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Abstract
The binding kinetic properties of potential
drugs may significantly influence their sub-
sequent clinical efficacy. Predictions of these
properties based on computer simulations pro-
vide a useful alternative to their expensive
and time-demanding experimental counter-
parts, even at an early drug discovery stage.
Herein, we perform Scaled Molecular Dynamics
(ScaledMD) simulations on a set of 27 ligands
of HSP90 belonging to more than 7 chemi-
cal series in order to estimate their relative
residence time. We introduce two new tech-
niques for the analysis and the classification of
the simulated unbinding trajectories. The first
technique, which helps in estimating the limits
of the free energy well around the bound state
and the second one, based on a new contact
map fingerprint, allows the description and the
comparison of the paths that lead to unbinding.

Using these analyses, we find that ScaledMD’s
relative residence time generally enables the
identification of the slowest unbinders. We pro-
pose an explanation for the underestimation of
the residence times of a subset of compounds
and we investigate how the biasing in ScaledMD
can affect the mechanistic insights that can be
gained from the simulations.
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1 Introduction
During the past decade, different binding ki-
netic properties of potential drugs have emerged
as one of the key factors that characterize their
subsequent clinical efficacy.1–3 It is thus advis-
able, if not necessary, to obtain good estimates
of these properties even at the early drug dis-
covery stage, for example when selecting chem-
ical series found through virtual screening ap-
proaches. In this context, experiments to mea-
sure these properties cannot always be per-
formed and in silico predictions of these prop-
erties provide a useful alternative. The interest
of these kinetic properties in drug discovery, as
well as the various methods that have been pro-
posed to evaluate them, have been reviewed by
several groups.4–10 The molecular factors that
are believed to influence binding kinetics in-
clude, among others, binding site accessibil-
ity, ligand and protein conformational fluctu-
ations, as well as electrostatic and hydrophobic
effects.11 More recently, ligand desolvation has
been pointed out as a key factor influencing res-
idence time12–14 (abbreviated as τ). While sev-
eral of these factors can be relatively straight-
forward to calculate, the actual estimation and
evaluation of drug binding kinetics using com-
putational methods remains challenging, indeed
more so than drug binding thermodynamics, as
it requires a sufficient sampling of the a priori
unknown unbinding paths.
As members of the Kinetics for Drug Discov-

ery (K4DD) consortium,15 we were interested
in the development and evaluation of molecular
simulation approaches to compute drug-binding
kinetic properties in the context of hit-to-lead
or lead optimization projects. It led some of us
to develop the τ -Random Acceleration Molec-
ular Dynamics (τ -RAMD)16 method for the
evaluation of τ of a drug binding to its phar-
macological target. It has been coupled with
ML analysis17 and MD-IFP (Molecular Dynam-
ics Interaction Fingerprints)18 for providing ro-
bust estimates of the residence time and in-
sights into the features important for residence
time using Machine Learning on the ligand’s
exit trajectories and applied to systems of vary-
ing levels of complexity.19,20 Related less com-

putationally intensive approaches that rely on
the availability of a training set, such as COM-
BINE analysis,21 demonstrate remarkable per-
formance by extracting protein-specific multi-
linear relationships between dissociation rate
koff and Lennard-Jones and Coulombic per-
residue descriptors. Other approaches have
the potential to rank and eventually prior-
itize new leads by estimating τ . Some of
them, based on Metadynamics,22 are able to
accurately order23 or even quantitatively esti-
mate24–26 τ , albeit only on small sets of com-
pounds. These approaches rely on Collec-
tive Variables (CVs) whose number and defi-
nition are often system-specific and generally
require trial and error iterations before being
considered appropriate.23 Nevertheless, several
more general protocols have been proposed re-
cently such as using generic electrostatics-like
CVs,27 Path CVs,28 Machine Learning tech-
niques methods29 for finding optimal CVs and
efficiently computing kinetics constants using
them,30 or Ratchet&Pawl simulations for find-
ing CVs and reconstructing the full free en-
ergy landscape.26 Recently, a method based on
Steered Molecular Dynamics and on the evalu-
ation of the desolvation energy during unbind-
ing31 has shown remarkable performance on a
set of adenosine A2A antagonists. One useful
characteristic of this method is that it leads to
simulation times that are approximately inde-
pendent of the computed residence time of the
ligand considered.
In another approach, the use of scaled poten-

tials during Molecular Dynamics (MD) simula-
tions, coined ScaledMD or smoothed potential
MD, on multiple replicas of the system, com-
bined with a statistical treatment for calculat-
ing the confidence in the estimations, has been
shown to perform well for ranking τ in con-
generic series on several targets in both a ret-
rospective and a prospective manner.32–35 The
above-mentioned procedure has been integrated
within the Biki Life Sciences suite36 in the Biki-
Netics package.
Our initial goal here was to evaluate the per-

formance of Biki-Netics in quantitatively pre-
dicting τ and qualitatively ranking compounds
within series and across series in the context
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of a given industrially-relevant drug discov-
ery project. For this purpose, we performed
a series of ScaledMD simulations on a set of
27 ligands belonging to several chemical se-
ries and binding to human HSP90α N-terminal
domain (N-HSP90) (Figure 1) in two differ-
ent conformations. We report our results in
light of those obtained with τ -Random Acceler-
ation Molecular Dynamics (τ -RAMD)16 using
the same input structures, topologies and force-
field parameters, and of those obtained with
non-equilibrium Targeted MD simulations37 on
a common subset of our dataset. The quali-
tative comparison between the computed rela-
tive residence time and the experiment shows
that, within a chemical series, compounds are
generally correctly ranked by ScaledMD. Quan-
titatively, two distinct trends emerge in the
ScaledMD results: the τ estimation for the
fastest unbinders (defined as τ . τlig3, see
below) is correct, but τ is almost systemati-
cally underestimated for the slowest unbinders
(τ > 10 min). We analyze the unbinding events
with two focuses: the early unbinding event,
which is the crossing of the transition state
(TS) before diffusing out of the protein, and
the late unbinding event, where the ligand sep-
arates from the protein. Since no energy pro-
file of the dissociation pathway was generated,
we locate approximately the TS by correlating
the computed τ and the time needed to reach
a certain distance cutoff from the bound state.
For describing the late unbinding event, we de-
veloped an ad hoc protein-ligand contact fin-
gerprint (coined as cFP ) in which are listed
the last residues close to the ligand during its
exit. The clustering of the cFP highlights the
two main exit pathways already reported in sev-
eral other studies,16,35,37 the front route (1) and
the back route (2 in Figure 1), and we discuss
their mechanistic relevance. We then dissect
the early unbinding event and find that what
is key for the exit time is the distance to the
actual binding shell, defined as the residues in
contact with the ligand in the bound complex.
Through an in-depth examination of the un-
binding trajectories in a molecular matched pair
of compounds, 1 and 2, we relate the underes-
timation of τ to the interactions of the ligand

at the TS with parts of the protein that are left
unstructured by the scaling potential. We also
compare several aspects of our work with results
obtained by other teams32,35 on close analogs of
the compounds considered here. Overall, our
results highlight the strengths and limitations
of ScaledMD in the evaluation of protein-ligand
binding kinetics and their mechanistic analy-
sis in the perspective of prioritization of small
molecules at the early stage of drug discovery
process. Moreover, the protein-ligand contact
fingerprint defined and used herein (cFP ) pro-
vides an efficient way for the mechanistic de-
scription of ligand unbinding process and a po-
tential measure for direct comparison between
different approaches.

2 Methods

2.1 Dataset overview
A set of 27 inhibitors is considered in the
present study (Figure 2). It is diverse in terms
of chemical structure: the Tanimoto similar-
ity of the ligands to their nearest neighbor in
the set computed using Morgan fingerprint38

is 0.46 ± 0.25. They display different bound
protein-ligand conformations (both ‘helix’ and
‘loop’ conformations are represented, Figure
S1) and a wide range of kinetic and thermody-
namic properties, as summarized in the kinetic
plot in Figure 2 (See the Supplementary Infor-
mation - SI - for the structures, experimental
data, and respective names in ref. 16 and 37
of the compounds considered in this work). The
ligands can be clustered into 8 chemical series,
seven based on their central heterocyclic moiety
and one containing three singletons. Two of the
ligands, compounds 7 and 21, can be clustered
either in Cluster 1 or Cluster 3.
The two N-HSP90 conformations considered

differ by the secondary structure of residues 105
to 113: these residues from the sequence sub-
set C form the L1 loop that covers the binding
site in the conformation represented in Figure
1 that will be called ‘loop’ in the text39 (the
sequence subsets A to G are defined in Figure
1). These residues are involved in the α3 he-
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Figure 1: Top: Two views of the N-terminal domain of HSP90 (N-HSP90) in ‘loop’ conformation in
complex with compound 8 (pdb 6ELN16). The right view is rotated by c.a. 90◦ towards the reader
with respect to the left view. Major ligand exit routes are illustrated by arrows. 1: Front route 2:
Back route. Sequence subsets A to G are highlighted in the 3D structures. Subset A (res. 17-27,
in deep blue) is from N-Ter up to the beginning of α-helix 1. Subset B (res. 51-58, in light blue) is
located at the center of α-helix 2. Subset C (res.95-116 in green) encompasses the loop at the top
of the binding site, α-helix 3, the L1 stretch known to be involved in the conformational flexibility
of N-HSP90, up the beginning of α-helix 4. Subset D (res.131-138, in lime green) is α-helices 5
and 6. Subset E (res. 151-161, in light orange) is the loop between β-sheet 1 and 2. Subset F
(res.168-170, in deep orange) is second half of the loop between β-sheet 2 and 3. Subset G (res.
208-216, in red) is α-helix 7. Bottom: Subsets definition and residue coloring convention projected
on to the N-HSP90 sequence.

lix spanning residues 101 to 124 in the ‘helix’
conformation of L1 (see Figure S1 for a visual
comparison of the two conformations). In four
of the chemical clusters, all compounds in the
series bind to the same N-HSP90 conformation;
for the other three clusters, the N-HSP90 con-
formation is different depending on the com-
pound. For all but two inhibitors (7, 22), X-
ray crystal structures were used as the start-
ing point for system preparation. The starting
structures of the complexes for the remaining
two compounds were prepared as described in
ref. 16.

2.2 System preparation
The input structures and topologies were ob-
tained from ref. 16 in Amber format and
were then converted to Gromacs format using
Acpype,40 the Amber 11 utility ptraj and in-
house scripts. A detailed step-by-step descrip-
tion of the conversion process and all scripts
can be found on the KBbox website.41,42 All
the ligands were protonated using Epik43,44

at pH 7.5 and parametrized for the GAFF
force-field using Antechamber.45 RESP partial
charges46,47 were fitted from electrostatic po-
tentials generated at the HF/6-31G*(1d) level
using GAMESS.48 The Amber14 force field49

was used for the protein, a 10Å buffer of
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Figure 2: Top: Chemical structures of the ligands used in this study. The compounds are grouped
in clusters based on their chemical similarity. The same coloring per cluster is used throughout
the publication. Starred ligands are bound in loop conformation, the others are bound in helix
conformation. Bottom: Kinetic map relating the measured association rate constant kon with the
dissociation rate constant koff for the 27 compounds under study. The corresponding error bars are
also shown. Squares indicate the loop N-HSP90 bound conformation, circles the helical N-HSP90
bound conformation. The color of the symbols is related to each ligand’s chemical cluster ; iso-
affinity (kD) lines are shown in gray.

TIP3P50 water molecules was built around the
complex with tLeap,51 and Na+ or Cl– ions
were added to ensure system neutrality and
150mM salt concentration to mimic physiologi-
cal conditions. All protein-ligand systems were

then minimized, heated, and relaxed for 10ns
before the ScaledMD simulations.
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2.3 Scaled molecular dynamics:
theory

In ScaledMD, the conformational space sam-
pled in MD is increased by scaling down linearly
the potential energy of the system by a factor λ.
For the dissociation of a protein-ligand complex
with ∆G±

diss, ∆H±
diss and ∆S±

diss, the activation
free energy, enthalpy and entropy of the disso-
ciation process, we have:

koff (λ) = Ae−(λ∆G±
diss)/RT

= Ae−(λ∆H±
diss−T∆S±

diss(λ))/RT
(1)

Where A is the pre-exponential factor. The rel-
ative residence time τcomp between ligand l2 and
reference ligand l1 can be expressed as:33

τcomp =
koff (λ, l1)

koff (λ, l2)
=

(
τ(l1)

τ(l2)

)λ

(2)

∆S±
diss(λ) can be written as :

∆S±
diss(λ) = λ∆S±

diss + ζ(λ) (3)

With ζ(l, λ) the deviation of the activation en-
tropy from linearity with respect to λ.
As described in SI, under simple approxima-

tions τcomp can then be rewritten as

τcomp = e(ζ(l2,λ)−ζ(l1,λ))/R ×
(
τ(l2)

τ(l1)

)λ

(4)

In cases where the smoothing of the Poten-
tial Energy Surface by the scaling leads a dif-
ferent ensemble of TS for the two ligands, the
contributions ζ(l, λ) might be different so that
e(ζ(l2,λ)−ζ(l1,λ))/R generally differ from 1.

2.4 Scaled molecular dynamics:
simulations

In our study, each of the prepared protein-
ligand systems was used as the starting point
of circa 20 independent MD simulations (with
the exception of compound 16, for which only
7 simulations led to an unbinding event) using
GROMACS 4.6.152 modified for ScaledMD53 as
implemented in the Biki suite (version 1.0.7).36

The importance of using multiple replicas in
MD simulations has been previously discussed
in ref. 54 and thus a sufficiently large number
of replicas was used. It is however important
to note that some simulations did not led to a
complete dissociation and ligand exit from the
binding site and were discarded from the anal-
ysis.
To prevent protein unfolding during protein-

ligand dissociation, it is common practice in
ScaledMD to restrain all protein atoms outside
the binding site. In our systems, in order for
the ScaledMD simulations to be comparable be-
tween different ligands, the same set of unre-
strained protein residues was used throughout
the simulations of all compounds and defined as
follows. The protein residues closer than 6Å to
all ligand heavy atoms in their bound structure
were considered first. The selection was then
expanded if needed in order to include single
residues located between two selections. It led
to the following residues being unrestrained :
47-56 (similar to subset B), 93-114 (similar to
subset C), 132-138 (similar to subset D) and
183-186. Despite the fact that the initial 6Å se-
lection criterion is the same as in ref. 32 (it is
5Å in ref. 35), in the present study, the fi-
nal selection of unrestrained residues is larger,
reflecting the greater diversity of the bound
conformations in our dataset. The whole sub-
set C is thus left free of restraints during the
simulations. It allows for the protein to sam-
ple the same conformational space regardless
of the ligand-bound starting conformation, and
to represent the induced-fit known to occur for
the helix binders, as subset C is in loop confor-
mations when in apo form. Nevertheless, leav-
ing subset C unrestrained translates into the
sampling of several unfolded conformations of
α-helix 3 and L1 during the ScaledMD simu-
lations, which might have affected negatively
the performance of the unbinding times esti-
mations. Positional harmonic restraints with
a force constant of 50 kJ/mol/nm2 were im-
posed on the backbone of all restrained protein
residues. As in ref. 32, the unbinding time toff
was defined as the first time when the ligand is
surrounded by two full solvation shells, defined
as a union of spheres of 6Å radius, centered
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on the ligand atoms and free of protein atoms.
For each ligand, the unbinding time was com-
puted from the average unbinding time over all
replicas and its uncertainty was estimated by a
1000-fold bootstrapping (see Table S3 in SI).
One of the crucial parameters in ScaledMD

simulations is the choice of the scaling factor
λ. Similarly to ref. 32, different λ values were
tested in order to identify the optimal one as
the best balance between a reasonable comput-
ing time and unbinding times ranging from a
few nanoseconds to tens of nanoseconds. For
this evaluation, we simulated eight ligands (2,
3, 8-13) covering a large range of measured res-
idence times (from four seconds to more than
2 hours), bound to two different conformations
of N-HSP90 and belonging to different chemical
series.
Three different values of λ were tested,

namely 0.40, 0.42 and 0.45, leading to 480 sim-
ulations in total with toff values ranging from
6ns to 300ns depending on the ligand and the
scaling factor. A value of λ = 0.50 was also
considered, but simulating the ligands with the
smallest τ with this scaling factor led to mean
toff greater than 150ns. This is at least three
times more than with λ = 0.45, suggesting that
for the compounds with the largest τ in the set,
the unbinding times would be in the 500ns-1µs
range, which translates into a calculation time
of 5 to 10 days for simulating the compounds
with the largest τ on the computational facil-
ity we have used. This duration was considered
to be too long for practical use in the context
of an industrial virtual screening where tens to
hundreds of compounds at the very least would
need to be evaluated during a screening cam-
paign. λ = 0.40 was found to be optimal for this
set of molecules as the correlation coefficient
between the computed and measured residence
times was the best and the error was the small-
est (See Figure S4 and text in SI). This value of
λ was used for ScaledMD simulations for the 19
remaining ligands. All the related analyses can
be found in SI. All simulations were performed
on Intel processors under Linux on the Marconi
facility at Cineca (Italy).

2.5 Analysis of the unbinding
process

In order to characterize the features of the lig-
and unbinding trajectories, three complemen-
tary approaches were followed and implemented
using MD Traj55 and contact_map56 python li-
braries. The first two approaches focus on char-
acterizing the early stage of the unbinding pro-
cess and the third describes the latest stages of
the unbinding trajectories. The notations used
in the text are in Table 1.

2.5.1 Early unbinding

Before we describe the process followed for the
characterization of the early unbinding, we need
to define the metrics used. First, we define the
initial contact shell S as the set of the protein
residues that are close to the ligand l in the
bound state (colored black in Figure 3). These
are residues whose heavy atoms are found closer
than 3.5Å to the heavy atoms of the ligand at
the starting point of the simulation. Then, d(t)
is the shortest distance between any heavy atom
of the ligand and the nearest of the residues in S
at time t. Finally, we define the center of mass
(COM) metric dCOM(t) as the distance between
the COM of the ligand at time t and at t = 0,
which corresponds to the ligand bound state.
The above-mentioned metrics are illustrated in
Figure 3.
For the characterization of the early unbind-

ing using the first approach, for each ligand and
for each exit trajectory, we perform the follow-
ing steps: first, for each timeframe t of the
whole trajectory, the distance d(i ∈ S, t) be-
tween the heavy atoms of the ligand and those
of all residues of S is computed. Then, given a
specific cutoff distance dc, the first passage time
tfpt(dc) is determined as the first time where
d(t, i ∈ S) ≥ dc.
The second approach for characterizing the

early unbinding relies on dCOM(t), the displace-
ment of the COM of each ligand l with respect
to its initial position at time t along the trajec-
tory, as described in Figure 3. Given a cutoff
distance dc, one defines the first passage time
tCOM
fpt (dc) as the time where dCOM(t) ≥ dc.
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Table 1: Notations used in the text

τ Measured residence time
toff Computed unbinding time: the first time when the ligand is further than

dfar from any heavy atom of the protein
τcomp = (toff/toff,lig3)

λ Computed relative residence time (wrt 3)
τrel = (τ/τlig3)

λ Measured relative residence time (wrt 3)
tfpt(dc) First passage time: the first time when d(t, i ∈ S) ≥ dc
tCOM
fpt (dc) First passage time in COM metric: the first time when dCOM(t) ≥ dc

d(t) Distance between the ligand and the initial contact shell S at time t
dCOM(t) Distance between the COM of ligand at time t and at t = 0
dc Cutoff distance used to assess the early unbinding
d± Distance where tfpt(d

±) correlates significantly with toff : R2(d±) > 0.8
dCOM± Distance where tCOM

fpt (d±) correlates significantly with toff :
R2

COM(dCOM±) > 0.8

dfar = 6Å Distance parameter which defines the full unbinding, see toff
dFP = 4.5Å Distance parameter for cFP generation, only residues closer than dFP to

the ligand are taken into account during cFP generation
dr Distance between the ligand and a given residue during cFP generation.

For dFP and dr, the closest heavy atoms of the ligand and the residue are
considered

δCM(cFPA, cFPB) Distance in contact map space between the cFP , FPA and FPB, of unbind-
ing trajectories A and B

S Initial contact shell: residues that are closer than 3.5Å to the bound ligand
NA Set of the residues that are closer than dFP to the ligand during the late

unbinding
n(NA) Number of residues in NA

R2(dc) Correlation coefficient between the distribution of unbinding times toff and
first passage times tfpt(dc) at the cut-off ditance dc for a set of simulations

R2
COM(dc) Correlation coefficient between the distribution of unbinding times toff and

first passage times tCOM
fpt (dc) at the cut-off ditance dc for a set of simulations

2.5.2 Late unbinding

As discussed in ref. 35, despite the challenge
of characterizing the ligand exit pathways in
ScaledMD simulations, these simulations might
give indications on relevant structural aspects
of their unbinding mechanisms. Herein, we pro-
pose a simple procedure for describing these
exit pathways using as a metric a protein-ligand
contact fingerprint (cFP ) which is built as de-
scribed in Algorithm 1.
 As illustrated in Figure 3, this way of de-

scribing the late ligand unbinding process has
two features: first, it ensures that the nearest
distance between each of the nearest residues

and the ligand during the last frames of the late
unbinding is kept in the cFP , and second, by
limiting the total number of residues selected
in the process, it ensures that the subsequent
comparison between cFP will not be skewed
by the longest exit trajectories. Qualitatively,
this fingerprint highlights the nearest residues
encountered by the ligand during its unbind-
ing from the protein. Importantly, this is done
without the need for explicit consideration of
time.
A distance function δCM(cFPA, cFPB) was

devised for comparing the similarity of two un-
binding trajectories A and B in contact map

8



Algorithm 1 cFP building procedure for a particular ligand trajectory.
Require: ligand exit trajectory A(t = 0, ..., toff )

t ←toff
nearestA ←{} . The set of (nearest residue, nearest distance) along the trajectory A
cFP ←{}
while d(t) > dc or n(nearestA) < 20 do . No more than 20 residues considered

t ←t− 1
Update d(t) . Only the late unbinding trajectory is considered
Find in A(t) the list of protein residues closer than dFP (4.5Å) to the ligand
for residue r in list do

Compute the distance dr to the ligand
if r in nearestA and dr < (dr in nearestA) then

Update dr in nearestA
else if r in nearestA then

Add (r, dr) to nearestA
end if

end for
end while
for r in protein residues do . cFP building

if r in nearestA then cFP (r) ←dr
else cFP (r) ←0
end if

end for

space. We define cFPA and cFPB as the
contact map fingerprints of the two trajecto-
ries, NA and NB as the sets of the nearest
residues, n(NA) and n(NB) are the cardinal-
ities of the sets considered, so that the non-
zero values of e.g. cFPA can be written as
(resi,A, di,A)1≤i≤n(NA) : for example, in Figure
3, res1,A = 31 and d1,A = 4.44. The dis-
tance function δCM(cFPA, cFPB) is expressed
by Eq. 5, using the union, intersection and
symmetric difference (∆) between the two sets.
This function simplifies to a normalized Eu-
clidean distance when both trajectories have all
their nearest residues in common, and dfar is
the contribution to δCM for each of the near-
est residues which are not in common in the
two trajectories. A rare case happens when,
for both trajectories, the ligand exits immedi-
ately after having reached dc and stays beyond
dfar for all protein residues. In this case, both
n(NA) = 0 and n(NB) = 0 and by convention
δCM(cFPA, cFPB) = dfar.

δCM=

√
1

n(NA∪NB)

[∑n(NA∩NB)
i=1

(dA,i−dB,i)
2+n(NA∆NB)×d2

far

]
(Eq. 5)

The function δCM defined in Eq. 5 is used in
order to perform cluster analysis of ensembles of
late unbinding trajectories. First, δCM is used
to build a distance matrix between the cFP
and a hierarchical clustering is performed using
the complete method, with a threshold of 95%
of the maximum distance between all clustered
trajectories. Finally, the distance matrix and
the cFP are sorted according to the similarity
between the cFP determined at the clustering
step.

3 Results and discussion

3.1 An example of the unbinding
events analysis

As described in the Methods section, a set of
analyses has been devised in order to best de-
scribe the early and late unbinding events and
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Analysis Frame FP Cardinal
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5 2.94 3.17 4.42 Residue number

48 47 44 41 Distance to ligand

4 2.94 3.17 4.42 2.12 Closest frame

48 47 44 41 115 118 121 120
3 2.94 3.17 4.42 2.92 3.37 3.41 3.56 3.96

48 47 44 41 115 118 121 120 81 167 38 31
2 2.94 3.17 4.42 2.92 3.37 3.41 3.44 3.96 3.61 4.01 4.19 4.44

Final 17 18 ... 31 32 ... 41 ... 120 121 ... 167 ... 223
Fingerprint 0 0 ... 4.44 0 ... 2.92 ... 3.96 3.44 ... 4.01 ... 0c

Figure 3: a: Definition of the metrics used for the analysis of the early exit events. The residues
of the initial contact shell S are indicated in black. The distance between the nearest heavy atoms
of ligand and residues of S is indicated as d(t). The COM metric, dCOM(t), measures the distance
between the COM of the ligand at a given t and at t = 0. b, c: Illustration of the contact
map fingerprint generation process. The fingerprint is built by scanning the exit event in reverse
starting from the frame corresponding to ligand exit from the protein (defined here as frame 5, in
blue) until the first frame after the first passage time tfpt (frame 2 in this example). Residues closer
than dFP = 4.5Å relative to the ligand in each frame are added to the contact map fingerprint
along with the nearest distance to the ligand among all frames.

to enable comparison between the different lig-
ands. Below, we describe the outcome of the
trajectory analysis for compound 8 using this
set of tools. All the related results are depicted
in Figure 4.

3.1.1 Early unbinding: unbinding time
and distance cutoff

In Figure 4b, we have plotted the unbinding
time toff versus the time tfpt(dc). tfpt(dc) is

the first passage time : it is the time for the
ligand to reach the distance cutoff dc = 3Å
(in black) or dc = 4.5Å (in colors) from its
bound pose. These dc values were chosen to
exemplify two extreme situations with respect
to the correlation between toff and tfpt(dc). In
this example, R2 rises from 0.27 for dc = 3Å
to 0.89 for dc = 4.5Å: the significant corre-
lation between toff and tfpt(dc) indicates that
dc = 4.5Å is beyond the limits of the kinetic
trap which keeps the ligand in the vicinity of
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Figure 4: Compound 8 trajectory analysis. a
Heatmap of the cFP . On the x axis, the trajec-
tory cFP are sorted according to the dendro-
gram (see below). Pixels are colored by cFP
value, white for the nearest residues and black
beyond the distance cutoff dc = 4.5Å. The pro-
tein sequence numbering is on the y axis, as
well as the sequence subsets referred to in the
text, using the color code illustrated in Figure
1. b First passage time tfpt(dc) for dc = 3Å (in
black) and dc = 4.5Å (in colors) vs unbinding
time toff . Each dot represents one trajectory,
its color relates to one of the three exit clusters
in the dendrogram c. c Dendrogram of the un-
binding trajectories (replicas 1 to 20) according
to the distance matrix. The generated order-
ing is used in a and d. At the cutoff of 95% of
the maximum inter-replica distance, three clus-
ters are identified. d Matrix of δCM distances
between the unbinding trajectories sorted as in
the dendrogram. Short distances are light grey
and long distances black.

the initial bound state, and that the ligand is
free to diffuse quickly up to the unbound state.

On the other hand, for a low enough value of
dc such as 3Å, the ligand remains within the
bound state energy well and the correlation be-
tween toff and tfpt(dc) is negligible. It is thus
expected that the corresponding correlation co-
efficient increases sharply starting from a cer-
tain value of dc. In order to better characterize
the limits of this basin, the correlation coeffi-
cient R(d, l) between toff and tfpt(dc) over all
replicas was computed for several values of dc.
It was indeed found that for high enough values
of distance dc, tfpt(dc) and toff were correlated
and that the slope of this correlation R2(dc)
was close to 1. The same procedure was per-
formed for relating the unbinding time toff and
the time tCOM

fpt (dc) for the ligand COM to reach
the distance dc from its initial position, which
allows the computation of the squared correla-
tion coefficient R2

COM(dc). The trends for all
compounds of the set are displayed on Figure 5
and will be discussed later.

3.1.2 Late unbinding: contact maps and
exit paths

The cFP of the 20 unbinding trajectories with
dc = 4.5Å is represented in Figure 4a. The
cFP bits are related with the sequence subsets
of HSP90 that are highlighted in Figure 1, and
the cFP bits themselves are darker when the
associated distance is higher. The distance ma-
trix between the trajectories is displayed in Fig-
ure 4d. It indicates the existence of three main
exit clusters, as confirmed by the dendrogram
in Figure 4c. Its coloring relates to the exit
cluster with the unbinding and exit times dis-
played in Figure 4b. It shows for example that
the earliest exit event belongs to the red trajec-
tory cluster, which corresponds to direct exits of
the ligand with only a few interactions outside
subsets C and D residues. The cFP associated
with the green cluster displays interactions with
subsets A, C, D, E and F but not with subset
B; it corresponds to the back route (route 2) in
Figure 1, where the ligand goes below α-helix
3 (subset C) during its exit. In the case of the
blue cluster, interactions with subsets B, C and
D indicate the front route (route 1).
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3.2 Clearly identifiable Transi-
tion States are crossed early

The evolution of R2, R2
COM and of the mean

RMSD of the protein (calculated for heavy
atoms) with d(t) (resp. dCOM(t)) is shown for
all ligands in Figure 5. First, all mean RMSD
plots have a very similar shape: they reach a
plateau around d = 3.5Å to 4Å regardless
of the bound conformation of the ligand. This
plateau is lower for the compounds with the
lowest τcomp as in this case the ligand leaves
early, so that d rises quickly, before the unre-
stricted protein residues have fully sampled the
conformational space available to them. Let
us then consider the correlation coefficient R2,
in green. It is close to zero when d is small
: small displacements of the ligand out of the
binding site do not end up in an exit event.
However, in 18 of the 27 cases, R2 then rises
sharply to a plateau whose value is generally
between 0.8 and 1.0. It means that beyond a
certain distance threshold d±, the ligand be-
comes free to diffuse rapidly out of the pro-
tein: the time to reach this threshold is highly
correlated with toff . In this case, a kinetically
relevant TS is located before, but close to d±.
For 9 ligands, 7, 11, 14, 19, 20, 23, 24, 25,
and 27, R2 rises slowly and, in some cases, it
stays well below 0.8, so that no specific TS event
can be observed. Finally, the trend concerning
R2

COM , in blue, is less systematic, the plateau
is lower than in the case of R2 for the same lig-
and, and, in most cases, the plateau is reached
for higher values of d. This last finding might
come from the ligand keeping its interactions
with some of its binding shell residues while it
moves away from its bound position, either be-
cause these residues move along with the lig-
and, or because the ligand is large enough for
its COM to shift significantly while some of its
atoms are still close to the binding shell. It also
demonstrates that residue-specific information
describes more accurately the kinetically rele-
vant unbinding event than the displacement of
the ligand from its starting point, which is de-
scribed by R2

COM . Moreover, for several large
compounds with rotatable bonds, such as 14,
18, 25, 26, and for some of the other com-

pounds with the shortest τ values, such as 7,
11, 21, 27, the correlation coefficient R2

COM is
close to zero for the whole range of distances
considered, either due to the limitation of the
COM metric for the most complex compounds,
or to a low or inexistent unbinding free energy
barrier (see below for 11).
The comparison of these plots for two pairs

of similar compounds highlights some conse-
quences of the scaling on the description of
the unbinding process. A first example is the
pair of compounds 14 and 15. They share
a common substructure and differ mainly by
the quinoline moiety of 14 which interacts with
the hydrophobic pocket formed under α-helix 3
(both are helix-binders). The RMSD plots indi-
cate that this hydrophobic packing discussed in
Kokh et al. 16 for these two compounds does not
prevent destabilization of the protein during
the unbinding process, as the RMSD plateau of
compound 14 is similarly high and is reached
sooner than for compound 15. The variation of
R2 with d for the two compounds is markedly
different and this difference can be related to
the differences in structure and illustrates a
limit of the definition of the metric. Indeed, in
the case of the long and buried compound 14,
the ligand stays close to some residues of the
initial binding shell until late in the unbinding
process, which is much less the case for com-
pound 15 and leads to an earlier increase of
R2. A second matched pair is composed of com-
pounds 7 and 21, with the methyl in 7 (loop
binder) changed to a phenyl group in compound
21 (helix binder). They have a very similarKD,
but compound 21 has only a slightly longer res-
idence time.
Overall, the analysis shown in Figure 5 en-

ables (for two thirds of the ligands) to pinpoint
the threshold where the kinetically relevant TS
has been crossed and after which the ligand is
free to diffuse. This information can be of great
value for identifying the interactions that most
influence the kinetics of the unbinding process,
i.e. the ones disappearing around the plateau
of R2, especially in cases where the trends in
R2 and R2

COM are different. The unbinding free
energy profiles of compounds 9, 11 and 12 were
computed in ref. 37 (SI Figure 2) using Ther-
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Figure 5: Squared correlation coefficients R2 (green) and R2
COM (blue) between the unbinding time

toff and the first passage time tfpt(d) (resp. tCOM
fpt (d) )as a function of the distance d for each ligand

considered. In red, mean RMSD of the protein heavy atoms as a function of d (error bars are SD).

modynamic Integration (TI). The results of this
study and the present study are consistent: for
compounds 9 and 12, dCOM± is found to be
lying within the Transition State Region iden-
tified using TI, while in the case of 11, no free
energy barrier was identified using TI along the
unbinding pathway and no dCOM± can be iden-
tified, as R2

COM stays well below 0.8 over the
whole distance range considered. Finally, the
influence of the potential scaling on d± is illus-
trated in Figure S5 (top), where the squared
correlation coefficients R2 between the unbind-
ing time toff and the first passage time tfpt(d)
is plotted against the distance d for the three
values of λ used for the ligands of the training
set. Two situations are observed: for ligands
3 and 8, d±(λ = 0.45) > d±(λ = 0.42), which
indicate that the TS is displaced depending on
the scaling. For the six other cases, d± is sim-
ilar for the different values of λ, suggesting a
smaller effect of the scaling on the description
of the TS.

3.3 Most ligands follow nearly
equally the two main exit
pathways in ScaledMD simu-
lations

The cFP of all unbinding trajectories ordered
by cluster is shown in Figure S12. (Similar cFP
and dendrograms representations together with
the correponding distance matrices were pro-
duced for all ligands, see SI). 27 clusters were
identified by the clustering analysis, the end
of all exit trajectories were visually reviewed
together cluster by cluster and annotated as
Front- or Back-like trajectories at the cluster
level. These visualizations confirm that unbind-
ing trajectories belonging to the same cluster
display similar features. In a few cases, the lim-
itation of the cFP in describing topology makes
it unable to assign the front or the back route
e.g. where a ligand with a front-like cFP ro-
tates and goes behind the unfolded α-helix 3
just when exiting.
In most trajectories, the ligand interacts with
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the beginning of subset C (bright green), which
is the loop before α-helix 3 which surrounds the
binding pocket. As discussed previously for lig-
and 8, other frequent combinations of interac-
tion hotspots during ligand exit are subsets A,
E and F on one hand (back route), and sub-
sets B and D on the other (front route). It is
interesting to note that for all ligands in the
set, between c.a. 25% and 70% of all exit tra-
jectories involve the back exit route (see indi-
vidual heatmaps in SI). It is a greater propor-
tion than in ref. 35 where the back route is
found, but more anecdotally. This might be
due to the fact that in our work the whole
subset C is left free of restraints and adopts
unfolded conformations during the ScaledMD
simulations that open space for the ligands to
exit by the back route. This further empha-
sizes the importance of choosing wisely the re-
straints used in ScaledMD simulations in order
to balance between the ability to compare a
large set of ligands using a larger set of unre-
strained residues and the ability to obtain struc-
turally relevant insights from the simulations by
restricting the set of unrestrained residues. In-
deed, in τRAMD simulations,16 the ligand exit
channel that goes under the α-helix 3 is only
open when α-helix 3 has a pure helical con-
formation and when the transient hydropho-
bic sub-pocket under this helix is open, which
means that loop-binding compounds were not
using the back route. Wolf et al. 37 have also
compared those two routes using ligand 2 and
found that the front route was favored in terms
of work required to pull the ligand into the sol-
vent. Nevertheless, the exit trajectories corre-
sponding to the two groups display roughly the
same mean exit time within statistical error in
ScaledMD. This might be surprising at first,
but it is less so considering the fact that the
fingerprinting considers only residues that are
beyond the dc = 4.5Å distance cutoff to the
initial contact shell S. At this distance from
S, as suggested by Figure 5, in most of the
cases the ligand has already crossed the limits
of the kinetic basin and the exact interactions
with its surrounding do not have a notable ef-
fect on its exit time. From this analysis, it is
tempting to question the relevance of studying

the latest stages of the exit pathways when us-
ing ScaledMD for understanding the specifics
of the Structure-Kinetics Relationships, as the
interactions which have the most effect on exit
time during simulations are those that are bro-
ken around the threshold in R2

COM(d), which is
often closer than dc to the initial contact shell
residues.

3.4 Estimation of Relative Resi-
dence Time

Relative residence times, τcomp, were computed
as the ratio of the mean unbinding time during
the ScaledMD simulations to the mean unbind-
ing time of ligand 3. τcomp were related to the
measured residence times relative to ligand 3
τrel(λ) = (toff/toff,lig3)

λ and plotted in Figure
6.
The correlation obtained is modest when con-

sidering the whole set, but can be analyzed as
the superposition of two trends. The first trend
is related to the subset of compounds for which
τcomp ∼ τrel in Figure 6. The second trend is
represented by a set of compounds, generally
with larger relative residence time (τrel(λ) > 2,
i.e. toff > 7.9.10−2s), where the slope between
the relative residence time and τcomp is lower
than 1. This trend is followed by larger and
more rigid compounds such as 2, 9, 10, 14, the
pair 15 and 16 from Cluster 7, 18, from Clus-
ter 3 and the pair 23 and 24 from Cluster 5.
In Schuetz et al.,35 compound 6, which is the
largest of the dataset and has the longest mea-
sured residence time, was also underestimated
in ScaledMD unbinding simulations performed
with very similar settings. Similarly to their
studies, this compound was the only compound
whose τ is significantly underestimated in this
dataset, it was rightfully considered as an out-
lier and discarded from analysis. As discussed
in the Methods section, τcomp might be lower
than one in cases where the smoothing of the
Potential Energy Surface by the scaling favors
a different ensemble of TS. A similar effect with
respect to the scaling factor is illustrated in
Figure S4, in SI, where the squared correlation
coefficients R2(d) between the unbinding time
toff and the first passage time tfpt(d) is plotted
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Figure 6: τcomp vs τrel for λ = 0.4. Vertical error bars show standard deviation, and horizontal
error bars show standard error. The color of the symbols corresponds to the chemical series (see
Fig. 2) and their shape to the bound HSP90 conformation. The bold line indicates the line where
τcomp and τrel are equal and the dashed line shows the trend followed by a subset of the ligands
with higher residence time.

against the distance d for the three values of
λ used for the ligands of the training set. For
compounds 3 and 8, the profiles are markedly
different between λ = 0.45 and the two lower
values, which suggests that the TS is located
much further from the binding site with this
scaling factor than with the lower ones.
In the next sections, we will describe and

discuss the two trends in τcomp found from
the analysis of several chemical series in this
dataset: Clusters 1, 2, 3, 7 and 8 (see SI for
description of Clusters 4-6). Based on the anal-
ysis of the pair from Cluster 8, we will propose
an interpretation of the systematic underesti-
mation of τ in one of the two subsets.

3.5 ScaledMD distinguishes short
versus medium τ ligands
within series and underesti-
mates τ for ligands with long
τ

Figure S6 summarises the structures as well as
the τrel and τcomp values for the compounds
of Cluster 1 and 3. Cluster 1 (in light blue)
contains five compounds which have short res-
idence times. They are close (structurally and
in terms of kinetic constants) to the set of four
HSP90 resorcinol ligands studied with the same
methodology in ref. 32. In our case, however,
the relative computed residence times are not
linearly related to the relative measured un-
binding constants. Their relative computed res-
idence times are all very close and they do not
allow ranking the compounds when the error es-
timated by bootstrapping is taken into account.
This difference might be due to the fact that the
compounds in this set are more diverse struc-
turally than in reference 32. This structural
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diversity in the ligand structures also leads to
interactions with a diverse set of residues in the
bound state, leading to a larger set of uncon-
strained residues used in our work. Three of the
Cluster 1 compounds (5, 8 and 11, see also Ta-
ble S2) have also been simulated byWolf et al. 37

with a very similar outcome: the three ligands
are among the fastest unbinders but they are
not differentiated quantitatively.
Cluster 3 comprises seven compounds (includ-

ing compounds 7 and 21, which are shared with
Cluster 1) coming from a rescaffolding of the
compounds from Cluster 1 and 2. More specifi-
cally, the resorcinol ring has been fused with the
central heterocyclic ring to form an hydroxy-
benzopyrazole, which is modified on two differ-
ent positions. In this series, the group in R2
position binds to the same hydrophobic pocket
as the diverse groups in Cluster 2. On the other
hand, the distal part of the group in R1 points
towards the outside of the binding site, so that
it does not interact much with N-HSP90 in the
bound state. One large subseries of five com-
pounds (17-20 and 22) is of N-methyl-amides
bound to a diverse set of substituted phenyl
or benzyl groups in R1. For 17, 19 and 20,
the kinetic estimation is roughly correct, while
it is underestimated for compounds 18 and
22 which are N-phenyl substituted compounds
very close structurally to 17. These series are
also close structural analogs of the four com-
pounds in the main series studied in Schuetz
et al.,35 which displays a similar trend, where
the ligand with a long measured residence time
is underestimated.
The two last compounds (7 and 21) are com-

mon between Cluster 1 and Cluster 3. They
have the lowest τ and KD within Cluster 3,
probably because they neither accept the hy-
drogen bond formed with the Thr184 side-chain
that is in the large Cluster 3 subseries, nor do-
nate an hydrogen bond to the Gly97 backbone
C=O bond, as for 5 and 8 from Cluster 1, which
are better binders than 7 and 21 (see Figure
7). They differ structurally only by a phenyl
group in the R2 position. This structural mod-
ification leads to a modest difference in τ which
is not captured by the simulations. Taken to-
gether, Clusters 1 and 3, which are close struc-

Figure 7: Detail of the N-terminal domain of
HSP90 (N-HSP90) in complex with compound
8 : residues cited in the text are labelled, H-
bond shown by dashed line.

turally, illustrate a general observation: nei-
ther the shortest τ compounds (with a mea-
sured relative residence time of less than 0.7)
nor the longest τ ones (greater than than 0.7)
are ranked correctly within each group. How-
ever, the longest τ compounds are clearly sepa-
rated from the shortest τ compounds in Figure
S6.
The relative residence times for compounds

from Cluster 2 and 7 are displayed in Figure S7.
In this case, the computed residence time for
the shortest τ compounds (those with measured
relative τ less than two) and for the longest τ
ones (the rest of the set) is similar, but com-
pounds can be ranked quite well within each
set. Cluster 2 contains six compounds that are
structurally very close as they represent single
point variations, from R1=H (compound 3) and
bromine (compound 6) to bulky amides and
sulfonamides. For the latter compounds, the
different R1 groups are located in the hydropho-
bic pocket beneath helix 3. 3 and 6 bind to N-
HSP90 in its loop conformation, they are differ-
entiated by the ScaledMD simulations and fol-
low the expected quantitative trend, but τcomp

for 6 is overestimated with respect to 3, which
is used as a reference for the plot. It might
be that the force-field parametrization of the
bromine atom of 3 in GAFF, which does not
include its polarization, leads to an underesti-
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mation of τcomp with respect to 6. Compounds
12 and 13, which bind to the helix conforma-
tion of N-HSP90, differ only by the position of
a methyl group on a sulfonamide and are nearly
indistinguishable by their relative τcomp. Com-
pounds 9 and 10 are correctly differentiated,
but their τcomp are underestimated with respect
to τrel. Interestingly, the τ of 9 is also underes-
timated by τRAMD.16

The two compounds in Cluster 7 only differ
by the reduction of the ketone 16 to the alcohol
15 and their bound structures are superimpos-
able. The difference in kinetic behaviour asso-
ciated with this very subtle structural modifica-
tion is correctly reproduced by the simulation
but, in this case too, τcomp underestimates τrel
(Figure S7). Interestingly, this pair simulated
using TMD37 had equal unbinding mean work
within the error bars.

3.6 Non-specific interactions at
TS with unstructured α-helix
3 leads to τ underestimation

The structures of 1 and 2, the two molecules
that belong to Cluster 8, as well as their τrel
and τcomp are given in Figure S8. Their cen-
tral heterocyclic core is unique in this dataset,
but it is decorated similarly to compounds from
Clusters 1 and 2. Their only structural differ-
ence is in the R1 position, which changes from
a methoxy group in compound 1 to a methyl-
morpholine in compound 2. These structural
differences are associated with a large difference
in τrel, which is not reflected by the simulations.
Experimentally, the presence of the morpholine
substituent lowers koff by a factor of more than
20 compared to the methoxy: compound 2 is
the ligand in our dataset with the lowest koff ,
to the point that only an upper limit has been
measured. On the other hand, the relative com-
puted residence time of the slowest compound
2 is underestimated as it is found equal to 1
within the estimated error. In the bound state,
the crystal structure indicates that the mor-
pholino group of 2 is located outside the binding
pocket, with no protein residue closer than 3Å.
From Figure 5, the kinetically relevant unbind-

ing event happens similarly early for the two
compounds. Hence, snapshots of all unbinding
trajectories between d = 3 and 3.5Å were ex-
tracted for further analysis. Clearly, for both
ligands, the main event in these short extracts
is the breaking of the hydrogen bond between
the central NH of the ring and Thr184, while
auxilliary polar interactions, e.g. with the two
phenolic OH groups, are often maintained at
this point of the unbinding process. However,
it is notable that the morpholino group of ligand
2 interacts with residues from α-helix 3, much
more than the smaller methoxy of ligand 1. As
the conformational space spanned by subset C
in the snapshots is large for both compounds,
there is no indication of a specific interaction
between alpha-helix 3 and 2. In order to better
quantify the protein-ligand interactions taking
place around the TS, we extracted from circa
20 unbinding trajectories of compounds 1 and
2 the part where d is between 3 and 3.5Å.
For each of these trajectories we extracted

20 regularly spaced snapshots of the system
and computed the mean of the cFP of those
snapshots. This procedure was performed on
ScaledMD and τRAMD trajectories from ref.
16 and the results are depicted in Figure 8. The
mean cFP of compounds 1 and 2 simulated
by ScaledMD, on one hand, and by RAMD,
on the other hand, are very similar. However
the cFP obtained for ScaledMD simulations
and the one obtained for τRAMD simulations
for the same compound are markedly different:
whereas the ligand simulated with τRAMD in-
teracts specifically with its surroundings, the
ScaledMD fingerprint is blurred, reflecting the
variety of the interactions occuring during the
simulations. Moreover, a distinct signature dif-
ferenciated the unbinding of 2 with respect
to 1 using τRAMD, which was not the case
with ScaledMD: 2 in its neutral or proto-
nated form interacts specifically with Ser113
and Gln133 during unbinding, and also with
Asp102 when in protonated form. This differ-
ence in unbinding patterns translates into the
difference in computed residence times obtained
with τRAMD, which correctly predicts a longer
τ for 2 than for 1. These observations lead to
a plausible interpretation of the underestima-
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tion of the residence time by ScaledMD for our
set of outliers based on a qualitative evaluation
of ζ(2, λ) − ζ(1, λ) in these simulations. The
contributions to the activation entropy can be
separated between those arising strictly from
the protein and from the ligand degrees of free-
dom, and from contributions which are specific
to the protein-ligand interactions, such as the
restrictions of the conformational space due to
a set of specific H-bonds or steric clashes. The
degrees of freedom (DoF) specific to 1 and 2
are very similar, even if the morpholino group,
as a non-aromatic ring, can have a DoF of its
own. What differs more are the number and
the relative population of the possible states in
the complete space of the protein-ligand degrees
of freedom. Indeed, while the interactions of 1
and 2 with the core of the binding site are very
similar in the snapshots, the size of the confor-
mational space spanned by residues of subset C
in interactions with the morpholino group of 2
is large for λ = 0.40. It is expected to be much
smaller when λ is increased, at least to the point
where α-helix 3 keeps its secondary structure.
The α-helix 3 behaviour would then be similar
to what is observed in conventional or τRAMD
simulations. More generally, we could specu-
late that the non-linearities in the entropy con-
tribution are responsible for the residence time
underestimation in cases where, around the un-
binding TS, the ligand interacts non-specifically
with parts of the protein that are rendered un-
structured by the scaling potential. This hy-
pothesis is testable, but it is beyond the scope

of the present study.
Overall, several trends summarize our find-

ings in terms of residence time estimation.
First, the compounds with short residence
times were not ranked correctly even when in
congeneric series, as seen in Clusters 1, 4 and
6. Second, in the largest chemical series display-
ing a wide range of τ ( resorcinols from Clus-
ter 2, indazoles from Cluster 3), the trends in
predicted residence times are globally correct
despite the presence of outliers. Third, in two
cases of pairs of compounds with point modi-
fications, the relative residence times are well
reproduced while this is not the case for a third
pair (Cluster 8) and compound 2, whose resi-
dence time, the longest of the whole dataset, is
underestimated in the ScaledMD simulations.
The very long measured τ of ligand 2 and the
underestimation of its residence time might be
due to a strong interaction between the mor-
pholino group and the α-helix 3 at the TS that
is correctly described with τRAMD, but not
with ScaledMD, where these interactions are
blurred, at least with the simulation settings
used here.

4 Conclusion
In this work, we have evaluated the ability of
ScaledMD to qualitatively and quantitatively
reproduce the residence times of a diverse and
sizeable set of ligands binding to two different
conformations of their protein target in a con-
text reasonably close to a realistic drug discov-
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ery project. In order to describe the structural
aspects of the unbinding events, we have devel-
oped simple procedures for (1) estimating the
limits of the basin around the bound state us-
ing statistics on the first passage time tfpt(d),
and (2) describing and comparing the paths
which lead to unbinding using contact-map fin-
gerprints. These procedures are not specific
to ScaledMD simulations, they can be used to
analyze unbinding trajectories generated with
other protocols. For many ligands, the evolu-
tion of the squared correlation coefficients R2

between the unbinding time toff and the first
passage time tfpt(d) can be used to locate the
kinetically relevant TSs at 3.5 to 4.5Å from
the ligand’s binding shell residues. The clus-
tering of the late unbinding parts of the tra-
jectories from our simulations revealed that the
two exit routes from the N-HSP90 binding site
that were reported previously by several other
groups16,35,37 were indeed followed by most lig-
ands. What is more, each ligand followed both
routes in sizeable proportions, and both led to
comparable mean exit times.
In order to estimate the quantitative charac-

ter of the τ prediction by ScaledMD, we have
related τcomp to the measured normalized res-
idence times relative to ligand 3 τrel,lig3(λ) =
(toff,ligand/toff,lig3)

λ. We found that τcomp al-
lows the identification of the slowest unbinders
of the set, and that it gives generally good
trends within chemical series even when the lig-
ands bind to different protein conformations.
For a subset of the ligands which includes many
of the slowest unbinders, the residence time is
consistently underestimated in the simulations.
For some of them, this underestimation might
be due to specific structural or force-field issues,
as 9 and the quinazolines 23 and 24 are also un-
derestimated by τRAMD. On the other hand,
the apparent consistency of the underestima-
tion and the fact that it was observed in other
works using ScaledMD35 required a proper in-
vestigation.
We have compared the structure of two ho-

mologous compounds, 1 whose τ is correctly
predicted, and 2 whose τ is underestimated,
around the unbinding TSs, and found a plau-
sible explanation of this underestimation. The

bias induced by the scaling of the interactions,
together with the choice of residues to keep re-
strained during the simulations, increase the
mobility of α-helix 3 up to a point where its
secondary structure elements are no longer con-
served, leading to an incorrect description of
the interaction taking place and an artefactu-
ally low τcomp for ligands that interact with un-
structured residues (here α-helix 3) around the
unbinding TS.
Our work is complementary to other re-

cent studies on the unbinding kinetics of N-
HSP90 ligands.16,35,37 It confirms the main re-
sults found by Schuetz et al. 35 using ScaledMD
on a smaller dataset, such as the identification
of two main exit routes or the underestimation
of the τ for the slowest binders. With respect to
TMD,37 ScaledMD residence time estimations
seem to be less sensitive to the initial protein
conformation. On the other hand, the scaling of
all interactions in ScaledMD leads to a greater
perturbation of the whole system compared to
TMD or in τRAMD16 where external forces are
applied on the ligand. The perturbations due
to the scaling makes relevant a detailed analysis
of the unbinding trajectories generated by these
techniques, for example when comparing possi-
ble exit routes. The quantitative performance
we obtained in predicting τ using ScaledMD is
not on par with τRAMD’s, but it is still rea-
sonable. Both techniques fundamentally rely
on one parameter, the magnitude of the ran-
dom force for τRAMD and the scaling factor λ
for ScaledMD. Nevertheless, the restraints that
need to be imposed on parts of the system when
using ScaledMD correspond to another set of
parameters, whose careful selection is of great
importance when setting up ScaledMD simula-
tions. It is actually recommended by Biki to
select the restrained residues in a series-specific
manner, however, as the comparison of ligands
across series was one of the objectives of this
work, a common, broader set of unrestrained
residues was needed. Second, a higher scaling
factor necessarily improves the description of
the physics in ScaledMD, at the cost of much
longer simulations. Reanalysis of the training
dataset used for λ determination actually sug-
gests that this selection might have been biased
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by the slowest unbinders whose τcomp were un-
derestimated for the reasons explained above.
Third, the selective application of the scaling
to only a subset of the system is a recent and
appealing variation of all-atoms ScaledMD.57

Selectively scaledMD is a simple restraint-free
approach which might alleviate some of the dif-
ficulties raised above.
In a drug design perspective, the use of un-

binding simulations might be of use at the lead
optimization stage, when high-quality struc-
tural information is available to perform high-
quality low-throughput comparisons within
chemical series. It is also tempting to insert
unbinding simulations at some point of a vir-
tual screening with the objective of weeding
out false positives. Our results suggest that
ScaledMD might be useful in this respect as it
allowed us to classify correctly most of the com-
pounds with a long τ in our dataset using τcomp.
Among the approaches discussed above for the
evaluation of protein-ligand binding kinetics,
the ones that perform best and are amenable
to medium to high throughput calculations will
be a welcome addition to the Computer-Aided
Drug Design practitioner’s toolbox.
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