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1 ABSTRACT 

Molecular dynamics (MD) simulations of proteins are commonly used to sample from 

the Boltzmann distribution of conformational states, with wide-ranging applications spanning 

chemistry, biophysics, and drug discovery. However, MD can be inefficient at equilibrating 

water occupancy for buried cavities in proteins that are inaccessible to the surrounding solvent. 

Indeed, the time needed for water molecules to equilibrate between bulk solvent and the binding 

site can be well beyond what is practical with standard MD, which typically ranges to hundreds 

of nanoseconds to low microseconds. We recently introduced a hybrid Monte Carlo/MD 

(MC/MD) method, which speeds up the equilibration of water between buried cavities and the 

surrounding solvent, while sampling from the thermodynamically correct distribution of states. 

While the initial implementation of the MC functionality led to considerable slowing of the 

overall simulations, here we address this problem with a parallel MC algorithm implemented 

on graphical processing units (GPUs). This results in speedups of 10-fold to 1000-fold over the 

original MC/MD algorithm, depending on the system and simulation parameters. The present 

method is available for use in the AMBER simulation software.  

2 INTRODUCTION 

Buried protein cavities may accommodate water molecules, and it is generally more favorable 

to fill a polar cavity with water than to leave it unoccupied.1 Water exchange between bulk and 

cavities can occur on a very long time scale, depending on the nature of the free energy surface, 

and exchange can be particularly slow if these cavities are deeply buried.2 Furthermore, large 

conformational changes may be required to allow the water to exchange with the bulk. Standard 

molecular dynamics (MD) simulations, which integrate Newton’s equations of motion, are 

computationally demanding and can require a very long time to account for large 

conformational changes, adding to the challenge of efficiently sampling water exchange in 

buried cavities.3 Thus, a conformational ensemble from MD that does not efficiently sample 

the exchange of water between bulk and buried cavities may not be with concordance with the 

proper Boltzmann distribution associated with the conditions (e.g., solvent composition and 

temperature) of the simulation. Moreover, a simulation might appear to be converged, while in 

reality it is stuck in a local minimum and unable to sample important states for the buried water 

molecules.  
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As a consequence, properly equilibrating water molecules is essential for attaining accurate 

results in MD simulations, such as calculating protein–ligand binding free energies with MD-

based methods.3–6 For example, alchemical methods that decouple the entire ligand from the 

binding site to compute absolute binding free energies,7–12 or which chemically modify the 

ligand to compute relative binding free energies,13–17 may not converge without accounting for 

resulting changes in the water occupancy of the binding site, especially for deeply buried 

cavities.18 This is particularly problematic in drug discovery applications because the system 

may appear to be converged using standard MD analysis techniques, leading to false positive 

or false negative predictions.  

Pioneering approaches to speed the equilibration of water molecules between bulk solvent and 

the protein interior have interleaved grand canonical Monte Carlo (GCMC) water moves 19 with 

standard MD steps,3,6,18,20,21 and recent work 22 has made this technology available in the 

OpenMM simulation toolkit.23 A GCMC move starts with an attempt (“try”) to insert/remove 

a water molecule to/from a random point in the simulated system. Each try is stochastically 

accepted or rejected with a probability based on its energy and the target value of the chemical 

potential of water in the system being simulated. Because the random locations at which water 

moves are tried and potentially accepted can be in the protein interior or in bulk solvent, such 

moves are able to equilibrate water between the protein interior and exteriors, as desired. 

However, the GCMC approach still poses some challenges. One results from the fact that the 

acceptance probability of a given try depends on the desired chemical potential of water, and 

additional work is typically needed to establish this value for the temperature, pressure, 

and composition, of the system being simulated. In addition, the GCMC/MD approach 

generates trajectories with a time-varying number of water molecules, a feature that can 

complicate bookkeeping. Finally, the probability of accepting a GC water insertion or removal 

move is typically low in condensed phase systems, so the method can be inefficient.  

We recently introduced an alternative approach to equilibrating water in simulations, where 

translational MC moves allow water to jump between the protein interior and the bulk, while 

the number of waters in the simulation remains constant,24 and furthermore showed that this 

approach can improve both the precision and the accuracy of calculations of protein-ligand 

relative binding free energies.5 This MC/MD approach avoids the need of a GCMC/MD method 

to determine what chemical potential to use for each set of simulation conditions, and it also 

avoids any bookkeeping and software issues that might result from the time-varying number of 

water molecules. Although we took several algorithmic measures to speed the MC/MD 

method,24 integration of the MC steps with MD nonetheless markedly slowed the simulations 
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in our initial implementation. We have also collaboratively explored the use of nonequilibrium 

candidate MC (NCMC) moves to increase the acceptance rate of the large translational MC 

water moves in this approach,25 but efficiency remains a concern.  

Here, we present a different approach to improving the efficiency of the translational MC 

method. We describe the design, implementation, and validation of a new version of the 

standard MC/MD algorithm within the AMBER simulation code 26,27 that utilizes a parallel MC 

algorithm implemented on graphical processing units (GPUs), resulting in speedups of roughly 

10- to 1000-fold over the original MC/MD algorithm. The present method combines an MC 

method that allows multiple moves to be tried in parallel while still sampling configurations 

from the canonical distribution, with GPU acceleration of key bottleneck steps in the algorithm.  

3 METHODS 

 DESCRIPTION OF THE ALGORITHM 

3.1.1 WORKFLOW 

The present algorithm iteratively alternates a block of NMD standard MD steps and a 

multi-try MC step in which NMC trial moves are processed in parallel, as detailed below. This 

is similar to our prior algorithm,24 where blocks of NMD steps alternated with blocks of NMC 

single-try MC steps. Each block of MD starts from the configuration present at the end of the 

prior MC step and vice versa. The velocities of all the atoms in the system at the start of each 

MD block are the same as those at the end of the prior MD block; that is, a moved water 

molecule carries its velocities. In addition, the orientation of a moved water is not modified, as 

the orientation of waters in the bulk is randomized by the MD blocks. Trajectory snapshots 

(atomic coordinates and velocities and system properties such as energy) are saved during the 

MD block, but not during MC.  
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Figure 1: Flowchart of the parallel Monte Carlo/Molecular Dynamics procedure described in 

this work. Steps within the blue frame constitute the parallel MC part (see text for details). MC 

preparation comprises generation of the steric grid and the grid with the neighbor list for coarse energy 

calculations. Full energies are computed with the particle-mesh Ewald treatment of long-ranged 

electrostatics exactly as done during an MD step. Coarse and full energies are computed on the GPU, as 

are the steric grid and the coarse energy neighbor list.  

3.1.2 PARALLELISM THROUGH MULTI-TRY MONTE CARLO STEPS 

To facilitate an efficient GPU implementation, we moved from traditional serial MC to 

a parallel MC algorithm (previously described in the context of waste-recycling MC) in which 

multiple moves are tried in each step.28,29 The energies of all the move attempts are evaluated 

in parallel on the GPU, leading to dramatic wall-clock speed-up.  

Each multi-try MC step starts with the system in an initial state indexed as i = 0 and 

with energy 𝐸0. From this state, additional trial states i = 1…NMC are generated in which a water 

molecule, chosen with uniform probability from those within a region defined in the frame of 

reference of a residue, termed the MC region (Section 2.3), is moved to a sterically feasible 

location chosen with uniform probability within the same MC region. Thus, water moves can 

only occur within a single region, preserving detailed balance. Sterically feasible locations are 

identified via a steric grid within the MC region, as previously detailed.24 For each trial move, 

a fast but coarse approximation to the energy change, Δ𝐸𝑖
𝑐𝑜𝑎𝑟𝑠𝑒 is then computed. If this energy 

difference is lower than a user-defined cutoff, i.e., Δ𝐸𝑖
𝑐𝑜𝑎𝑟𝑠𝑒 < Δ𝐸𝑐𝑢𝑡 then a full PME energy 

calculation is done to provide energy 𝐸𝑖. Otherwise, i.e., if Δ𝐸𝑖
𝑐𝑜𝑎𝑟𝑠𝑒 > Δ𝐸𝑐𝑢𝑡, the energy of 

this trial state is treated as if it were infinite. 

From the energies of the initial (i = 0) and trial (i = 1,…NMC) states, we obtain the 

following Boltzmann factors  

𝑞𝑖 = 𝑒
−𝐸𝑖

𝑅𝑇⁄  
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where R is the gas constant and T is absolute temperature. Finally, one of the NMC + 1 states 

(initial or trial) then is selected according to the following probabilities:  

𝑝𝑖 =
𝑞𝑖
𝑞𝑠𝑢𝑚⁄  

where  

𝑞𝑠𝑢𝑚 = ∑ 𝑞𝑖

𝑁𝑀𝐶

𝑖=0

 

Note that the rationale for trying only sterically feasible locations and for spending the computer 

time to compute the full energy only for tries with a low approximate energy is that any very 

high energy state will almost certainly not be accepted as the new state of the system and so 

can be discarded without a costly full energy calculation. 

3.1.3 DEFINITION OF THE MC REGION 

The definition of the MC region is modified from the prior version of our code to a 

method that is compatible with all types of simulation boxes (e.g., rectangular prism, truncated 

octahedron). Here, the MC region in which waters are moved with MC steps is a rectangular 

prism with user-defined dimensions and centered at the center of coordinates of a user-defined 

set of atoms selected with the AMBER masking function. This selection is defined with the 

input keyword mcwatmask, and the keyword mcligshift is used to define the length of the grid 

along each axis, in Å. For example, a value of 10 means that the grid will extend ±10 Å from 

the center along each axis. Thus, one may enhance water exchange in a buried binding pocket 

by centering the MC region on a residue bordering the pocket and making the region large 

enough that it extends into the water outside the protein. If the grid is not defined, the grid 

dimensions will be the entire simulation box.  

3.1.4 GPU IMPLEMENTATION 

We transferred multiple components of the MC process from the CPU to the GPU. Most 

importantly, the values of Δ𝐸𝑖
𝑐𝑜𝑎𝑟𝑠𝑒 for all trial moves in the MC step are evaluated in parallel 

on the GPU.The full AMBER energies are evaluated on the GPU with the PME treatment of 

long-ranged electrostatics for each trial configuration i with Δ𝐸𝑖
𝑐𝑜𝑎𝑟𝑠𝑒 > Δ𝐸𝑐𝑢𝑡. As described 

in Section 3.2, this approach takes advantage of the multi-try MC method. In addition, two 

setup steps that are time consuming on the CPU are now executed on the GPU. Thus, for both 

the bit grid based steric grid as well as the subsequent grid-based neighbor list Ecoarse 

calculations, hundreds of trial moves can be done in parallel by utilizing the GPU. As previously 
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detailed,15 the coarse calculation grid covers the entire simulation box and has a coarse spacing 

set to half the distance cutoff used for nonbonded interactions. Each coarse grid point is 

assigned a list of the atoms in its corresponding voxel, and 𝐸𝑐𝑜𝑎𝑟𝑠𝑒 is computed by considering 

the interactions of a water molecule with the atoms in the same and the neighboring two coarse 

voxels in each direction.  

 EVALUATION AND OPTIMIZATION OF THE ALGORITHM 

3.2.1 MAINTAINING THE BOLTZMANN DISTRIBUTION 

We wished to confirm that the algorithm maintains detailed balance and thus yields a 

correct Boltzmann distribution. To do this, we tested the method on a hot water gas for which 

the acceptance rate for new trial water positions is high, so that any error introduced by the MC 

procedure would be apparent from a difference in the energy distribution relative to a plain MD 

simulation of the same system with a suitable thermostat. The test system is composed of 97 

gas phase water molecules at 500 K in a constant volume box with a side length of about 56 Å 

along each axis. To maximize the effect of the MC moves, we used an MC region that covered 

the entire simulation box.  

The MD component of the MC/MD calculations and the pure MD reference simulations 

used the SHAKE algorithm30,31 with the default tolerance of 0.00001 Å. Because these 

particular calculations were run at 500K, the atomic speeds are large, so the integration time 

step was set to 0.2 fs to minimize deviations from the Boltzmann ensemble. This maximizes 

compatibility with the MC steps, for which there are no finite time-step errors. (For the other 

simulations in this work, the MD time step was 2 fs.) The reference MD simulation was run for 

20 ns, and the MD energy was recorded every 10 steps, which resulted in 107 energy 

calculations. The MC/MD calculations alternated runs of 10 MD steps with an MC step with 

NMC = 10. As our MC/MD method is optimized to work for protein-ligand complexes and small 

cavities, using our method on a gas-phase system that is composed of mostly cavities is highly 

inefficient and is therefore considerably slower compared to MD. However, we think it is the 

most accurate way to examine the thermodynamic character of the system. We ran eight 

MC/MD calculations, each with 1.25 × 106 cycles, for a total of 107 energy calculations. All 

MC/MD and MD runs started with the same initial configuration of the equilibrated gas but 

used different random number seeds.  



8 

 

3.2.2 EFFECTS OF PARAMETERS ON EFFICIENCY FOR A PROTEIN-LIGAND COMPLEX   

Decreasing the value of Ecut speeds the MC step by reducing the number of costly full 

energy calculations, but it also risks perturbing the results due to excessive reliance on the less 

accurate coarse energy calculation. We explored this tradeoff, as well as the consequences of 

varying the number of MC tries per step, NMC for a protein-ligand test system.  

We used the Major Urinary Protein (MUP) structure with the PDB ID 1ZNK.32 The 

system was constructed using the TIP3P water model,33 the ff14SB34,35 force field for the 

protein, and GAFF36 for the ligand. The protein-ligand complex was solvated in rectangular 

boxes using tleap with initial buffer sizes of 11 Å. The net charge of the system was neutralized 

by addition of Na+. The simulations were performed on GPUs with AMBER20’s GPU-

accelerated PMEMD simulation code.37–40 During equilibration, Cartesian restraints to the 

starting structure were applied to all ligand and protein heavy atoms, with a force constant of 

5 kcal mol-1 Å-2. After a brief minimization (50 steps of steepest descent plus 450 steps of 

conjugate gradient), the system was sequentially heated at a fixed volume with linear ramps 

joining the temperatures 5, 100, 200, and 298.15 K, at 20 ps per ramp, with each ramp followed 

by an additional 20 ps with pressure coupling. All simulations used a Langevin integrator with 

a 2 fs timestep with a friction coefficient of 2 ps-1. Heating steps were run in NVT, while 

equilibration and production steps were run in NPT with pressure regulated at 1 atm with a 

Monte Carlo barostat.41 The SHAKE algorithm30,31 was used to constrain hydrogen bond 

lengths. The standard AMBER protocol for non-bonded interactions was followed. Thus, the 

particle mesh Ewald (PME) method42 was used for periodic boundary conditions with an 8 Å 

cutoff for the short-ranged PME contribution as well as LJ interactions. A long-range 

continuum correction was used for the dispersive term.43 Cartesian restraints with a force 

constant of 5 kcal mol-1 Å-2 were applied to the Cα atoms and ligand atoms during the 

production run. 

For this MUP system, we checked the effects of varying threshold of energy, Ecut, to send 

an MC try from a fast, coarse energy calculation to a slower, full pmemd calculation.24 The 

higher the value, more MC tries are sent to full pmemd calculation rather than being 

immediately rejected, and therefore the runtime is slower. Note that using a higher value can 

lead to an increase in the acceptance rate, but not a lower acceptance rate. This is because 

configurations that would otherwise have been rejected get a second chance to be accepted 

following a full energy calculation, as detailed in Section 4.2. We also investigated the effect 

of NMC on the results and timings for this system. Thus, the number of MD steps per cycle was 

held at 103, while NMC was set to the following values: 103, 104, 2.5×104, 5×104, and 105.  
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 HARDWARE USED  

All simulations were performed on Nvidia GeForce GTX 1080 Ti GPUs, with an 

Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GH. 

 APPLICATION TO A BURIED CAVITY IN T4 LYSOZYME 

We used our MC/MD method to analyze the equilibrium water density in the moderately 

polar, buried, cavity44 of the T4 Lysozyme L99A/M102Q double mutant. We used the structures 

of 2RBO45 and performed two MD simulations where the Cα atoms were restrained. One 

simulation used only MD and the second used MC/MD; both included 200 ns of MD. In the 

MC/MD simulation, an MC step with NMC = 106 was performed after every 103 MD steps. We 

then used the GIST software46 within cpptraj47 to compare the water densities in the buried 

cavities between the two simulations.  

4 RESULTS 

 THERMODYNAMIC TEST SYSTEM  

Our thermodynamic test system, gas-phase water at 500K, allows us to check that we 

maintain the correct Boltzmann distribution for a system that has a large number of accepted 

MC tries; here ~57% of the MC steps resulted in a new water configuration. The potential 

energy distribution provided by the MC/MD method agrees closely with that provided by a pure 

MD simulation of the same system (Figure 2A). In addition, the results are highly consistent 

across all eight MC/MD runs, as shown in Figure 2B, which shows all simulations starting from 

the same configuration energy, diverging as sampling proceeds, and converging to very similar 

mean energies. For pure MD, the mean potential energy over 107 energy evaluations was −126.8 

kcal mol–1, while the mean potential energy for MC/MD for 107 energy evaluations divided into 

8 separate 1.25 × 106 runs was -127.0 kcal mol–1 (Figure 2B). The good agreement between 

pure MD and MC/MD supports the validity of the parallel MC method and its correct 

maintenance of detailed balance. Hence, it can be used to compute experimental observables, 

such as binding free energies. 
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 PARAMETER OPTIMIZATION AND EFFICIENCY  

We examined the effects of Ecut and NMC for the MUP protein-ligand test system. Setting 

Ecut to 15, 12, and 10 kcal mol-1 resulted in 0.002, 0.0006 and 0.0002, of MC tries, respectively, 

being sent for full energy calculations. However, the fraction of tries accepted does not change 

significantly between these Ecut thresholds (Figure 3A). This indicates that using the lower 

threshold tried here, 10 kcal mol-1 is sufficient and that there is no need for a higher, and thus 

more rigorous, energy threshold, which results in a slowdown of the program, as shown in 

Figure 3B. In addition, as expected, increasing the number of MC tries (NMC) increases the 

number of acceptances, though with somewhat diminishing acceptance rates for higher values 

of this parameter (Figure 3A). Presumably, there are some MC cycles where the water molecule 

chosen is particularly stable and/or there are few trial sites available where the water could 

make favorable interactions with its surrounding atoms.  

Figure 2: A) Probability distribution of potential energies for MD (red, 107 energy 

calculations) and MC/MD (blue, 107 energy calculations). The energies were divided to bins of 0.1 

kcal mol–1. B) Cumulative average of the potential energy. Red MD simulation. Gray eight 

replicates of the MC/MD simulations. 
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Figure 3: Results for the MUP test system. A) Mean number of accepted tries over three 

replicates with NMD = 103 and several values of NMC, given in the legend, over a total of 106 cycles. B) 

Mean runtime for the same three MC/MD replicates with the present code and for our prior 

implementation with serial MC on the CPU (AMBER20). The value for MD without any MC is 

indicated on the y axis. 

The present parallel, GPU-based MC implementation runs dramatically faster than our prior 

serial, CPU-based MC code, which is reported as AMBER20 in Figure 3B. Thus, the new 

algorithm is ~10 times faster for NMC = NMD = 103 and ~270 times faster for NMC = 105 with 

NMD = 103. Furthermore, in the AMBER20 version, increasing NMC past 103 results in an 

approximately proportional increase in computer time, indicating that the time comes to be 

dominated by the time required for the MC steps. For the current version, in contrast, the cost 

of the MC steps remains considerably less than that for the MD steps.  

This speed enhancement has important implications for the integration of the present 

technology into absolute and relative binding free energy calculations. Thus, for one of our 

prior relative binding free energy calculations (the W1→W2 perturbation, decharge windows), 

using MC/MD to equilibrate a single λ window took ~9 hours,5 while in the current version, 

this only requires ~30 seconds, a 1000x speedup.  

 ILLUSTRATIVE APPLICATION TO A CAVITY IN T4 LYSOZYME  

The present MC/MD method may be applied to study the hydration of buried cavities. Here, 

we demonstrate this use case for the engineered L99A/M102Q mutant of T4lysozyme cavity.44 

Simulations with MC/MD and pure MD were initiated with no water molecules in cavity 

(Figure 4A). The MC/MD simulations provided a smooth, physically plausible water 
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distribution within the cavity (Figure 4B), while water did not penetrate to the cavity in a pure 

MD simulation (Figure 4C).  

 

Figure 4: Buried cavity in the T4 Lysozyme double mutant L99A/M102Q, also showing residue 

GLN 102, which was used to define the MC region. A) empty cavity before simulations. B) cavity with 

water oxygen atom isodensity contours (blue: 0.1; red: 2.0, as multiples of bulk density), based on 

MC/MD simulations and computed with GIST in cpptraj. C) empty cavity observed from a pure MD 

simulation of roughly equal time to the MC/MD simulation shown in panel B. 

5 DISCUSSION 

The present MC/MD method achieves speedups of 10-1000x over our prior version by 

using a parallel MC algorithm that is effectively ported to the GPU. A further update allows it 

to support all simulation box types by defining the steric grid not in terms of the boundary but 

in terms of the distances from a molecular component of interest, such as a ligand or a residue 

at the edge of a binding pocket. The ability to equilibrate buried water molecules with minimal 

slowdown means this can be integrated with alchemical free energy calculations and performed 

as part of any system setup to establish preferred locations of water molecules. This is important 

as it solves the need for a priori knowledge regarding the hydration state of the cavity and 

allows for water sampling in the context of a flexible protein. It may also find application for 

structural optimization of water molecules in crystallographic or cryo-electron microscopy 

structures, and to accelerate sampling of structural processes that involve the penetration of 

water into the protein interior, potentially including protein conformational changes or full 

denaturation. It may be thought that the acceptance rate would be higher for GCMC than for 

the present MC method, because a trial move for GCMC does not require paying the penalty of 

removing water from its initial location. In fact, this should not be the case, as the acceptance 

probability for a move to a given location with GCMC should be the same as the mean 
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acceptance probability to the same location from a simulation of bulk water having the same 

chemical potential as that used in the GCMC calculation.  

A typical MC simulation of water makes small incremental water moves, with 

correspondingly small energy changes, and thus can have a large acceptance probability for 

these moves. In contrast, here the whole point is to make large translational MC moves that 

allow jumps between the protein cavity and the surrounding water. This leads to a rather low 

acceptance rate and motivates efforts to maximize efficiency. Following the marked advance 

in speed described here, possible future directions may include omitting moves that would be 

only within the surrounding water or within the cavity, as these are not very interesting and are 

accounted for by the MD steps, while being careful to avoid any possible violations of detailed 

balance. Another direction is to allow small clusters of water to move together in order to 

increase the rate of acceptance for moves into large nonpolar cavities. However, the present 

method is already highly efficient, and is currently available for use in the AMBER simulation 

software. 
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