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Abstract

While traditional crystallographic representations of structure play an important

role in materials science, they are unsuitable for efficient machine learning. A range of

effective numerical descriptors have been developed for molecular and crystal structures.

We are interested in a special case, where distortions emerge relative to an ideal high-

symmetry parent structure. We demonstrate that irreducible representations form an

efficient basis for the featurisation of polyhedral deformations with respect to such an

aristotype. Applied to dataset of 552 octahedra in ABO3 perovskite-type materials,

we use unsupervised machine learning with irreducible representation descriptors to

identify four distinct classes of behaviour, associated with predominately corner, edge,

face, and mixed connectivity between neighbouring octahedral units. Through this

analysis, we identify SrCrO3 as a material with tuneable multiferroic behaviour.
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Introduction

Materials informatics has grown into a substantial field, supported by the surge in devel-

opment of machine learning (ML) techniques.1–4 Although classical ML and deep neural

networks have shown success in fields such as image and natural language processing, their

efficiency for material structure inputs are still limited. The problem originates from the dif-

ficulty in encoding domain knowledge of material science onto ML training. In other words,

the crystallographic information stored in materials datasets are not fully used. To improve

this, intense efforts have been made to design efficient material representations to featurise

the high structural degrees of freedom into a compact size.2,5–7

Unless specially tailored ML models are used,8–10 a number of criteria exist for crystal

features. Firstly, a feature must not depend on the permutation of symmetry equivalent

atoms, because atomic indices are only defined for convenience and they have little physical

meaning.10 Secondly, it should not depend on the choice of the unit cell orientation, that is

it should not depend on translation or rotation of the axes. Lastly, it must have a suitable

size, with the optimal size depending on the problem of interest. If the target properties

are complicated, it will require more dimensions to describe it, whereas if the feature is

unnecessarily large, more data will be required to train the ML model due to the “curse

of dimensionality”.11 Additionally, physical transparency is favourable since it is becoming

possible to relate model predictions with the feature(s) responsible.12

Structure would be easier to represent if we were able to apply a filter to smear atomistic

properties in a mean-field manner. Although such a coarse-graining has been studied,13,14

it is often the case that the local structural properties of a material could induce a non-

negligible effect to macroscopic properties. For example, in perovskites, slight displacement

of B-site cation could induce both a local electric dipole, as well as macroscopically observ-

able ferroelectric behaviours.15,16 Another example in a recent study revealed that for the

spin-orbit coupling induced Dresselhaus effect, local inversion symmetry, rather than the

global crystal symmetry, is responsible.17 Other interesting phenomena such as Jahn-Teller
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distortions, orbital orderings, and magnetic disorders are known, and their coexistence have

been reported.18–20 Given this importance in local structure, many analysis methods have

been developed.

There are numerous ways of obtaining a structural feature, but the rudimentary exam-

ples include Voronoi decomposition, radial distribution functions, nearest neighbours, and

electrostatic Ewald summation.21 Some efforts have been put into the development of calcu-

lating coordination numbers. Although coordination number is an intuitive concept, several

different approaches have been suggested for a quantitiative defintion.22–25 One advanced

method is to analyse the connectivity of the bonds and use the polygon created by the

bonds to categorise the environment.26,27 Other methods such as Smooth Overlap of Atomic

Positions (SOAP), Coulomb matrix, Many-Body Tensor Representations (MBTR), or min-

imum bounding ellipsoid (MBE) has been suggested which, are based on atomic positions

and do not rely on knowledge of the bonding network.28–31

In this paper, we take advantage of established techniques in group theory and use it

to encode polyhedron shape.32–37 In particular, we projected the distortions onto the basis

vectors of the irreducible representations (irreps) to obtain physically intuitive decomposition

of the distortions. The obtained expression is atomic permutation invariant, axis invariant,

minimum length, and physically transparent, meeting all criteria for a suitable material

representation for training statistical models. Although our method is applicable to any

type of polyhedron, we chose octahedra inside oxide perovskite-type materials as a model

system, as it is well studied.38–44 We show that our approach when applied to these classes

of materials, not only rediscovers intuitively understandable behaviour, but is also capable

of capturing trends that originate from subtle difference in octahedral geometry.
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Figure 1: Basis set distortions for the irreducible representations of a six atom octahedron
as found in a cubic perovskite. For multidimensional irreducible representations, only one
distortion is shown. For the actual projection, we have used the four distortions presented
in the bottom row. The full list is presented in Figure S1 and S2.
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Figure 2: Illustration of how amplitudes are averaged within a multidimensional irreducible
representation. (a) a two dimensional irreducible representation (Eg), (b) three dimensional
irreducible representations (T2g, T1u and T2u).
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Methodology

Defining basis vectors

The goal of this section is to calculate complete and orthogonal basis distortions (basis

vectors) of the irreps. The irreps fulfill the “great orthogonality theorem”,45

∑
R

Γ(i)(R)µνΓ
(j)(R)αβ =

h

li
δijδµαδνβ. (1)

Here, Γ(i)(R)µν is a µ, ν matrix element of operator R in the irrep i, h is number of group

elements, and li is the dimensionality of Γ(i).46 We cannot directly use this however, because

the specific elements of Γ are unknown a priori. Therefore, throughout the section, we make

use of their trace or their character, which are readily available from standard character

tables. We will use the six-atom octahedron geometry as an example, but our method is

applicable to all symmetric coordination environments. The notations follows Ref 45.

Firstly, we need to calculate 18 dimensional reducible representations, which is a direct

product between six dimensional atomic site and three dimensional vector representations.

The three dimensional representations Γ̃(3)(R) (tilde indicating a reducible representation)

are readily available from previous studies, in which we have adopted them from the phonopy

package.47 On the other hand, six dimensional representations Γ̃(6)(R) depends on specific

problems, therefore we have calculated them by applying three dimensional representation

Γ̃(3)(R) to atomic coordinates and keeping track which atoms transformed to which atomic

sites. The final 18 dimensional representations Γ̃(18)(R) were constructed by taking a tensor

product between three and six dimensional representation Γ̃(3)(R)⊗ Γ̃(6)(R).

Secondly, we calculate number of irreps hidden within the 18 dimensional reducible rep-

resentation Γ̃(18)(R). To do this, we use the following equation,

∑
R

χ(i)(R)χ(j)(R) =
h

li
δij (2)
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Here χ(i) is a character of irrep Γ(i), which is calculated by taking a trace. Although this

relation is simply derived by taking trace of equation 1, it is useful in our case, since it

does not require knowledge of specific elements of irreps, while the characters are known

(Table S1). Since, χ̃(18)(R) =
∑

i aiχ
(i)(R) where ai is the number of irrep i in 18 dimensional

representation, equation 2 could extract ai. The calculated result for an octahedron is shown

in Table 1. We can see that there are one A (single dimensional), one E (two dimensional),

and four T’s (three dimensional), which add up to the 18 total degrees of freedom in the

system.

Table 1: Number of irreducible representations in 18 dimensional reducible representation
in Oh symmetry.

A1g A2g Eg T1g T2g A1u A2u Eu T1u T2u

1 0 1 1 1 0 0 0 2 1

Finally, we calculated the basis vectors. To do so, we have used the “basis-function

generating machine”,45 which is defined as

P(i)
λκ :=

li
h

∑
R

Γ(i)(R)λκPR, (3)

where PR is the projection operator of symmetry operator R. The useful property of P is

that when it is operated on an arbitrary function

F :=
∑
i

li∑
κ

f (i)
κ , (4)

it could take out f (i)
κ , the κ-th element within irrep i of the function F

P(i)
κκF = f (i)

κ . (5)

Again a problem arises due to lack of the knowledge on Γ(i)(R). Analogically to the relation
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between equation 1 and 2, there is a slightly restricted version,48 which is

P(i) :=
li
h

∑
R

χ(i)(R)PR (6)

P(i)F =
∑
κ

f (i)
κ . (7)

The difference is that we could only resolve up to an irrep and components inside a irrep κ

remains degenerate. Our approach for deciding the basis set inside multi-dimensional irreps

was to generate arbitrary vectors within an irrep and use Gram-Schmidt orthogonalisation

to decompose them into orthogonal basis vectors.

Specifically, for each irrep within table 1, we arbitrary chose a vector residing on an

atom and subsequently applied all the symmetry operators and multiplied the character

corresponding to the irrep. The projected results were then added, which resulted in a basis

set, as in equation 6. This step was repeated three times with unit vectors in x, y, and

z directions as an initial vector. Although the number of trial initial vectors is arbitrary,

this choice is the minimum number required to generate all the irreps. We then removed

duplicates, zero vectors, and further applied Gram-Schmidt orthogonalisation,

ψ(i)
κ = ψ′(i) −

li∑
λ 6=κ

(ψ′(i) · ψ(i)
λ )ψ

(i)
λ , (8)

where ψ′(i) is an unorthogonalised vector residing in irrep i, and λ runs over other basis set

within irrep i that is not κ. Lastly, we have normalised the vectors such that their inner

product with themselves equals to unity.

Although this method is systematic, one arbitrary choice is the initial vectors for equa-

tion 6. In principle, we could use three unit vectors in different directions and still obtain

irrep. We will later show that we decided to average over dimensions, and such averaging is

necessary even if we have used the full basis set generating machine in equation 3. Following

this procedure produces a complete and orthogonal basis set for the irreps which describe
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all the possible displacement of atoms in an octahedron. The representative distortions are

presented in Figure 1 (full list in Figure S1 and S2).

Projection to the normal distortions

The projection of an arbitrary structure on this basis set was performed in three steps:

normalisation, structure matching, and distortion amplitude averaging.

If we simply project two distorted octahedra with same shape but different size, we will

obtain different distortion amplitudes. This is not favourable in the context of analysing the

shape of the octahedra. Therefore, some kind of normalisation of the input octahedron is

necessary. Our approach was to scale the distorted octahedron such that the average bond

length is 1.0 Å and obtained the distortion vector by comparing it against ideal octahedron

with bonding length of 1.0 Å. By applying this scaling, the resulting distortion amplitudes

for octahedra of same shape, but different size became identical.

Although our method is permutation invariant, practically, we have to label atoms within

the code. Therefore, to calculate the distortions the atomic indices of the distorted and the

ideal octahedron must be matched. This structure matching requires O(N !) computational

cost, if calculated rigorously by brute force algorithm, but we found that this is too slow for

high-throughput applications. To make the computational cost feasible, we employed the

Hungarian algorithm, as implemented in the pymatgen package.49,50 We confirmed that this

algorithm works well in perovskites and perovskite related materials, which typically have

well defined octahedra, however, for geometry with large variation in bonding length, brute

force algorithms are likely to be favoured. After matching the structure, the distortion vectors

were calculated and were projected onto basis vectors presented in Figure 1. Furthermore,

we have validated the quality of this basis by reconstructing the original distortion from the

projection and confirmed that the error is negligible (Figure S3).

It is tempting to use the amplitudes we have obtained above directly, however, the raw

values encompass aforementioned arbitrariness within the multi-dimensional irreps, which
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originates from the usage of equation 6 rather than equation 3. Taking a closer look, the

choice of basis vectors within a single irrep follows a rotational group or special orthogonal

group. Since, the actual configuration of an input octahedron inside a crystal may be ro-

tated in any possible direction, even if we have used the full basis set generating machine

(equation 3), the resulting amplitudes of the basis vectors would have had dependence on

the choice of the axis. For example if the T1u distortion in Figure 1 is rotated 90◦ about the

x axis, the amplitude obtained by projection onto the original T1u distortion and the trans-

formed T1u will be different. This situation is encountered in all the distortions except for

A1g, which has no multiplicity and is thus rotational invariant. Therefore, the arbitrariness

due to a dependence of rotation is a problem that exists regardless of whether or not we

use equation 6. Since one of the purposes of this analysis is to obtain ML friendly features,

rotational variance is not favourable, especially because for a typical ML model, learning a

permutation is a challenging task.51

Our approach was to use the total length spanned by vectors within the irreps. As shown

in Figure 2, we have calculated the length of the vectors in two or three dimensional space

using the Euclidean distance,

Φ(i) =

√∑
κ

ψ
(i)
κ · ψ(i)

κ . (9)

Here the summation is over the dimension inside irrep (i). Just like the Euclidean distance of

a given point from the origin remains same under rotations about the origin, this expression

is invariant under any orthogonal transform. Another interpretation of this approach is that

we are rotating the axis in Figure 2, so that one of the axes is aligned with the amplitude

vector and then reading the value off that axis.

Through the above procedures, we were able to obtain a scalar value for each irrep for

any distorted octahedron. Lastly, translation, rotation, and scaling distortions (A1g) were

discarded, since they do not have information regarding the shape of the octahedron. We

note that it is possible to encode information such as rigid shifting, rigid tilting or octahedron
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size into these irreps, but it will require modification to the structure matching procedure

and are likely to introduce additional complexity in the algorithms. Therefore, we report

four scalar values each corresponding to Eg, T2g, T1u, and T2u for rest of the work.

Dataset processing

In order to apply the projection, we have obtained 46,048 materials from the Materials

Project database accessed through the API in pymatgen package.50,52,53 We then searched

for materials containing octahedra with stoichiometry of ABO3 resulting in 492 materials.

The octahedra was constructed by selecting all the B-site cations with distinct Wyckoff

positions using the spglib and applying the CrystalNN algorithm to detect the surrounding

anions.25,54 Since this method extracts multiple octahedra for a single material, we obtained

552 distinct octahedron in total, in which we have treated them as independent data points.

It is worth adding that for a given composition there are multiple structures and we have not

explicitly taken into account their thermodynamic stability, therefore, our analysis contains

structures that may not have been synthesised to date, but represent local minima on density

functional theory (DFT) potential energy landscapes.

Density functional theory calculations

Although we have largely applied the method to openly available from the Materials Project

database,50,52,53 for validation we performed some calculations with stricter condition. The

plane-wave DFT within projector-augmented wave scheme in calculations were performed

using the VASP.55–57 The input file was automatically generated via VISE package,58 result-

ing in cut-off energy of 520 eV and the reciprocal space sampling of at least 2π × 0.05 Å−1.

Using the structures in the Materials Project as an initial input, the cell size and the atomic

coordinates were fully relaxed using HSE06 functional.59 The visualisation of the structures

were done using the VESTA software.60
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Results and discussion

Projection onto normal distortions
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Figure 3: Distortion amplitudes for 552 ABO3 materials. The blue and red shading refers to
materials that belong or do not belong to the common space groups for distorted perovskites,
respectively.

The distribution of distortion amplitudes for all 552 materials are presented in Fig-

ure 3. The materials are categorised by whether or not they belong to the common point

shared perovskite space group (cubic Pm3m, tetragonal P4mm, tetragonal P4/mmm, tetrag-

onal P4/mbm, tetragonal I4/mcm, orthorhombic Pnma, orthorhombic Amm2, orthorhom-

bic Cmcm, monoclinic P21/m, rhombohedral R3m, rhombohedral R3c, and rhombohedral

R3c).32 The number of materials in common and uncommon space groups were 443 and

109, respectively. From Figure 3, differences in the distributions are clearly noticeable for

the two classes of materials. For the common space groups, the vast majority had little or

no distortion and number of materials decay monotonically with increasing amplitudes. In

contrast, for less common space groups, the distribution exhibited a wider spread and the

larger portion of materials had larger amplitudes. Additional peaks are clearly seen for T2g

and T1u around 0.075 and 0.100, respectively. Accounting the fact that there was no clear
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chemical trends (Figure S4∼S7), this result suggests a strong relation between the crystal

structure and the local distortions of the octahedra.

Connectivity analysis

6 P-sharing
3 E-sharing
2 F-sharing
3 P-sharing, 1 F-sharing

-0.01 0.04 0.09 0.14 0.19 0.24
T2g

-0.01
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T1
u

Figure 4: Relation between T1u distortion against the T2g distortion. Each points represent
an octahedron site and are coloured according to their connectivity with other octahedra.
Blue points are connected with via six point sharing (6 P-sharing), orange points are con-
nected with via three edge sharing (3 E-sharing), red points are connected with via three
point sharing and one face sharing (3 P-sharing and 1 F-sharing), and green points are
connected with via two face sharing (2 F-sharing).

To analyse the underlying material trends in more detail, we have plotted the T1u dis-

tortion against the T2g distortion and categorised each site according to their connectivity

with neighbouring octahedra (Figure 4). The four connectivities in Figure 4 are: six point

sharing (6 P-sharing, A and C in Figure 5), three edge sharing (3 E-sharing, B in Figure 5),

two face sharing (2 F-sharing, E in Figure 5), and three point sharing and one face sharing

(3 P-sharing and 1 F-sharing, D in Figure 5).
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Figure 5: Structures of (a) cubic SrTiO3, (b) rhombohedral GeTiO3, and (c) hexagonal
BaVO3. Octahedra are composed of TiO6, TiO6, and VO6, respectively. Distinct Wycoff
positions are labeled by A to E.

Clearly, a cluster of distortion amplitudes are distinguishable about (T2g,T1u) = (0.075,0.100).

Two interesting observation could be made from this clustering. The first is that T1u dis-

tortion amplitude of over 0.05 is only present in this cluster. This suggests that the large

amplitude of T1u distortions could only exist when T2g distortions coexist. This is analogous

to the situation in improper ferroelectrics where coexistence of two distortions create a ferro-

electric distortion.61–63 Secondly, this cluster is composed mostly of three point sharing and

one face sharing connectivity. This type of octahedral connectivity is realised in hexagonal

perovskite polytypes where a 1D chain of face sharing octahedra terminates as in Figure 5(c).

Accounting the fact that three point sharing and one face sharing octahedra were not seen

outside of this cluster, this result indicates that hexagonal phases could support distortions

much larger than that seen in point shared perovskites. The one fully-point-shared outlier

in the cluster was BiFeO3, which exhibited unusually large distortion. The possible origin of

this distortion is an interplay between Bi lone pairs and Fe Jahn-Teller distortion.64,65

Outside of this cluster, the T1u distortion was generally small. Most of the fully point

shared octahedra and fully edge sharing octahedra had an ideal octahedron structure, which

made the data points to be scattered around the zero amplitude point. Two face sharing
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octahedra interestingly, had very large T2g distortion but lacked T1u. Since this connectivity

occurs in the middle of a 1D chain in hexagonal phases as in site E in Figure 5, the uni-

axial strain due to being sandwiched by neighbouring octahedra likely to have caused the

compression of the octahedron.

Clustering analysis
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Figure 6: The clustering of different octahedron connectivity plotted on the dimensionally
reduced axis obtained through t-distributed stochastic neighbor embedding (t-SNE).

Up to here, we have made discussions based on the trends in Figure 4, however such a

discussion may be overlooking trends in higher dimensions. Therefore, we have performed

dimensional reduction analysis to understand the clustering of different octahedral connec-

tivities in higher dimensions. We employed t-distributed stochastic neighbor embedding (t-

SNE) to perform nonlinear reduction from four to two dimensions.66,67 The result is shown in

Figure 6. Different octahedral connectivities are clearly separated. This result is fortuitous

since it indicates that the shape of octahedra are largely determined by their connectivities

with neighbouring octahedra. In other words, geometrical network of bonds dominantly

determine the shape of the octahedra rather than the chemical property of individual bonds.
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Figure 7: Clusters obtained by a Gaussian mixture model (GMM) shown in the axis of (a)
T2g and T1u, and (b) T2g and T2u. The dots are coloured differently depending which of
seven different cluster the point belongs to. The shading shows the extent of the multivariate
Gaussian distribution defined for each clusters.
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We next perform a clustering analysis in the full four-dimensional space to see if there

is additional information to be obtained. The multi-dimensional clustering was analysed

by a Gaussian mixture model (GMM) as implemented in the Scikit-learn package.67 GMM

requires number of clusters to be set a priori, therefore, we calculated the minimum number of

clusters needed to account for the data using the information criteria analysis and selected

nine clusters to be adequate (Figure S12). The obtained nine clusters are presented in

Figure 7 (plot against all axes are shown in Figure S13). It should be noted that in GMM,

a data point could only belong to a single cluster. In Figure 7(a), a clear ellipsoid of cluster

0 can be distinguished. This cluster corresponds to the three point sharing and one face

sharing in Figure 4 at (T2g,T1u) = (0.075,0.100). Taking a closer look reveals that there

are subset of materials within the ellipsoid that belong to cluster 5. Their difference is not

distinguishable from Figure 7(a), but plotting against the T2u distortion axis in Figure 7(b)

reveals that cluster 5 is displaced from cluster 0 in the T2u distortion axis. Cluster 0 had

no T2u distortions, whereas cluster 5 had about 0.02 T2u distortion. This separation is not

trivial from Figure 4 and highlights the value of clustering analysis in the high dimensional

space. We will discuss specific constituent materials of cluster 5 next.

Analysis of specific materials

Cluster 5 in Figure 7 is mainly composed of BaTiO3 and different polymorphs of SrCrO3. We

find that the distortions in BaTiO3 were typical for hexagonal phases. Within our dataset,

there were two polymorphs of hexagonal BaTiO3, the C2221 phase and the P63/mmc (Figure

8 (a) and (b), respectively). Experimentally, the C2221 is stable in the range of about

70∼220 K, where it transforms in to the P63/mmc phase at 220K.68,69 The low temperature

C2221 phase has the T2u distortions, but they are averaged out and are absent in the high

temperature P63/mmc phase.

To confirm whether the absence of the T2u distortions in other ABO3 is due to the lack

of data or due to different phase stability, we have compared the energies of P63/mmc and
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Figure 8: Structure of BaTiO3 in (a) C2221 and (b) P63/mmc phase. (c) The atomic
displacement to transform from C2221 to P63/mmc. The blue, green, and red spheres are
Ba, Ti, and O atoms respectively. The blue shading represents the TiO6 octahedron.

Table 2: Calculated relative stability (DFT/HSE06) of the low temperature C2221 phase
compared to the high temperature P63/mmc.

Compound EP63/mmc − EC2221 (meV/atom)
CaTiO3 18.61
CaCrO3 61.56
CaMnO3 30.08
SrTiO3 3.88
SrCrO3 -16.11
SrMnO3 5.18
BaTiO3 0.72
BaVO3 37.31
BaCrO3 -6.29
BaMnO3 10.34
BaRuO3 -1.11
BaRhO3 4.68
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Figure 9: Structures of different SrCrO3 polymorphs obtained from the Materials
Project.50,52,53 The details are summarised in Table S2.
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the C2221 phases in 11 additional compounds (Table 2). We found that in most compounds

C2221 phase were stable suggesting it to be the lower temperature phase, thus showing that

the BaTiO3 with finite T2u is not exceptional, but rather a property of hexagonal phase

materials. The exceptions were SrCrO3, BaCrO3, and BaRuO3. The energy difference in

BaCrO3, and BaRuO3 were subtle, but SrCrO3 had clearly higher stability of the P63/mmc

phase.

SrCrO3 is an interesting case that has interplay of metallicity, ferroelectricity and mag-

netic order. In cubic SrCrO3 (Figure 9(d)), there has been reports on multiferroicity, which

are induced by orbital ordering.20,70,71 Since this material has been suggested to be internally

strained,72 we believe this is the reason for the distinct distortion behaviour of this material.

For hexagonal polytypes of SrCrO3 (Figure 9), as far as we are aware, there has not been

previous reports but we note that the formation energy predicted by DFT is smaller than

the known cubic phase (Table S2), so they should be accessible. Interestingly, within the

hexagonal phases, the Ama2 phases (Figure 9(a), (b), and (c)) were calculated to be metallic,

whereas P63/mmc phases (Figure 9(e) and (f)) were insulators (Table S2).73 Since, the ratio

of point shared and face shared connectivities could be controlled by the stacking sequence,

we speculate that through the tuning of the polytype order, metallicity/insulating, ferroelec-

tricity/paraelectricity, and ferromagnetic/paramagnetic behaviour could be accessed. Fur-

thermore, like orbital ordering observed for the cubic phase, coupling of different behaviours

are also expected here.

Conclusion

We have shown that using group theory, distortions in polyhedra could be encoded into a

small vector. As a case study, we have shown their efficacy towards representing the struc-

tures of ABO3 stoichiometry oxides. In addition to recovering intuitively understandable

trends, we presented the close relations between octahedra connectivity and their distor-
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tions, which are likely to be smeared out by some of the conventional analyses. As a co-

product, we were able to find SrCrO3, which contained rich variety of ferroic behaviours. All

of these analyses were performed solely on the information of the structures and additional

information such as thermodynamic stability and electronic structure will likely to elucidate

additional trends. We would like to emphasise that this method is not exclusive, and syner-

gistic effects are expected when used with other means of material featurisation techniques.

Finally, the rich result of this study is only a result from very elementally dimensional anal-

yses techniques, which suggest that usage of more sophisticated approaches that are suitable

for higher non-linearity, such as deep neural networks, are expected to open a path towards

further material discoveries.
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