% 

PS 0.03 ± 0.01 10 1.8% ± 1.9 % 0.4% 9.1% 

Table 5: Difference between IC-RTC and observed RT of ECN matched lipids in clinical samples. A 

total of 1,513 features were ECN and exact-mass matched in clinical samples. Only species which were 

quantifiable to their internal standard and predicted using IC-RTC were included.  
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Figure 5: Relative RT indices of differing GPL subclasses. Distribution of varying chain length GPLs 

compared across multiple headgroup subclasses. All results are plotted relative to PC RT (x axis). Data 

acquired in negative ion mode with UltimateSPLASH One standards spiked into NIST SRM 1950 plasma. 

 

Clinical Sample Results 

A sum-total of 98,821 features were detected in 37 clinical samples and a NIST QC, a mean of 2,352 

features were detected per sample. A total of 129 lipid species were identified, where 77 were present 

in >70% of samples (details in Supplementary Table 1). A total of 1,198 features were detected in >70% 

of samples. To highlight the heterogeneity of the lipidome, PCA was used to visualize identified lipid data 

(Figure 6, A) and unannotated feature data (Figure 6, B). A total of 57 lipids unique to clinical samples 

were detected based on ECN and interclass retention prediction, primarily belonging to PI and PE 

subclasses (Table 5). When stratifying samples between clinical diagnoses of recent myocardial infarction 

or stable angina, six unidentified compounds were significantly different between groups (p < 0.05, 

unpaired t-test); however, these features were not assessed further due to low abundance and high variation. 
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Figure 6: Dimensionality reduction of targeted lipid data (A) and unidentified feature data (B) for 

features with greater than 70% identification rate between NIST SRM-1950 plasma standard and 

clinical plasma samples. Ellipses indicate 95% confidence intervals for each group. NIST SRM-1950 

plasma was injected from the same well after every 10 clinical samples.  
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Discussion 

The data shown here illustrates the utility of RT-based characterization of lipid species from a matrix 

containing a large amount of unknown lipid species. The prediction of RT based on lipid physicochemical 

properties has been previously described in an intra-subclass context but has not yet been demonstrated on 

an inter-subclass basis to our knowledge. Our small clinical dataset also highlights the heterogeneity of the 

lipidome in human patient samples and the necessity of additional identification mechanisms besides exact-

mass matching in clinical workflows, where IC-RTC and ECN matching reduces false-positive annotations.  

RT Prediction of Lipid Species with ECN 

The ECN model has been previously described as an additional mechanism to assess the validity of results 

in reverse-phase chromatography (22–24). By utilizing the relationship between RT and carbon chain 

length, it was possible to predict the RT of less abundant species to provide additional identifications 

(Figure 7).  

A source of RT variability, potentially impacting RT prediction, is the double bond positioning and 

stereochemistry of unsaturated fatty acids. This variability is illustrated in Figure 4, where the 6Z, 9Z and 

9E variants of PC (18:1/18:1) elute with slightly different measured peak tops. This effect has been reported 

in the context of PC, PG and TAG species(22, 32). In mammalian systems, there is limited diversity in 

abundant unsaturated fatty acids, these are commonly 16:1, 18:1, 18:2, with either 7Z/E or 9Z/E double 

bond positioning and stereochemistry (33). This diversity may be reflected in Figure 7, where multiple 

peaks are observed for lipids with the same MS/MS fragmentation e.g. 18:1_20:4 and 18:1_22:6, although 

this cannot be conclusively proven with the equipment used. The utilization of post-ionisation structural 

elucidation techniques such as ozonolysis may be able to resolve this further (34).  

By measuring only one fatty acid and mapping the effect of differing combinations on the other acyl chain 

(Figure 7 A), the accuracy of the ECN RT prediction is significantly improved (Figure 7 B). Provided that 

there is enough biological diversity in samples to detect all combinations of species, a combination of 

aggregated and single fatty-acid prediction is useful to improve lipidome coverage. RT error i.e. the 

difference between predicted and observed measurements, is described in Supplementary Table 1. 
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Figure 7: Elution profile of PC 18:1_X with different fatty acid conjugations. A total of 18 fatty acid 

combinations containing the 18:1 fatty acid were identified with MS/MS, of which 3 species were 

chromatographically resolvable isomers with the same fatty acid combination (A). It is possible to predict 

the RT of the PC 18:1_17:1 by studying the elution of other fatty acid species, illustrated by the annotated 

red box (B). 
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Inter-Class Retention Time Conversion of GPLs 

To our knowledge, the mechanism which allows the conversion of RT between lipids of different subclasses 

has not been described previously. By utilizing the conversion method described here, it is possible to 

leverage the high abundance of PC species in blood plasma for the discovery of less abundant lipids from 

other GPL subclasses. While non-PC lipids are generally much lower in abundance, it is valuable to improve 

lipidome coverage. In all assessed lipids, the mean error in RTs obtained through IC-RTC was less than 1.5 

s for compounds manually verified with MS/MS, and between 0 s and 5 s for compounds processed with 

the automated retention correction. As shown in Table 5, the abundance of predicted non-PC GPLs is 

considerably lower than that of other subclasses, as previously described in the context of the NIST SRM-

1950 blood plasma standard (20).  

An additional strength of the method described here is that it can assist in deconvolution of species from 

MS1 data; for instance, the neutral loss of the acetate ion of PC produces species which are isobaric with 

PE species with two fewer carbons in the aggregate acyl chain. This fragmentation also occurs in-source, 

which would complicate identification of compounds from MS-Only data if IC-RTC was not used. 

However, by using IC-RTC as an isolating mechanism for isobaric peaks, overlaps in RT and mass are 

restricted to lipid species with the same aggregate carbon chain composition in the diacyl region of 

chromatography (Figure 8).  

For broader lipidome analysis in non-plasma research contexts, IC-RTC streamlines identification, as 

theoretical RTs for lipid species have already been recorded for an additional 347 GPL species could not 

be routinely detected in blood plasma here.      

Despite the high accuracy of the IC-RTC, it is crucial that significant findings involving the detection of 

predicted species are assessed with MS/MS to confirm headgroup fragmentation and acyl chain 

composition before any assumptions about the underlying biology are made, particularly in cohorts with 

low statistical power.   
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Figure 8: Visual representation of theoretical GPL elution in diacyl range of chromatography. Points 

correspond to the measured peak top of the resolved lipid species. Horizontal bars indicate RT range used 

for identification of each lipid. Mass tolerance for all peaks was set to 15 ± mDa. All overlaps of mass and 

RT were localized to species with the same aggregate carbon-chain length / double bond count. No overlaps 

of mass and RT occurred between lipids of different subclasses. 
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Clinical Data 

Given the heterogeneity of human blood plasma, the primary use of clinical samples was to detect lipids 

not reported in the NIST 1950 standard using the ECN and test IC-RTC on a pilot cohort for future studies. 

We were able to detect a total of 57 candidate precursors that follow the two methods with mass error below 

15 mDa that were not identified previously with MS/MS, primarily belonging to PI and PE subclasses 

(Table 5). The consensus measurements of other GPLs are several times lower than their PC counterparts, 

therefore their rare detection in clinical samples is not surprising but allows for extra coverage of 

unexpected lipid species from ToF data (20). 

The sample preparation protocol took approximately one hour to complete for 37 samples, because of its 

simplicity it is highly reproducible from sample to sample.   The maximum sample throughput using this 

method is 40 samples per hour, making data acquisition time the bottleneck at 22.5 min per sample. In 

positive ion mode the triacylglycerol, sphingomyelin and ceramide species elute in the 12.1 min to 16.0 

min range of the reverse-phase gradient (data not shown); however, this step could be omitted if GPLs are 

the only analytes of interest.  Using the sample preparation method all internal standards were observed 

with 100% success and a 0% false positive rate (Supplementary Figure 1). Experimental reproducibility 

was high, as illustrated by the low scatter in the dimensionality reduction of targeted and untargeted data 

of the NIST QC sample (Figure 6). 

Eight significantly altered compounds (p < 0.05, students t-test) were detected in the unannotated data when 

stratifying between by clinical diagnosis of myocardial infarction vs stable angina. These results were 

excluded from any subsequent analysis due to having maximum abundance below 1% of the PC internal 

standard in all cases. 

When considering the normalized peak areas of all identified lipids, a significant difference in the 

distribution of lipids containing 5, 6 and 7 double bonds was noted when comparing clinical samples vs 

technical replicates of the NIST SRM-1950 plasma (Supplementary Figure 2). Due to the high innate 

biological variance and expected differences in the targeted patient sampling of this study (patients 

undergoing cardiothoracic surgery for vascular complications) and the participants who donated plasma for 

the NIST standard, differences were expected when looking at simplified measures of the lipidome. 

Utility of ECN and IC-RTC for Lipidomics Method Development 

ECN provides an additional degree of structural identification confidence that cannot otherwise be attained 

without fragment ion information. Furthermore, with the exceptionally high accuracy of IC-RTC, 

maintaining theoretical RTs of all lipid species is recommended to increase lipidome coverage. This 
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advantage extends particularly well to instruments utilizing MS-only ToF or similar technologies, where 

no additional fragmentation data is generated.   

Conclusion 

The use of ECN to confirm lipid RTs provides an additional degree of confidence to compound 

identification in untargeted lipidomics, particularly when dealing with complex matrices, such as human 

blood plasma.  

Furthermore, the use of one lipid subclass (in this instance, PCs) as the basis for the prediction of RT for 

other subclasses with IC-RTC demonstrates a substantial advantage of reverse-phase chromatography. 

Nominal RTs for other GPL species can be mined from untargeted lipidomics data, with a mechanism more 

rigorous than exact mass alone.  

The combination of ECN and IC-RTC accelerates compound library building, where several theoretical 

RTs are generated from only one observed measurement.  

For use with a clinical cohort, this method was used to identify a substantial amount of previously 

undetected lipid species, present at low abundance. For large scale clinical datasets using untargeted 

methodology, the methods discussed here allow for the more rigorous identification of lipids from reverse-

phase LCMS data.  
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