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ABSTRACT: Making accurate, quantitative predictions of chemical reactivity based on 

molecular structure is an unsolved problem in chemical synthesis, particularly for complex 

molecules. We report a generally applicable, mechanistically based structure-reactivity approach 

to create a quantitative model for the oxidative addition of (hetero)aryl electrophiles to 

palladium(0), which is a key step in myriad catalytic processes. This model links simple molecular 

descriptors to relative rates of oxidative addition for 79 substrates, including chloride, bromide and 

triflate leaving groups. Because oxidative addition often controls the rate and/or selectivity of 

palladium-catalyzed reactions, this model can be used to make quantitative predictions about 

catalytic reaction outcomes. Demonstrated applications include a multivariate linear model for the 

initial rate of Sonogashira coupling reactions, and successful site-selectivity predictions for a series 

of multihalogenated substrates relevant to the synthesis of pharmaceuticals and natural products.   

 

The synthesis of structurally complex organic molecules relies on forging new chemical bonds 

between diverse molecular building blocks. Catalytic cross-coupling is one of the most versatile 

and widely-used methods to link these molecular fragments,1 with applications ranging from the 

manufacture of active pharmaceutical ingredients,2 to the selective modification of biomolecules,3 

to the creation of new functional materials.4 While much has been done to develop and understand 

new cross-coupling reactions and catalysts, less is known about how the specific molecular 

structures of the building blocks affect the likelihood of successful coupling. As a result, time- and 

resource-intensive reaction screening and optimization campaigns are often required for each new 

synthetic target. All too often these efforts fail, impeding access to potentially promising new 

medicines and materials. Emerging approaches in reactivity prediction that combine high-

throughput experimentation5–8 with molecular descriptor sets9–11 and multivariate statistical 

analysis including machine learning12–16 can accelerate this process and increase success rates; 

however, the predictions generated by these approaches are often limited to the specific reaction 

under investigation (Figure 1A). Developing and refining the next generation of organic chemistry 

tools, including computer-aided synthesis design, automated reaction optimization, and predictive 

algorithms,17 requires the development of general and quantitative frameworks linking molecular 

structure to reactivity for many different reactants and catalysts. 

Here, we describe an approach to predict outcomes for a broad range of catalytic processes 

by focusing on the structure-reactivity relationships for one key mechanistic step. To demonstrate 

this approach, we have applied it to oxidative addition, a fundamental organometallic 

transformation common to many catalytic reactions.18 Oxidative addition is particularly relevant 

to palladium-catalyzed cross-coupling, where it often controls the reaction rate and/or selectivity19 

(Figure 1B). We hypothesized that a quantitative structure-reactivity model for the oxidative 
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addition20 of aryl electrophiles to a catalytically-relevant Pd(0) complex would enable generally-

applicable predictions for many palladium-catalyzed reactions under a variety of conditions. This 

model was assembled by correlating experimental relative rate data with easily-obtained molecular 

descriptors for a diverse set of substrates, with an emphasis on incorporating pharmaceutically-

relevant heterocycles. As hypothesized, the resulting model – a "reactivity map" – is general: it 

can predict catalytic rate constants as a function of substrate structure even when different 

catalysts/solvents are used, can correctly identify the most reactive position(s) when multiple 

reaction sites are available, and can also help to guide synthetic route planning. Importantly from 

both a fundamental and practical perspective, the predictive ability of our reactivity map extends 

well beyond the specific molecular structures and reaction conditions included in the initial data 

set. By revealing how subtle changes to the reacting molecules affect a key step in a catalytic 

mechanism, this map serves as a powerful predictive tool for multiple reaction classes, and will 

enable more sophisticated and accurate computer-aided retrosynthetic design. 

 

Figure 1. Approaches to catalytic reaction prediction. (A) Approaches to quantitative reactivity 

predictions. (B) Simplified mechanism for Pd-catalyzed cross-coupling, highlighting oxidative 

addition as the rate and/or selectivity determining step. (C) Competition experiment approach to 

map relative rates of oxidative addition. (D) Reactivity scale for oxidative addition to Pd(PCy3)2 

with selected substrates; experimental ΔG‡
OA for 2-bromo-5-nitropyridine set to 0 kJ mol-1. 
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Results and Discussion 

Development of the oxidative addition reactivity map. As the basis for a quantitative 

structure/reactivity model for cross-coupling catalysis, we conducted a series of oxidative addition 

competition experiments in THF using a library of 79 (hetero)aryl chlorides, bromides, and 

triflates, reacting with Pd(PCy3)2 (Figure 1C). Measuring the Pd(II) product ratio by 31P NMR 

spectroscopy gives relative observed rate constants, and the corresponding relative free energies 

of activation (ΔG‡
OA). As a check on these kinetic data, we constructed Hammett plots for five sets 

of substrates, obtaining reaction constants consistent with previous reports (Figures S31-37). From 

these data, we have constructed a unified reactivity scale that spans more than 7 orders of 

magnitude in rate (Figure 1D), containing substrates with a wide variety of steric and electronic 

parameters, as well as the three aforementioned leaving groups. We also isolated and characterized 

six representative Pd(II) oxidative addition complexes to confirm their structures as trans-

Pd(PCy3)2(Ar)(X) (compounds S1-S6, Figures S7-S30).   

Using the mechanistic features of oxidative addition to Pd(0) as a guide, we considered 

molecular descriptors that would provide mechanistically meaningful correlations between 

substrate structures and oxidative addition reactivity (Figure 2A).20 Mechanisms for aryl halide 

oxidative addition to Pd(0) have been extensively studied both computationally21–24 and 

experimentally,25–29 and are generally proposed to proceed via initial coordination of the aromatic 

π-system to Pd. Two bonding extremes can be envisioned for the π-complex intermediate, where 

the degree of polarization of the coordinated C=C or C=N bond in the substrate influences partial 

charge distribution in the π-complex. From this intermediate, two types of oxidative addition 

transition state have been proposed: a 3-centered, relatively non-polar transition state involving 

simultaneous Pd–C and Pd–X bond formation, and a polarized transition state with C–X 

heterolytic bond cleavage occurring alongside Pd–C bond formation; this latter pathway resembles 

the proposed mechanism for nucleophilic aromatic substitution (SNAr).26,29 

Based on the structural and electronic features of these transition states, we built our 

reactivity map for oxidative addition from a combination of average molecular electrostatic 

potentials (ESP) as electronic descriptors for specific atoms in the substrate,30 A-values as steric 

descriptors,31 and the intrinsic bond strength index (IBSI) as a bond energy descriptor (Figure 

2B).32 Importantly, all of these descriptors are directly calculated from electronic wavefunctions 

(obtained from density functional theory calculations), or are tabulated in the literature. An initial 

multivariate linear regression analysis13,33 of the descriptor sets for the Ar–Cl and Ar–Br substrates 

versus relative ΔG‡
OA (kJ mol-1) reveals a strong correlation across the entire substrate library 

(Figure 2C). This model incorporates two ESP values: one for the carbon undergoing substitution 

(ESP1), and a second for an atom adjacent to the reactive site (ESP2). Similarly, two substituent 

A-values for groups R1 and R2 account for steric effects on the oxidative addition rate. While the 

steric effect of groups ortho to the reactive C–X bond is intuitive, the effect of R2 for 2-

halopyridine substrates is not initially obvious; however, our experimental results reveal the steric 

influence of R2 is approximately equal to that of R1 throughout the 2-halopyridine substrate set. 

As these two terms have very similar coefficients when treated separately during linear regression 

(Table S9), we opted to use the sum (A1 + A2) as a single descriptor. Finally, including the IBSI is 

necessary to create a model applicable to both (hetero)aryl chlorides and bromides; note that we 

have multiplied the small-magnitude IBSI (0.23-0.40) by 1000 to give a better representation of 

the relative contribution of each descriptor to the predicted ΔG‡
OA.  



4 

 

 

Figure 2. Design and performance of a general and quantitative reactivity map for oxidative 

addition to Pd(0). (A) General mechanism for oxidative addition to LnPd(0), with π-complex 

intermediate preceding either Pd insertion into C–X bond, or an SNAr-like displacement of X-. (B) 

Molecular descriptors used to model oxidative addition reactivity as a function of substrate 

structure. (C) Multivariate linear regression model of ΔG‡
OA for 70 Ar–Cl and Ar–Br substrates in 

THF, including all data points in regression analysis. (D) Representative multivariate linear 

regression model generated using a 60/40 training/test split. (E) Univariate plot of IBSIC–X versus 

ΔG‡
OA for Ar–Cl, Ar–Br, and Ar–OTf, demonstrating that bond strength alone is a poor predictor 

of oxidative addition reactivity. (F) Unified linear regression model of ΔG‡
OA for Ar–Cl, Ar–Br, 

and Ar–OTf substrates in THF, including all data points in regression analysis. 
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We have evaluated the robustness of this linear model by regression analysis of five 

random training (60%) and test (40%) sets, and comparing the mean absolute errors (MAE) and 

predictive squared correlation coefficients (Q2);34 one example is shown in Figure 1D (remainder 

in Figures S60-63). All of these analyses give similar linear equations, and excellent agreement 

between predicted and experimental values in the test sets. We also evaluated alternative models 

(Table S9), and partitioned the data into targeted training and test sets to evaluate out-of-sample 

prediction accuracy (Figures S64-67). These latter models again give excellent agreement between 

predicted and experimental values.  

Our initial attempts to incorporate aryl triflate electrophiles into this model using the 

aforementioned descriptor set were unsuccessful, leading to poor correlations and inaccurate 

predictions. We attribute this to C–X bond strength being an insufficient descriptor to differentiate 

between leaving groups. Bond strength arguments, often using calculated BDEs, are frequently 

used to rationalize relative oxidative addition reactivity for different substrates. In our initial model 

(Figure 2C, D), the IBSI term is essentially a step function: there are relatively narrow value 

distributions within the Ar–Br or Ar–Cl data sets, but a large gap between those data sets that 

reflects the weaker C–Br bond. Plotting a univariate correlation between IBSIC–X and ΔG‡
OA for 

all three electrophile classes reveals a similarly tiered structure (Figure 2E). Strikingly, there is 

essentially zero correlation between IBSI and ΔG‡
OA within each electrophile class, and the relative 

ordering of bond strength (C–O > C–Cl > C–Br) is inconsistent with the fact that aryl triflates react 

faster than identically-substituted aryl bromides with Pd(PCy3)2 (kPhOTf / kPhBr ~ 100). Clearly, bond 

strength on its own is a poor predictor of oxidative addition reactivity. 

To account for additional transition state stabilization by the leaving group itself, which 

builds up negative charge as the C–X bond is broken (Figure 2A), we used a simple descriptor of 

anion stability: the pKa of the leaving group’s conjugate acid. Adding the pKa values for HOTf, 

HBr, and HCl (previously measured in DCE as a non-polar solvent35) results in a unified predictive 

model (Figure 2F). Both IBSIC-X and pKa are required as descriptors, with the unified model re-

weighting the IBSI term down by a factor of 2. Notably, the relative contributions of the ESP and 

A-value terms remain essentially constant. This model provides, for the first time, a reliable 

method to quantitatively evaluate the relative reactivity of a hypothetical (hetero)aryl triflate, 

bromide, or chloride substrate toward oxidative addition with a Pd(0) complex. We again 

performed cross-validation with a set of five random 60/40 training/test data partitions, which give 

excellent agreement between experimental and predicted values (Figures S69-S73). 

Mechanistic aspects of oxidative addition linked to molecular descriptors. The generality and 

predictive power of this reactivity map is a direct result of its mechanistic foundation. ESP1 is 

related to the electrophilicity of the carbon undergoing oxidative addition, reflecting the degree of 

partial positive charge in the π-complex intermediate and transition state: a larger positive ESP1 

leads to a smaller ΔG‡
OA and thus faster oxidative addition. In contrast, ESP2 reflects the degree 

of negative charge on the adjacent atom (C or N), where a larger negative ESP2 leads to a faster 

oxidative addition. Considered together, these ESP terms indicate that a more polarized C=C or 

C=N bond in the substrate leads to faster oxidative addition. It follows from this analysis that the 

ESP at Pd in the intermediate and/or transition state should also affect the oxidative addition rate, 

with a larger positive ESPPd correlating with faster oxidative addition. We have confirmed this by 

determining ESPPd for a set of 11 calculated π-complex intermediates and 6 transition states 

(Figures S40-56). Remarkably, there is a linear correlation between ESPPd for the π-complexes 

and ΔG‡
OA (Figures 3A, S57), revealing the significant effect that substrate-catalyst bonding has 
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on the electronic structure of Pd. While the influence of ancillary ligands is often invoked to 

explain organometallic reactivity, the substrate itself clearly has a profound impact on the 

reactivity of the metal center.  

 

Figure 3. Mechanistic aspects of oxidative addition linked to molecular descriptors. (A) ESPPd 

for calculated π-complex intermediate structures correlates with oxidative addition rates; structures 

for 7 of 11 examples shown; electrostatic potential maps for each intermediate are overlayed onto 

the line structures. (B) Calculated structures of π-complex intermediates reveal how steric strain 

induced by R1 and R2 (here, –CF3 groups) in 2-halopyridines affect oxidative addition reactivity 

in equal proportions. 
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(Figure 3B). Importantly, this mechanistic insight into equal steric effects for R1 and R2 flows 

directly from our quantitative reactivity map. 

Application case studies. To test our hypothesis that the oxidative addition reactivity map is 

generally applicable in cross-coupling catalysis, we applied the ΔG‡
OA model to three case studies. 

The first test case involves modeling the initial rates of Sonogashira coupling reactions, drawn 

from published data sets containing 410 individual rates (29 substrates and 17 catalysts, Figure 

4A).36,37 We first predicted ΔG‡
OA for each of the 29 aryl bromides in the data sets, using the 

equation from Figure 2D (the simpler model when considering only halide-based electrophiles); 

while 9 of these substrates are included in our experimental oxidative addition data set, the other 

20 are out-of-sample predictions. Remarkably, the predicted ΔG‡
OA values are linearly-correlated 

with the corresponding ln k values for all 17 investigated phosphine ligands (Figure S74-75); three 

of these – for P(nBu)3, PCy3, and P(tBu)3 – are shown in Figure 4B. These correlations hold despite 

the fact that the Sonogashira reactions are conducted under different conditions (higher 

temperature, different solvent) than our oxidative addition experiments, and the fact that our 

predicted ΔG‡
OA is derived from a model using only PCy3. Thus, ΔG‡

OA can be applied to 

quantitatively predict the outcome of catalytic reactions for out-of-sample substrates, out-of-

sample reaction conditions, and even out-of-sample catalysts. 

We then expanded the application of ΔG‡
OA by combining it with descriptors for the 17 

free phosphines to assemble a single and unified linear model to accurately predict ln k for the 

entire 410 Sonogashira reaction data set. Two descriptors were calculated for the free phosphines 

– the average ESP at phosphorus, and the percent buried volume (%Vbur) at phosphorus38 – which 

were combined with ΔG‡
OA in a multivariate regression analysis. As shown in Figure 4C, we obtain 

excellent linear fit and predictive power with initial rates spanning 10 orders of magnitude. These 

phosphine descriptors outperform the analogous descriptors calculated for the corresponding mono 

or bis(phosphine) Pd(0) complexes (Figure S76-77). The training and test sets used to build this 

model are from a random 60/40 split of substrate set #1, which focuses on electronic effects (Fig 

4A). To challenge the model, we reserved substrate set #2, which focuses on steric effects, as an 

external validation set. Despite the fact that the training set contains no substrates with ortho-

substituents, and therefore no information about steric effects on reaction rate, the model is still 

able to predict ln k for substrate set #2 with a mean absolute error of 0.729 (Q2 = 0.8009). Only 

two reactions are identified as significant outliers (MAE > 2): 2,4,6-triisopropylphenylbromide 

with P(tBu)3 and PAd2(tBu), representing the most sterically-hindered substrate with the two 

largest ligands. The robustness of this model in the face of significantly different out-of-sample 

predictions stems directly from the generality of the oxidative addition reactivity map. The 

substrate molecular properties – electronics, sterics, and C–X bond strengths – are all encoded 

within the predicted ΔG‡
OA values by virtue of our diverse oxidative addition training set. 

Improved prediction accuracy can be achieved by separating the 410-member data set into 

two subsets based on phosphine ligand size. One set includes reactions using 13 phosphines with 

a %Vbur < 75, and the other includes the 4 largest phosphines (%Vbur > 75). For the small phosphine 

set, a slight reweighting of the three descriptors leads to smaller MAEs for training, test, and 

external data sets (Figure 4D). For the large phosphines, we used a 70/30 training/test split due to 

the smaller number of data points. We also found that a simpler, two-descriptor model is superior 

for this subset, with only ΔG‡
OA and %Vbur needed to make accurate predictions (Figure 4E). This 

partition into small and large phosphine sets is consistent with prior studies that describe a change 

in mechanism, where oxidative addition occurs from either bis(phosphine) or mono(phosphine) 
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Pd(0) intermediates.39,40 Notably, our predicted ΔG‡
OA is effective in both cases. This case study 

not only demonstrates how ΔG‡
OA can be used to predict how substitution patterns on the 

electrophile will affect the kinetic behaviour of a coupling reaction, but also how it can be used in 

concert with catalyst-based descriptors to develop a holistic picture of a reaction system. 

 

 

Figure 4. Translating oxidative addition predictions to quantitative models of catalytic 

reactivity. (A) General reaction scheme and chemical space explored for 410 Sonogashira 

reactions, with two distinct substrate sets; initial rates determined previously.36,37 (B) Univariate 

linear correlations between predicted ΔG‡
OA for oxidative addition to Pd(PCy3)2 and ln k for 

Sonogashira coupling with three phosphines; out-of-model substrates are Ar–Br molecules not 

included in ΔG‡
OA training set. (C) Unified three-descriptor model for predicting ln k for the entire 

set of 410 reactions (29 substrates, 17 ligands), with data partitioned into training (60% of set #1), 

test (40% of set #1), and external validation (set #2). (D) Subset of the model with 13 “small” 

phosphines (%Vbur < 75). (E) Subset of the model with 4 “large” phosphines (%Vbur > 75). 
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The second case study tests the use of ΔG‡
OA in predicting site selectivity for cross-

coupling when multiple reactive positions are present (Figure 5). Previous approaches to this 

problem have involved spectroscopic descriptors,41 the distortion-interaction transition state 

model,42 and qualitative arguments based on empirical observations.19,43 This latter method is most 

suitable for synthetic planning efforts, but it is largely applied “by analogy” to known systems, 

and it is not quantitative. Thus, rapid but accurate predictions of the likely coupling site involving 

a structurally-complex multihalogenated substrate is an unsolved challenge. 

Because all the descriptors in the ΔG‡
OA prediction model are local rather than global, one 

can calculate distinct ΔG‡
OA values for each reactive site in a molecule, with the predicted major 

site corresponding to the lowest ΔG‡
OA. Assessing a series of multihalogenated heterocycles with 

reported experimental selectivities43 reveals that these ΔG‡
OA predictions correctly identify the 

major site of reactivity across a diverse range of substrates, including many heterocycle classes 

(isoquinolines, diazines, 5-membered rings) not included in our initial training set (Figure 5A). 

These predictions also correctly identify when a C–Cl position is more reactive than a C–Br 

position in the same molecule, and vice versa. These predictions are also quantitative. A large 

difference between the ΔG‡
OA for each site (ΔΔG‡

OA) indicates very high selectivity for one site 

over another, while a small ΔΔG‡
OA indicates likely poor selectivity. Two specific examples of 

this are given in Figure 5B. For Suzuki-Miyaura coupling of methyl 2,6-dichloronicotinate, our 

model predicts ΔΔG‡
OA = 5.6 kJ mol-1, favoring C6 by ~7:1 at 65 °C. The observed selectivity 

using Pd(PPh3)4 as a catalyst at 65 °C is 5:1 C6 to C3 (ΔΔG‡ = 4.5 kJ mol-1).44 For 3,6-dichloro-

4-methoxypyridazine, our model predicts ΔΔG‡
OA = 1.0 kJ mol-1, favoring C6 by only ~3:1 at 

room temperature (though this difference is smaller than the model MAE). The observed 

selectivity using Pd(PPh3)4 as a catalyst at 100 °C is 3:1 C6 to C3, (ΔΔG‡ = 3.4 kJ mol-1).45  

Site selectivity is known to be influenced by reaction conditions, such as catalyst and 

solvent.19,43,46 Our prediction model is based on a simple monodentate phosphine using non-polar 

reaction solvents, which represents a very typical combination used in synthetic applications. To 

illustrate how our model could guide the development of chemo/regiodivergent coupling reactions, 

we have applied predictions to substrates known to have tunable selectivity (Figure 5C). First, 3,5-

dichloropyridazine is predicted to have good selectivity for C3 over C5 (ΔΔG‡
OA = 10.6 kJ mol-1), 

consistent with the observed selectivity using simple ligands (PPh3, dppf); therefore, inverting this 

selectivity should require extensive catalyst/solvent screening. Researchers at Merck took this 

exact approach, discovering that the large QPhos ligand gives high C5 selectivity.47 Second, the 

predicted ΔΔG‡
OA for 2-chloro-5-bromopyridine is 0.2 kJ mol-1, indicating effectively no 

selectivity; we confirmed this by oxidative addition of substrate with Pd(PCy3)2, which gives a 1:1 

mixture of C2 and C5 products. Thus, our prediction indicates achieving selectivity one way or 

the other will require more complex systems. Consistent with this, two previous studies reveal 

ligand-controlled reactivity at either C2 or C5, with high C2 selectivity requiring extensive 

screening and catalyst parameterization, and use of an unconventional diaminophosphine 

(dmapf).48,49 Finally, we predict that 2,4-dibromopyridine should be selective for C2 (ΔΔG‡
OA = 

8.1 kJ mol-1, C2:C4 ~ 26:1 at room temperature), which is exactly what is observed experimentally 

using homogeneous Pd catalysis.50 A recent report revealed that heterogeneous, nanoparticle-

based Pd catalysis is capable of inverting the selectivity to ~1:7 C2:C4.51 As for the examples 

above, overriding the predicted selectivity requires a dramatically different catalyst system.  
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Figure 5. Quantitative site selectivity predictions for cross-coupling reactions. (A) Predicted 

and observed selectivities for multihalogenated heterocycles undergoing Suzuki-Miyaura cross-

coupling reactions. (B) Selectivity predictions for dihalogenated heterocycles with small ΔΔG‡
OA 

between the two sites, and observed product ratios consistent with predictions. (C) Predictions for 

substrates with observed tunable selectivity, demonstrating that “simple” catalysts are 

quantitatively consistent with predicted selectivities; overriding predicted reactivity requires 

targeted screening and/or catalyst design. 
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As a final case study in synthetic planning, we have retrospectively applied ΔG‡
OA 

predictions to two reported synthesis toward Dragmacidin D (Figure 6).52–54 The general sequence 

relies on two regioselective cross-coupling reactions to a dihalogenated pyrazine core (Figure 6A). 

Among the key design questions are: how to achieve selective, sequential couplings; and how to 

ensure compatibility with the existing Ar–Br in indole 1 (which is present in the natural product).54 

Two approaches to this problem have been reported. En route to the first completed synthesis of 

Dragmacidin D, Garg, Sarpong, and Stoltz (Figure 2B)52 conducted model studies using 2-iodo-5-

chloro-3-methoxypyrazine to maximize site-selectivity, though they observed that the nature of 

the protecting group on the indole also has a significant effect on reactivity. With an N-Ts 

protecting group, bis(arylation) is readily achieved at elevated temperature, whereas with N-TIPS, 

the intermediate pyrazine is deactivated, preventing a second coupling. The remote electronic 

effect of the N-Ts group, which activates the C5 pyrazine position, is described as a fortuitous 

discovery. Applying our ΔG‡
OA predictions to these intermediates clearly reveals not only the 

existence but the magnitude of this effect, leading to ~10-fold higher predicted reactivity between 

N-Ts and N-TIPS substrates. Thus, a subtle but important reactivity difference could be anticipated 

based on predicted ΔG‡
OA prior to experimental work, and help guide protecting group selection. 

The second coupling required a switch to the 2-iodo-5-bromo-3-methoxypyrazine to 

maximize site-selectivity, which again could be predicted based on our model. The ΔΔG‡
OA for 

the two Ar–Br positions in the pyrazine-indole intermediate used in the synthesis is 22.9 kJ mol-1, 

consistent with the observed high selectivity. Hypothetical use of the corresponding 5-

chloropyrazine intermediate gives a predicted ΔΔG‡
OA of <5 kJ mol-1 (~6:1 at 50 °C), which while 

still selective for the desired position, would likely lead to overreaction and yield loss. Again, this 

type of prediction could help to guide synthetic design and subsequent experimental investigations.  

Yang, Liu, and Jiang reported a similar approach (Figure 6C)53 that employed 2,5-dibromo-

3-methoxypyrazine as the pyrazine building block; a series of model studies established that 

regioselective C2-coupling is possible. Despite the fact that both sites appear very similar, our 

model predicts that C2 is the major site, albeit with moderate selectivity (ΔΔG‡
OA = 5.1 kJ mol-1, 

6:1 at 80 °C); this lower selectivity may be reflected in the lower isolated yield relative to the 

differential halogenation strategy. In the subsequent Stille coupling, Yang et al. use the 

unprotected indole derivative, which we predict is ~10-fold less reactive than the corresponding 

N-Ts substrate; nevertheless, the desired reaction site is heavily favored relative to the other two 

Ar–Br positions, consistent with the observed chemo and regioselectivity. 
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Figure 6. Retrospective analysis of applying oxidative addition predictions to synthesis 

design: Dragmacidin D. (A) Abbreviated retrosynthesis of core structure, involving selective 

fragment coupling to a dihalogenated pyrazine. (B) Approach involving differential halogenation, 

tosylate protecting group on indole 1, and switch from 5-chloro to 5-bromopyrazine intermediates 

for selective coupling.52 (C) Approach involving regioselective coupling to dibromopyrazine, TBS 

protecting group on indole 1, and chemoselective Stille coupling in the presence of two potentially 

competitive Ar–Br positions.53 

 

Conclusions 

We have demonstrated that a quantitative structure-reactivity model for oxidative addition, 

a key step in many catalytic mechanisms, enables accurate predictions for the outcome of various 

cross-coupling reactions. By correlating relative reaction rates with easily-obtained molecular 

descriptors, we have mapped the reactivity of diverse (hetero)aryl electrophiles toward oxidative 

addition to Pd(0). This reactivity map links molecular structure to predicted ΔG‡
OA for any 

hypothetical substrate, with applicability well beyond the oxidative addition training set. We used 

these ΔG‡
OA values to predict rates and selectivities for many different catalytic reactions under 

various conditions, including Sonogashira, Suzuki, Buchwald-Hartwig, and Stille couplings. 

Given the importance of these reactions in the synthesis of complex organic molecules, we 

anticipate that quantitative reactivity predictions could be used during synthetic planning to design 

substrates with high intrinsic selectivity, and/or to identify where achieving the desired selectivity 
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is likely to be more challenging/resource intensive. Applying ΔG‡
OA predictions to hypothetical 

synthetic sequences and potential intermediates could therefore be used to design more selective 

routes and/or prioritize different potential routes prior to commencing experimental investigations. 

It could also be used to identify where extensive reaction development is necessary (e.g. overriding 

predicted selectivity), or where “simple” systems are likely to be successful. As we expand this 

oxidative addition reactivity map to incorporate additional sets of reaction conditions and catalysts, 

we expect it will not only shed new light on the mechanistic aspects of cross-coupling, but also 

find widespread use in refining and augmenting computer-aided synthesis design and automated 

reaction discovery/optimization. We are also exploring quantitative reactivity models based on key 

steps in other catalytic mechanisms to generate accurate and general predictions across the 

synthesis landscape.  
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