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Abstract

Currently, it is not understood how metal nanoparticles influence the formation of protein fibrils,

although recent literature highlights that the shape and chemical composition of such nanoparticles

can strongly influence the process. Understanding this process at a fundamental level can poten-

tially unlock routes to the development of new therapeutics, as well as novel materials for other

applications. This requires a microscopic picture of the behaviour of amyloidogenic proteins on

metal surfaces. Using replica exchange molecular dynamics simulations we investigate the adsorp-

tion of the model amyloidogenic peptide, Aβ(16-22), on different gold and silver surfaces. While the

peptide adsorbs onto these different surfaces, the adsorption can be considered to be enthalphically

driven for the gold surfaces and entropically driven for silver. The conformation of the peptide on

gold surfaces also shows a strong facet dependence for gold, with fibril-like conformations being

promoted in the 100 surface and inhibited on the 111 surface. A smaller degree of facet dependence

is seen for silver with the peptide behaving similar on both of these. The difference in the facet

dependence can be related to the difference between direct adsorption onto the gold 111 surface,

with a preference towards indirect (water mediated) adsorption onto the other surfaces. This new

information on the behaviour of an amyloidogenic peptide on metal surfaces can give insight into

the size-dependent effect of nanoparticles on fibril formation and the use of surfaces to control

fibrillation.
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I. INTRODUCTION

Research on fibril formation via protein agglomeration into amyloid fibrils1,2 is of great

importance in a wide variety of fields, ranging from microbiology to biochemistry to materials

science and medicine. Whilst fibril formation is involved in many normal biological functions,

the abnormal aggregation of proteins into amyloids and subsequently fibrils, or “plaques”,

has been implicated in the pathology of numerous human diseases, and specifically, in the

onset of a group of diseases eponymously encompassed by the term “amyloidosis”. These

include degenerative diseases, such as Alzheimer’s and Parkinson’s disease, which due to

increasing lifespans are becoming more prevalent3. As well as pathogenic fibrils, so-called

functional fibrils have been identified; these play a role in many processes such as surface

adhesion4 and biofilm formation5. Outside the field of human pathology, many are trying

to exploit protein fibrillation to develop novel materials6,7.

While protein fibrils can form under a range of conditions, the formation of protein fibrils

is known to be influenced by surfaces and interfaces8,9, both natural and synthetic. In vivo,

fibrils are often associated with the cell membrane10, which has been implicated in amyloid-

diseases, such as Alzheimers11–14 and type-II diabetes15. The presence of synthetic surfaces

and interfaces can also impact fibril formation16. This can be exploited in the creation of

amyloid fibrils for materials applications6,17–19 and can also influence the interaction of man-

made materials with synthetic systems20,21. Recently, particular interest has focused on the

interaction of nanomaterials with proteins and the potential for nanoparticles to influence

fibril formation22–24.

Noble metal nanoparticles have attracted particular attention. They been investigated

for a number of biomedical applications, such as drug delivery or medical imaging, so

understanding their interaction with proteins is of significant importance.The effect of

gold nanoparticles and nanoclusters on the formation of amyloid fibrils has also been

investigated25. This work found a size dependent effect with nanoclusters and small gold

nanoparticles inhibiting fibrillation while larger ones promote this24. Nanoparticles con-

sisting of other noble metals, such as silver or platinum, have also been investigated for

biomedical applications26–31. Their affect on fibrillation behaviour is less clear so it is of in-

terest to determine the how different metal surfaces interact with amyloidogenic proteins22.

As well as depending on the metal the interactions between proteins and surfaces can depend
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on the exposed crystal face, with facet dependent adsorption being seen for metal32,33 and

oxide surfaces34,35. Differential adsorption of proteins onto surfaces can be used to control

the formation of nanoparticles36,37 and lead to the size dependent effect of nanoparticles on

protein fibrillation38.

While the link between surface properties and fibrillation is of significant interest, our un-

derstanding of this is still developing.The effect of surfaces on the formation of amyloid fibrils

depends on the interplay between protein and surface properties9. Commonly changes to the

surface hydrophobicity have been investigated. For amyloid-beta fibrillation is enhanced on

hydrophobic surfaces and inhibited in hydrophilic surfaces39, while the opposite behaviour

is seen for amylin40–42. For both proteins, however, the concentration on the hydrophobic

surfaces are higher than on the hydrophilic ones, suggesting that changes in fibrillation is

not simply due to changes in protein concentration, rather the effect of surface induced

conformational change and protein mobility on surfaces39are important in fibril formation

on surfaces9. A wide range of experimental methods have been used to investigate protein

conformation and fibrillation on surfaces43,44 However, these have difficulty in resolving the

single molecular structure that limits their ability to investigate the early stages of fibril

formation.

As it is able to directly access the molecular level molecular dynamics simulation pro-

vides a route to investigate protein behaviour on surfaces45,46. In particular recent work

has applied it to the investigation of a number of amyloidogenic proteins, including amyloid

beta47–49, amylin38,50, and beta-microglobulin51 on solid surfaces. These simulations have

been enabled through advances in simulation methodology, such as replica exchange52 or

metadynamics53 simulations, that allow for the sampling of the diverse conformational en-

semble of these proteins and accurately describe the protein-surface interaction. Due to the

importance of electrostatic effects metal surfaces have proven to be particularly challeng-

ing for force field based modelling54. Recent work has derived simulation models for noble

metals including polarization, which can account for these. In particular the GolP55,56 and

related models introduce polarization through the inclusion of rigid dipoles on the metal

atoms provides a computationally efficient method for approximating electrostatic effects

into modelling biomolecular-interface interactions. These models have been used to investi-

gate the adsorption of proteins onto effect of gold and silver surfaces, including fibril forming

proteins38,47,48,51 and gold and silver binding peptides57,58.
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In this paper we use molecular dynamics simulations to investigate the behaviour of a

model amyloidogenic peptide, the Aβ(16-22) fragment of amyloid-beta59, on metal surfaces.

The main goal is to investigate how changes to the surface can affect conformation of Aβ(16-

22) and its fibrillation behaviour. Specifically the 111 and 100 gold and silver surfaces are

investigated, which allows for comparison between different metals and facets. Note that

while metal nanoparticles commonly have ligands molecules on their surfaces, which affects

their interaction with biomolecules, depending on the ligand density interactions between

the underlying metal and proteins are possible. This is particularly the case where ligands

are non-uniformly distributed on the nanoparticle surface60. Interaction with metal surfaces

are also likely in materials and biotechnology applications.

II. METHODOLOGY

All simulated systems contained a single Aβ(16-22) peptide (KLVFFAE). The termini and

polarizable residues (K and E) were charged, as appropriate for pH 7. For bulk simulations

this was solvated in a water box with water molecules overlapping with the peptide removed,

giving a total number of water molecules of 2117.

To examine the effect of crystal facet on adsorption both 111 and 100 surfaces were

investigated. The 111 crystal faces consisted of a 20×12 unit cells, while the 100 faces

consisted of 20×20 unit cells. In both cases the surfaces consisted of 5 layers of atoms.

Lattice parameters of 4.14 Å and 4.16 Å were used for Au and Ag surface respectively,

consistent with previous work61,62. Positions of the surface atoms (except for the mobile

charge sites) were held fixed in the simulations. Note that while surface reconstruction

can change the structure of metal surfaces, previous work has shown that allowing the

surface to change its structure has only a minor effect on the simulation results58. The

peptide was placed approximately 10 Å from the surface and the system was solvated, with

water molecules overlapping with the peptide and surface removed. Each system contained

approximately 7800 water molecules.

The peptide was modelled using the charmm22* force field63–65, with the modified

charmm-TIP3P66 water model. This combination has been shown to give a good de-

scription of the Aβ(16-22) peptide67 Gold and silver surfaces were modelled using the

GolP-Charmm61,68 and AgP-Charmm62 models respectively.
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For all cases the initial structure was energy minimised, with a tolerance of 103 kJ mol−1 nm−1.

For the surface simulations the z-box length was adjusted so the water density far for the

surface was equal to the bulk water density. Simulations in the NVT ensemble (for surfaces)

and NPT ensemble (for bulk simulations) were then performed for 100 ns to equilibrate the

systems.

In order to enhance sampling of protein conformations replica exchange with solute

tempering (REST) was employed69,70. This is a variation on replica exchange molecular

dynamics71, where the temperature varies only for a subset of the system, in this case the

protein. The temperature scaling was performed by scaling the protein-protein and protein-

solvent interactions by a factor depending on the effective temperature. Specifically the

potential energy was given by70

Ei = βiEpp + β
1/2
i Eps + Ess (1)

where Epp, Eps, and Ess are the protein-protein, protein-solvent, and solvent-solvent inter-

action and the scaling factor βi = T0/Ti. For all systems the effective temperature was in

the range 300 K to 440 K; six replicas with scaling factors (effective temperatures) 1 (300

K), 0.926 (324 K), 0.858 (350 K), 0.795 (378 K), 0.736 (408 K), and 0.682 (440 K).

Surface simulations were performed in the NVT ensemble at a temperature of 300 K,

using the velocity-rescaling algorithm of Bussi et al72 with a relaxation time of 0.2 ps.

For bulk solution simulations were performed in the NPT ensemble with a temperature

of 300 K and pressure of 1 atmosphere. The pressure was controlled using the Parinello-

Rahman barostat73 with relaxation time of 2 ps. All simulations were performed with

periodic boundary conditions in all dimensions. The Gromacs molecular dynamics package74

(version 4.6.7) was used for all the simulations, with a modified version of the PLUMED

library75,76 used to implement REST.

Simulations were performed for 200 ns (surface) and 400 ns (solution). These simulation

times were found to be sufficient for the cluster entropy

Scluster =
∑
i

pi ln pi (2)

to plateau. In Equation 2 the sum runs over the unique peptide conformations and pi is the

probability of the ith conformation. The unique conformations were determined using the

method of Daura77, with two conformations being in the same cluster if the Cα RMSD is

less than 1 Å.
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Analysis of the simulations was performed using a combination of standard gromacs

utilities and custom-written python scripts using the MDAnalysis library78. Simulation

snapshots were generated using VMD (visual molecular dynamics)79. Unless otherwise stated

analysis was performed over the last 100 ns of each simulation. For the surface simulations

analysis This was taken to be when the closest distance between the surface and a heavy (non-

hydrogen) atom in the peptide is less than 7 Å. This cut-off was large enough to encompass

both direct contacts between the peptide and surface and cases where adsorption is mediated

by water molecules.

Average peptide-surface interaction energies (Eint) were determined from

〈Eint〉 = 〈Epeptide−surface〉 − 〈Epeptide〉 − 〈Esurface〉 (3)

where Epeptide−surface is the potential energy of the peptide-surface system and Epeptide and

Esurface are the potential energies of the peptide and surface on their own. The averages

were calculated across the simulation trajectories using the gromacs rerun option.

The conformational ensemble of the peptide in the different simulations was determined

using a cluster analysis based on the Cα RMSD, using the method of Daura et al with

a cut off of 1 Å. To analyse the differences between the conformational ensemble on the

metal surfaces and in bulk solution a combined cluster analysis was preformed. In this

conformations from the last 100 ns of each simulation (for surface simulations this included

only conformations where the peptide is in contact with the surface) were grouped together

and a single cluster analysis was performed.

III. RESULTS

A. Adsorption behaviour of Aβ(16-22) on gold and silver surfaces

The adsorption of Aβ(16-22) onto different metal surface depends on both the metal

and exposed facet. For the Au111 surface the peptide is strongly bound to the surface,

with the separation between the peptide centre-of-mass and surface being between 5 and

10 Å throughout the simulation (Figure 1(a)). This strong adsorption is consistent with

previous simulations of Aβ(16-22)on Au111 surfaces47. In contrast to the Au111 surface

adsorption onto the other surfaces is weaker, with the peptide able to desorb from the

surface (Figure 1(a)). The weaker adsorption can be seen by considering the P (z) histogram
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of peptide-surface separations (Figure 1(b)). For the Au111 surface this is tightly peaked,

with the peptide only found within 10 Å of the surface, while the distribution for the other

surfaces is broader. Notably for the silver surfaces the peak is further away from the surface,

indicative of water mediated adsorption onto the surface, similar to that seen for single amino

acids onto silver57.

Estimating the adsorption free energy from F (z) = −RT lnP (z) gives adsorption free

energies of between -3 and -4 kJ mol−1 for the Au100, Ag111, and Ag100 surfaces, consistent

with the relatively weak binding to the surface. The limited range of separations sampled for

the Au111 makes it impossible to estimate the adsorption free energy in a similar manner,

although the strong adsorption is consistent with the adsorption free energies (−62 kJ mol−1)

determined previously47, albeit using a different force field. The difference in adsorption

strengths between the 111 and 100 facets is consistent with previous simulations of gold-

binding peptides on different gold facets58.

The average peptide-surface interaction energy, Eint, was calculated for each of the sur-

faces (Table I). A significantly stronger interaction was found with the Au111 surface

compared to the other surfaces.

Surface Eint / kJ mol−1

Au111 -188±28

Au100 -57±48

Ag111 -26±26

Ag100 -16±10

TABLE I. Peptide-surface interaction energies calculated from MD simulations. Uncertainties

estimated from standard deviation.

To gain more insight into the behaviour of the peptide on the different surfaces the

separation between the centre-of-mass of each residue and surface are shown in Figure 1(c).

For the Au111 surface the two phenylalanine residues (F19 and F20) are consistently in

contact with the surface. This is in line with previous simulations of Aβ(16-22) on the

Au111 surface47 and with the strong adsorption of phenylalanine onto Au111 surfaces61.

The importance of the phenylalanine residues on the adsorption can also be seen from the

average separation between each residue and the surface. Both F19 and F20 have z̄ ∼ 3−4 Å
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FIG. 1. (a) Aβ(16-22) centre-of-mass position. Black, red, green, and blue lines denote Au111,

Au100, Ag111, and Ag100 respectively. (b) Probability histograms (averaged over last 100 ns of

simulations) for Aβ(16-22) on Au111 (black), Au100 (red), Ag111 (green), and Ag100 (blue). (c)

Residue centre-of-mass-surface separations (left) and average residue centre-of-mass-surface sepa-

rations (right). From top-to-bottom Au111, Au100, Ag111, and Ag100. Red, blue, and magenta

denote hydrophobic, negatively-charged, and positively-charged residues.

with the other residues further from the surface, driven by the affinity of the charged termini

for water.

While adsorption onto the other surfaces is weaker, marked by frequent desorption from

the surface, specific residues that mediate adsorption can also be identified for these surfaces.

On the Au100 surface adsorption is mediated through F20 and A21 residues. Involvement of
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only one of the phenylalanine residues may be due to the weaker adsorption of phenylalanine

onto Au100 not being sufficient to overcome the unfavourable rotation around the peptide

backbone for both phenylalanine residues to contact the surface. Less difference is seen for

the two siilver surfaces, with the protein termini, primarily the C-terminus, being typically

closer to the surface.

The different residues involved in adsorption can bee seen from considering the probability

of each residue being in contact with the surface (Figure 2). These are largely higher for the

Au111 surface due to the strong adsorption, with the contact probabilities for F19 and F20

being close to one. For the Au111 surface the terminal residues (K16 and E22) and the L17

also have a significant probability of contact with the surface. The contact probabilities for

the other surfaces are lower and are typically larger for residues towards the C-terminus.

FIG. 2. Residue-surface contact probabilites for Aβ(16-22) on Au111 (red), Au100 (green), Ag111

(blue), and Ag100 (magenta) surfaces.

B. Conformation of Aβ(16-22) on metal surfaces

The binding of specific residues to the surfaces affects the conformations Aβ(16-22) can

adopt. Qualitatively this can be seen in representative snapshots (Figure 3). For the gold

surfaces the peptide lies flatter on the surface, with two (Au111) or one (Au100) phenylala-

nine residue in contact with the surface, in line with prior simulations47. On silver surfaces,

less of the peptide is in contact with the surface, typically consisting of the terminal residues

(Figure 2). Similar to bulk solution this also allows for contacts between the two termini of

the peptide.
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FIG. 3. Representative snapshots for Aβ(16-22) on Au111 (top left), Au100 (top right),

Ag111(middle left), Ag100 (middle right) surfaces and in bulk solution (bottom). For the sur-

face simulations, residues in contact with the surface are shown as VDW spheres.

The strong adsorption of the two phenylalanine residues onto the Au111 surface enhances

the formation of cis-conformations compared to other surfaces and bulk solutions. This can

be seen from the histogram of the angle φ between the phenylalanine side chains (Figure 4).

All the systems have a peak in this near cosφ = 1 but this is largest for the Au111 surface and

the probability of cosφ > 0 (corresponding to the cis-state) is higher for the Au111 surface.

For cosφ < 0, which corresponds to the trans-state the probability is lower for the Au111

compared to the other systems with P (cosφ) going to zero at cosφ = −1. This enhancement

of cis-conformers has been seen in previous studies of Aβ(16-22) on interfaces47,80 and of the

10



diphenylalanine dipeptide81 at the air-water interface.

FIG. 4. Probability distribution of angle between phenylalanine side chains for Au111 (black),

Au100 (red), Ag111 (green), Ag100 (blue) surfaces and bulk solution (yellow).

While the adsorption of the phenylalanine residues to the silver surfaces is lower these

also have a higher probability of forming the cis-conformers. In these cases it may be driven

by the tendency of the two terminal residues to adsorb to the surface (Figure 1(c)).

The preponderance of the cis-conformer leads the peptide to adopt U-shaped confor-

mations, which brings the ends of the peptide closer together. This can be seen by the

end-to-end length (Table II), which is lower for the Au111 surface than in bulk solution. By

contrast Aβ(16-22) has a higher average end-to-end length on the Au100 surface indicating a

preference for more extended conformations, which are favoured by when the phenylalanine

residues adopt the trans-conformation. For the silver surfaces Ree is also on average lower

than in bulk solution, driven by the adsorption of the terminal residues to the surface.

The less linear conformations adopted on some of the surfaces can also change the in-

teractions between different residues in the peptide. To examine this the hydrogen bonds

between different residues have been determined (Table II). For all systems hydrogen bond-

ing between the two terminal residues (K16 and E22) is found, although only for the Au111

surface is this present in the majority of the simulation. The persistence of this is likely

driven by non-linear conformations caused by the diphenylalanine motif. This is the only

hydrogen bond seen for the two gold surfaces, while other hydrogen bonds are found on the

other systems.
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Ree / Å Hydrogen bonds

Au111 13.74±3.3 K16-E22 (0.693)

Au100 15.4±4.1 K16-E22 (0.211)

Ag111 14.2± 4.4 K16-E22 (0.231), L17-F20 (0.202)

Ag100 13.6±4.2
K16-E22 (0.296), L17-F20 (0.228),

V18-F20 (0.178)

Solution 15.2±4.1 K16-E22 (0.128), L17-F20 (0.109)

TABLE II. Average end-to-end lengths and common hydrogen bonds. Numbers in parenthesies

give probabilities of each hydrogen bond.

As well as hydrogen bonding contacts between the two terminal residues are driven by

attractive electrostatic interactions. Shown in Figure 5 are the histograms for the separation

between the two terminal residues (Rterm), defined as being the minimum distance between

either of the positively charged nitrogen atoms in K16 and any of the negatively charged

oxygen atoms in E22. These have a peak at Rterm ∼ 2.5 Å corresponding to close contacts.

This peak is smaller for Au100 and in bulk solution, indicating a lower probability of contacts

in these cases. The second peak at Rterm ∼ 5 Å is also weaker for Au100 and solution.

Notably in all cases contacts between nitrogen and oxygen atoms in the Lys and Glu side

chains are more common than between the nitrogen and oxygen atoms in the charged end

groups, suggesting the changes to the charge state of the termini (e.g. through neutral

capping groups) is likely to be small. This is a consequence of having two charged residues

at the end of the peptide; for other cases, where the side chains of the terminal residues are

uncharged, changes to the charge states of the termini (e.g. through capping groups) would

potentially have a larger effect82.

On the Au100 surface Aβ(16-22) adopts more extended conformations with a higher

probability of trans-conformers so it may be expected that it forms more fibril-like structures.

To quantify this we examine the Cα-Cα distance RMSD (DRMSD) between the simulation

structure and experimental fibril structure (from PDB code 2y2983). This is calculated using

DRMSD =

√
1

NCα−Cα

∑
i

(
rsimCα−Cα,i − r

exp
Cα−Cα,i

)2
(4)

where the sum is over all the Cα − Cα pairs in the peptide. This suggests that the gold
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FIG. 5. Histogram of separation between termini (Rterm) for Au111 (black), Au100 (red), Ag111

(green), Ag100 (blue) surfaces and bulk solution (yellow).

surfaces have a differing effect on the formation of fibril-like structures (Figure 6), with

fibril-like structures being more common on the Au100 surface. By contrast fibril-like con-

formations are unlikely on the Au111 surface. The inhibition of fibril-like conformations on

the Au111 surface is consistent with previous simulation work47. While both gold surfaces

differ substantially from bulk solution for the two silver surfaces there is less difference to

solution. The formation of fibril-like structures is also similar for the Ag111 and Ag100

surfaces, suggesting a smaller facet dependence compared to gold.

FIG. 6. Histogram of DRMSD relative to experimental fibril structure for Au111 (black), Au100

(red), Ag111 (green), Ag100 (blue) surfaces and bulk solution (yellow).

13



C. Adsorption onto metal surfaces affects the conformational ensemble of Aβ(16-

22)

As an intrinsically disordered peptide Aβ(16-22) forms an ensemble of different confor-

mations. Both the set of conformations and the size of these can be affected by surfaces. For

the different systems the conformational ensemble has been determined using a cluster anal-

ysis. Shown in Table III are the number of distinct clusters found for the different systems.

Notably Nclusters is smaller for all surfaces compared to bulk solution, due to the binding of

specific residues to the surfaces (Figure 1(c)) which limits the possible conformations, which

has been seen in previous simulations of intrinsically disordered proteins on surfaces50,80.

This is particularly noticable for the Au111 surface due to the strong binding of the two Phe

residues to the surface. The number of conformations is higher for the other surfaces, which

may be reflective of the weaker binding of Aβ(16-22) to these surfaces. While the cluster

analysis is restricted to the conformations where the peptide is adsorbed to the surface, the

ability of the peptide to desorb from the surface may also give Aβ(16-22) greater conforma-

tional freedom on these surfaces compared to the Au111 surface. Again a smaller difference

is seen between the two silver surfaces.

Nclusters Sconf/kB

Au111 93 2.54

Au100 157 3.54

Ag111 156 3.72

Ag100 163 3.84

Solution 260 4.18

TABLE III. Number of clusters and conformational entropy determined from cluster analysis over

last 100 ns of simulations.

Changes in the conformational ensemble can also be seen in the conformational entropy

(Table III). This is lower for all the surfaces compared to bulk solution and is considerably

lower for Au111 compared to the other surfaces. The higher conformational entropy on

silver surfaces compared to gold and the higher values on 100 compared to 111 surfaces is

consistent with prior simulatons of gold and silver binding peptides57.
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The probability of each cluster in the simulations can be used to determine the free energy

of each cluster

∆F = −kBT ln
Pi
P1

(5)

where ∆F is the free energy difference between the ith and 1st cluster and Pi is the prob-

ability of the ith cluster. For the silver surfaces and bulk solution the free energy varies

similarly with cluster ID, showing a relatively slow increase consistent with a number of

conformations with similar free energies. On the gold surfaces there are fewer low energy

states, suggesting that there is a greater restriction on the different conformations.

FIG. 7. Free energy of clusters for Au111 (black), Au100 (red), Ag111 (green), Ag100 (blue), and

solution (yellow).

The cumulative probability of different conformations has been used to classify peptides in

terms of their binding entropy84. For the Au100, Ag111, and Ag100 surfaces the cumulative

probability of the top five clusters is under 60 % classifying Aβ(16-22) as a high entropy

binder on these surfaces. By the same scheme Aβ(16-22) is a medium entropy binder on the

Au111 (the cumulative probability of the top five clusters is over 60 % but for the top three

clusters it is under 75 %). In combination with the difference with the interaction energies

between the surfaces, this suggests a qualitative difference in the behaviour of Aβ(16-22) on

the Au111 surface.

To examine how similar the conformational ensembles are for the different systems we

perform a cluster analysis on the combination of the different systems. Comparing the

probability of the different conformations in each simulation (Figure 8(a)) shows that the

15



conformational ensembles on the two gold surfaces are significantly different to the other

systems. Notably on the Au111 surface there are fewer conformations that are significantly

populated, consistent with the lower conformational entropy. The most populated confor-

mations for the Au111 and Au100 surfaces are also typically less likely on the silver surfaces

and in bulk solution.

FIG. 8. (a) Probability of highest ranked clusters for (top to bottom) Au111, Au100, Ag111,

Ag100, and bulk solution. (b) Snapshots of selected conformations found from the combined

cluster analysis.

The observation that P (Cluster) for the two gold surfaces differ from each other and the

other surfaces suggests that we can characterise the adsorption of Aβ(16-22) onto gold as

an example of induced fit-like behaviour85, where the surface causes the peptide to adopt

different conformations. In the case of Aβ(16-22) on gold this set of conformations also

depends on the particular exposed facet. The close similarity between the distributions on

the silver surfaces and bulk solution suggests that the adsorption of Aβ(16-22) onto silver

is characterised by conformational selection86, where similar conformations are found with,

in this case minor, changes in likelihood of the different conformations.

The structures commonly found for the different systems (Figure 8(b)) can be related to

the typical interaction between the peptide and surface. For the Au111 surface the most

common conformations (ID 1, 4) have the two phenylalanine residues in the cis-conformation,
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with the two rings in the same plane, which maximise their ability to contact the gold

surface. The most common conformations for the Au100 surface (e.g. 3, 11) include the

more extended, fibril-like structures. On the silver surfaces and in bulk solution, both

extended and more compact conformations are found. Many of the conformations found on

the silver surfaces and in bulk solution typically have contacts between the terminal residues,

driven by electrostatic attraction between these.

IV. CONCLUSIONS

Using replica exchange molecular dynamics simulations we have investigated the confor-

mation of the model amyloidogenic peptide, Aβ(16-22) on gold and silver surfaces. We

found significant differences in behaviour between the Au111 and Au100 surfaces, with the

peptide adsorption significantly stronger on the Au111 surface. This is due to the strong

interaction between phenylalanine residues and the Au111 surface, with the weaker inter-

action between these and the Au100 surface leading to weaker adsorption. By contrast a

smaller difference between the two silver surfaces (Ag111 and Ag100) was seen, suggesting

that adsorption onto silver is less dependent on the exposed facet. The contrasting facet

dependence of adsorption is similar to that seen for gold and silver binding peptides.

Comparison of the peptide-surface interaction energies and conformational entropy sug-

gest that despite the structural similarities between gold and silver surfaces the binding of

Aβ(16-22) to these have different driving forces. For gold surfaces Eint and Sconf suggest

that this is largely enthalpically driven, while on silver surfaces it is driven by entropy.

This is in line with previous simulation studies of gold and silver binding peptides57. The

difference between these is smaller for the 100 facets compared to the 111 facets.

Adsorption onto surfaces affects the conformations adopted by Aβ(16-22). As an in-

trinsitically disordered peptide it adopts a range of different conformations (conformational

ensemble). The size of this ensemble is smaller on surfaces compared to bulk solution, as

the surface restricts the possible conformations of the peptide. The Au111 surface has the

smallest number of conformations, as the strong adsorption of the phenylalanine residues

effectively pins these to the surface. Comparison of the conformational ensembles for the

different surfaces and bulk solution shows that the gold surfaces induce different sets of

conformations to the silver surfaces and bulk solution. This suggests that we can describe
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adsorption onto gold surfaces as induced fit-like while adsorption onto silver surfaces can be

thought of as conformational selection. It may be argued that induced fit-like behaviour is

more likely for cases with strong adsorption, consistent with previous simulations of IDPs

on hydrophibic and hydrophilic self-assembled monolayers50.

The conformations of Aβ(16-22) adopted on different surfaces has implications for how

they affect peptide fibrilliation. On the Au111 surface Aβ(16-22) adopts structures that are

quite different to those of Aβ(16-22) in amyloid fibrils, while it is more likely to adopt fibril-

like conformations on the Au100 surface. This suggests that even for the same material,

different surface faces may have differing effects on fibrillation. As the proportion of 111 and

100 faces on nanoparticles varies with their size87, this may explain the size dependent effect

of gold nanoparticles on the formation of amyloid fibrils24. The smaller difference between

the two silver surfaces suggests that nanoparticle size may have a smaller effect for silver

compared to gold.

While the results of this are consistent with previous simulation results, the behaviour of

peptides and proteins on surfaces depends on both the surface properties and on the peptide

sequence. It would also be interesting to extend this to the examination of other metal

surfaces to consider how changes to these structurally similar systems affect the behaviour

of amyloidogenic peptides.
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