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ABSTRACT:	 Tert-butoxide	 mediates	 the	 protodeformyla-
tion	 of	 tertiary	 homobenzaldehydes	 and	 related	 com-
pounds	at	ambient	temperature.	Both	geminal	dialkyl	and	
geminal	diaryl	substituents	are	 tolerated.	Monocyclic	aro-
matic	 homobenzaldehydes	 require	 cyclic	 gem-dialkyls	 or	
gem-diaryls	for	efficient	protodeformylation,	whereas	gem-
dimethyls	are	sufficient	 for	protodeformylation	of	polycy-
clic	arenyl	substrates.	Our	data	suggest	a	stabilized	radical	
is	generated	upon	attack	of	the	aldehyde	by	tert-butoxide.	

					The	 decarbonylation	 of	 aldehydes	 is	 an	 important	 C–C	
bond-cleaving	reaction.	Decarbonylations	mediated	by	stoi-
chiometric	rhodium	complexes	at	high	temperature	like	the	
one	 shown	Scheme	1A	were	 first	 developed	by	Tsuji	 and	
Wilkinson1	and	are	notable	for	their	application	in	natural	
products	total	synthesis;2	flow-type	alternatives	have	been	
developed	to	lower	the	cost.3	The	Haller–Bauer	tert-butox-
ide-mediated	 protodebenzoylation	 has	 been	 used	 as	 the	
third	 step	 of	 aldehyde	 protodeformylation	 sequences	
(Scheme	 1B).4,5	 A	 few	 other	 examples	 of	 aldehyde	 decar-
bonylation	have	been	reported,	but	have	not	been	general-
ized.6–8	Herein	we	describe	an	ambient	temperature	tert-	
Scheme	1.	Aldehyde	Decarbonylation	Methods	

	 	

butoxide-mediated	protodeformylation	of	 inherently	non-
enolizable	 tertiary	 homobenzaldehydes	 and	 related	 com-
pounds	via	a	putative	stabilized	tertiary	benzylic	radical	B	
generated	 from	 unstable	 tert-butoxide	 adduct	A	 (Scheme	
1C).	 Invoking	 tert-butoxide	 as	 a	 nucleophilic	 mediator	 is	
somewhat	uncommon.9–11	
					In	the	course	of	developing	new	alkene	functionalization	
reactions	of	tertiary	homobenzylstyrenes	and	related	com-
pounds12	we	occasionally	observed	competing	decarbonyl-
ation	of	 the	precursor	 tertiary	homobenzaldehydes13	dur-
ing	Wittig	 olefination	 if	 excess	 tert-butoxide	was	present.	
We	sought	to	optimize	this	process	using	a	homonaphthal-
dehyde	 substrate	 (Table	 1).	 Excitingly,	 1.6	 equivalents	 of	
KOt-Bu	afforded	full	substrate	conversion	and	good	yield	at	
ambient	temperature	(entry	1).	Solvent	evaluation	revealed	
that	DMF	was	also	well	tolerated	(entry	2),	while	HOt-Bu	in-
hibited	 the	 reaction	 (not	 shown).14	 Decarbonylation	 was	
largely	prevented	when	the	reaction	
Table	1.	Optimization	of	the	Aldehyde	Protodeformyla-
tiona	

	
a	Reactions	were	conducted	on	0.1	mmol	scale	in	1.1	mL	of	sol-
vent	under	an	atmosphere	of	N2	unless	otherwise	noted.	Con-
versions	and	yields	were	determined	by	1H	NMR	using	1,3,5-
trimethoxybenzene	as	an	internal	standard.	N.d.	=	not	detected.	
b	Base	formulations	unless	otherwise	noted:	KOt-Bu	(1.6	M	so-
lution	 in	 THF);	 KOH	 (solid);	 LDA	 (2.0	M	 solution	 in	 THF/n-
heptane/ethylbenzene);	NaOt-Bu	(2.0	M	in	THF).	c	Used	solid	
KOt-Bu	and	DMF	as	solvent.	d	Reaction	was	conducted	open	to	
air.	e	Used	100%	w/w	of	molecular	sieves.	f	Base	and	1.6	equiv	
of	HOt-Bu	sonicated	for	5	minutes.	
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Table	2.	Evaluation	of	the	generality	of	the	tert-butoxide-mediated	protodeformylation	of	tertiary	aldehydes.	a	Reactions	were	con-
ducted	on	0.2	mmol	of	aldehyde	(0.09	M	in	THF)	unless	otherwise	noted,	and	yields	refer	to	isolated	yields	unless	otherwise	noted.	
b	Yield	was	measured	by	1H	NMR	using	1,3,5-trimethoxybenzne	as	an	internal	standard.	c	Product	is	volatile	under	high	vacuum.	d	
Reaction	was	executed	on	1.0	mmol	scale	of	3b.

was	executed	open	to	air,	(entry	3)	and	adding	TEMPO	in-
hibited	reaction	conversion	significantly	(entry	4).	Conver-
sion	 decreased	 slightly	 when	 molecular	 sieves	 were	 em-
ployed	(entry	5).	NaOt-Bu	was	similarly	effective	(entry	6),	
but	lithium	di-iso-propyl	amide	(LDA)	led	to	decomposition	
(entry	 7).15	 Potassium	 hydroxide	 afforded	 no	 reaction	 in	
aprotic	or	protic	solvents	(entries	8	and	9,	respectively).	
					In	terms	of	breadth	of	scope	(Table	2a),	phenyl	analogs	of	
the	 naphthyl	 substrate	 afford	 lower	 yield	 than	 the	 afore-
mentioned	 naphthyl	 analog	 (1a–1c).	 In	 particular,	 2a	 is	
only	observed	in	11%	NMR	yield,	although	the	yield	can	be	
improved	significantly	by	substituting	with	a	para	phenyl	
group,	which	affords	access	to	2d	in	67%	yield.	Strained	cy-
clic	 gem-dialkyl-containing	 substrates	 like	 α-cyclopropyl	
(1e)	 and	α-cyclobutyl	 (1f)	 are	decarbonylated	 in	 just	 9%	
and	 24%	 yield,	 whereas	 cyclopentyl	 (1g)	 and	 cyclohexyl	
(1h)	substrates	are	isolated	in	useful	yield	(44%	and	76%,	
respectively).	Other	monoaryl	substrates	evaluated	include	
tetralin	1i	and	triphenylacetaldehyde	1j,	both	of	which	un-
dergo	decarbonylation	in	good	yield	(61%	and	79%,	respec-
tively).		
				Compared	 to	 many	 of	 the	 examples	 in	 Table	 2a,	 fused	
biaryl	 substrates	 afford	 generally	 excellent	 yields	 (Table	
2b),	which	suggests	the	reaction	may	proceed	via	a	benzylic	
radical	intermediate.	For	example,	cyclopentane-containing	
product	4a	is	accessed	in	twice	as	high	a	yield	as	the	corre-
sponding	monocyclic	arene	2g.	A	1.0	mmol	scale	reaction	of	

1-naphthyl	substrate	3b	affords	the	best	yield	we	observed	
(93%	 of	4b).	 2-Naphthyl	 analogue	4c	 is	 also	 accessed	 in	
good	yield,	as	is	4-substituted	benzofuran	4d,	but	3-substi-
tuted	 benzofuran	 analogue	 4e	 cannot	 be	 prepared	 effi-
ciently;	 rather,	 a	 dearomatized	 byproduct	 is	 formed	 in	
higher	yield	(see	below).	A	number	of	benzyl-protected	in-
dole	analogues	with	 the	aldehyde	 linked	at	 the	4-position	
are	also	decarbonylated	efficiently	(3f–3j).	Decarbonylation	
of	 other	 heteroaromatic	 substrates,	 such	 as	 benzothio-
phenes,	is	also	generally	fruitful	(4k–4n),	except	when	the	
aldehyde	is	linked	to	the	3-position	as	in	3o,	which	may	be	
prone	to	dearomatization	like	3e	is.		
					We	also	 evaluated	 four	 fused	 tricyclic	 arenes	 including	
carbazoles	 (5a	 and	 5b),	 a	 dibenzothiophene	 (5c),	 and	 a	
dibenzofuran	 (5d),	 all	 of	which	 afford	 the	 corresponding	
decarbonylated	products	in	good	yield	(Table	2c).	
					Attempts	to	trap	the	putative	cleavage	intermediate	with	
exogenous	electrophiles	including	Selectfluor®,	bromoeth-
ane,	and	D2O	were	made,	but	neither	F,	nor	Br,	nor	D	were	
incorporated,	respectively	(see	Supporting	Information	for	
details).	To	rule	out	a	canonical	decarbonylation,	deuteri-
ated	aldehyde	1d-d1	was	prepared	and	afforded	a	20%	re-
duction	 in	 yield	 compared	 to	1d,	 with	 no	 deuterium	 ob-
served	by	1H	NMR	at	the	benzylic	position	of	2d	(eq	1).	Em-
ploying	d8-THF	as	a	potential	•D	trap	also	yielded	no	appre-
ciable	deuteriation	(eq	2).	
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					A	hypothetical	mechanism	is	shown	in	Scheme	1C	above,	
wherein	attack	by	tert-butoxide	forms	congested	interme-
diate	A	which	may	homolyze	to	give	stabilized	radical	B	fol-
lowed	by	hydrogen	radical	abstraction.16	In	addition	to	the	
reaction	inhibition	caused	by	air	and	TEMPO	(Table	1,	en-
tries	3	and	4),	support	for	a	radical	mechanism	is	derived	
from	the	case	of	substrate	3e,	wherein	the	alkyl	aldehyde	is	
attached	to	C3	of	the	benzofuran.	In	this	case,	dihydroben-
zofuran	7	is	isolated	as	the	major	product	(Figure	2).	This	
kinetic	product	could	manifest	as	a	result	of	delocalization	
of	the	radical	onto	the	oxygen	atom	(as	in	D→D’),	whereas	
the	corresponding	anionic	intermediate	E	is	destabilized.	

	
Figure	2.	Formation	of	exocyclic	alkene	byproduct	7	as	ev-
idence	of	a	radical	mechanism.	
				In	conclusion,	we	have	developed	a	 tert-butoxide	medi-
ated	 protodeformylation	 of	 tertiary	 homobenzaldehydes	
that	may	proceed	via	a	stabilized	tertiary	benzylic	radical	
generated	upon	homolytic	C–C	cleavage.	Efforts	 to	under-
stand	 the	 mechanism	 in	 greater	 detail	 and	 to	 apply	 the	
method	to	selected	targets	are	ongoing.		
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