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Abstract

Human analysis of research data is slow and inefficient. In recent years machine
learning tools have advanced our capability to perform tasks normally carried out
by humans, such as image segmentation and classification. In this work, we seek to
further improve binary classification models for high throughput identification of
different microstructural morphologies. We utilize a dataset with limited observa-
tions (133 dendritic structures, 444 non-dendritic) and employ data augmentation
via rotation and translation to enhance the dataset six-fold. Then, transfer learn-
ing is carried out using pre-trained networks VGG16, InceptionV3, and Xception
achieving only moderate F1 scores (0.801 to 0.822). We hypothesize that feature
engineering could yield better results than transfer learning alone. To test this,
we employ a new nature-inspired feature optimization algorithm, the Binary Red
Deer Algorithm (BRDA), to carry out binary classification and observe F1 scores
in the range of 0.96.

1 Introduction

Materials science is centered around the concept of understanding, extracting, and exploiting re-
lationships between structure, property, processing, and characterization of materials. Images of a
material’s crystal or microstructure can be invaluable in establishing structure-processing-property
linkages. However, the human eye itself can only resolve objects as small as ∼50µm. Investi-
gating smaller details than this requires microscopy like optical microscopy, transmission electron
microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), and
others. Each of these techniques offers different resolution limitations along with other advantages
and disadvantages.

Analysis of microstructure images can yield an enormous amount of information about a material!
For example, some alloys exhibit a dendritic structure characterized by the presence of myriad
snow-flake-like dendrites that form during the solidification process of casting molten metals. Den-
drites can form when the interface of the solid cast and the liquid alloy has a lower temperature
as compared to the remaining melt resulting in a temperature gradient known as constitutional
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undercooling (Hurle 1961). Since dendrites can modify the mechanical properties in beneficial or
detrimental ways, (Wang, Lee, and Mclean 2003) it is important to classify microstructures of ma-
terials as dendritic and non-dendritic.

Traditionally, humans have leveraged training and extensive domain knowledge to interpret and
categorize microscopy images. This poses challenges for interdisciplinary research as well as au-
tomated, human-out-of-the-loop experimentation. Moreover, even highly trained humans are still
prone to errors and bias during materials characterization. This gave rise to the implementation
of computational methods on the study of dendritic microstructures which started back in 1998 to
focus on the evolution of the said microstructures using phase-field modeling (Provatas, Golden-
feld, and Dantzig 1998). Later attempts have been made on three-dimensional reconstruction of
microstructures captured from different microscopes which have helped in getting better insights
about the mechanical properties (Alkemper and Voorhees 2001; Uchic 2011). But all these works
were simulation-based and time-consuming.

An alternative to physics-based models is statistical, data-driven models that trade accuracy for
speed by leveraging correlations and patterns in data. Machine learning models have been used
extensively to analyze various microstructural morphologies over the last two decades(Yang et al.
2021). One such example is the development of optimal morphology derivation from a given mi-
crostructure using Bayesian optimization and kinetic Monte Carlo simulation(Tran et al. 2020).
Transfer learning has been deployed for microstructure reconstruction and structure-property pre-
dictions (Li et al. 2018) while support vector regression and multi-layer perceptron (MLP) is used
to predict information related to dendrite formation to improve high-temperature creep and fatigue
resistance (Jiang et al. 2018). Different types of industry-relevant titanium alloy microstructures
can now be classified using convolution neural networks (Baskaran et al. 2020). A particle swarm
optimization algorithm has been deployed to classify the casting techniques resulting in dendritic
and non-dendritic microstructures in aluminum metal matrix composites (Shabani et al. 2015). Ad-
vanced computer vision techniques have even been utilized to generalize microstructure morphology
classification beyond individual alloy systems(Chowdhury et al. 2016; Impoco and Tuminello 2015;
Nikolić, Štajduhar, and Čanadija 2021).

In this work, we turn to a recently reported, nature-inspired algorithm called Binary Red Deer
Algorithm (BRDA) (Fard and Hajiaghaei-Keshteli 2016) to implement feature engineering to clas-
sify microstructural morphologies as dendritic or non-dendritic. For reference, we also present a
comparative study between the transfer learning approach and the BRDA feature engineering ap-
proach in classifying microstructural morphologies. We show that BRDA outperforms advanced
transfer learning techniques and has promise in the evolving field of computer vision in materials
informatics.

2 Methodology

The dataset and code used for this work and as described in the following sections are available at
https://github.com/stochasticmaterialism/Dendritic-Non-Dendritic-Classification.
An image dataset consisting of two different types of micrographs, dendritic and non-dendritic, has
been considered in this work. The number of images in the dendritic class is 133 while that in the
non-dendritic class is 444 which is quite low from a machine learning standpoint. Consequently,
we have performed data augmentation on this dataset by rotating the images at various angles
which have given us a six-fold increase in the number of images per class. The number of images
after data augmentation in the dendritic and non-dendritic classes are 931 and 3108, respectively.
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Following this, we have used transfer learning and feature engineering approaches as elaborated in
subsection 2.3 and subsection 2.4 respectively to develop binary image classification models on the
augmented dataset.

2.1 Dataset

The dataset has been built using the Dissemination of Information Technology for Promotion of
Materials Science (DoITPoMS), a web-based initiative that started in the Materials Science and
Metallurgy Department at Cambridge University (Barber, Leake, and Clyne 2007). DoITPoMS
comprises a collection of micrographs covering a wide range of specimen types like ceramic, metal
or alloy, device, composite, polymer, foam, etc., and microscopy techniques like optical microg-
raphy, SEM, or TEM. Information related to chemical composition and processing technique is
also available as metadata for every microstructure. Additionally, in some cases, microstructures
corresponding to a particular specimen are available at different magnifications. We have collected
a total of 577 micrographs across 21 different alloy systems and based on their morphologies, we
have divided them into two categories, dendritic and non-dendritic comprising 133 and 444 images
respectively. Using these 577 micrographs, we have prepared training and test sets. The training set
consists of 93 dendritic and 310 non-dendritic micrographs while the test set comprises 40 dendritic
and 134 non-dendritic micrographs. This proposed work aims to develop a binary image classifi-
cation model that can distinguish microstructures having dendritic morphology from non-dendritic
ones. Figure 1 shows some example images used to build the proposed binary classification models.

Figure 1: Example micrographs considered in this work.
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2.2 Data Preprocessing

At first the micrographs are converted to single channel, i.e., grayscale format from three-channel
RGB format using BGRtoGRAY function available in OpenCV 4.5.3 (Bradski and Kaehler 2008)
library. Each micrograph has a scale bar at the bottom indicating the magnification at which it
has been recorded. The scale bars are not a part of the morphologies of the micrographs and
have no significant information towards the classification objective. Consequently, the scale bar
potion has been removed by cropping the grayscale micrograph followed by down-sampling to a
dimension of 300 × 300. This ensures a uniform 300 × 300 parameter matrix for all the images
present in the dataset without encountering any information loss. The down-sampled micrographs
are augmented using ImageDataGenerator function available in Keras 2.4.0 (Géron 2019) to
increase the number of images in order to achieve better classification results. Each micrograph is
rotated at five different angles, 50o, 100o, 150o, 200o, 250o, and 300o to the original micrograph. This
results in six new representations of the initial micrograph. Down-sampling, and data augmentation
has been performed separately for the training and test sets to ensure that the six new versions of
any micrograph belong to the set, i.e., training or test where the original micrograph is present.
Figure 2 delineates the augmented images and the corresponding initial micrograph for the Cu-Ni
alloy system having dendritic morphology. Data augmentation gives us a six-fold increase in the
number of images with 931 micrographs in the dendritic category and 3108 micrographs in the
non-dendritic category. This augmented dataset is now used to build binary image classification
models to distinguish the dendritic morphologies from the non-dendritic ones.

2.3 Transfer Learning Approach

Three different pre-trained CNN architectures; VGG-16 (Simonyan and Zisserman 2014), InceptionV3
(Szegedy et al. 2015) and Xception (Chollet 2017) have been used. These networks have been
trained and validated separately using the augmented dataset. At first, the transfer learning ap-
proach has been implemented to train the classification models. Initially, all the layers were frozen
and the weights corresponding to training on the ImageNet dataset (Deng et al. 2009) were used
to validate the networks on the augmented dataset. Subsequently, the Edisonian approach was
followed by freezing and unfreezing different layers. For frozen layers, weights corresponding to
training on the ImageNet dataset were used while the non-frozen layers were trained to the training
set. Figure 3 and Figure 4 show the architectures along with the frozen and unfrozen layers for
VGG16 and InceptionV3 networks, respectively, that have given the maximum validation accuracy
on the augmented dataset where grey boxes indicate the frozen layers. In the case of VGG16, the
first four convolution layers have been frozen. This is followed by three repeating units of three
convolution layers separated by a max pool layer. For each of these three units, a general pattern
of freezing the middle convolution layer has been observed. The remaining two fully connected
layers and softmax layers have been trained on the augmented dataset. In InceptionV3, the first
five convolution layers have been frozen. The layers at the end in the form of fully connected and
softmax have been trained to our dataset. In between, we have three different types of inception
modules (L1, L2 and L3) where convolution layers have been frozen at random based on a trial and
error approach. In the case of Xception, transfer learning did not prove to be efficient and all the
layers were trained on the augmented dataset.

For each of these network, the batch size is kept 2827 which is equal to the size of the training set.
This ensures that at every iteration during training, all the entire training set used. Four differ-
ent optimizers were used for each of the three networks, Nesterov Accelerated Gradient (NAG)

(Dozat 2016), Adagrad (Lydia and Francis 2019), RMSprop (Mukkamala and Hein 2017), and ADAM

(Zijun Zhang 2018). Training has been performed separately considering these four optimizers for

4



Figure 2: Figure showing (a) The down-sampled micrograph and (b)-(g) The augmented images
obtained by rotating the initial micrograph at six different angles of Cu-Ni alloy system

all three networks. Hyperparameter tuning was performed for each of these optimizers for all three
networks to determine the optimum value of learning rate. Loss function is set as categorical

cross entropy (CCE) (Zhilu Zhang and Sabuncu 2018). The best validation accuracies by vali-
dating on the test set obtained for VGG16, InceptionV3 and Xception considering the discussed
architectures are 0.8313, 0.8688 and 0.8594 respectively.
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Figure 3: Architecture of VGG16 network depicting the frozen and unfrozen layers

Figure 4: Schematic diagram showing (a) Architecture of Inception3 network depicting the
frozen and unfrozen layers, (b) Inception module 1 (L1), (c) Inception module 2 (L2) and
(d) Inception module 3 (L3)

2.4 Feature Engineering Approach

Since InceptionV3 has given the maximum validation accuracy among the three pre-trained net-
works, it is used as a feature extractor on the training and test sets separately. This gives 12,289
features per image. This feature set corresponding to the training set is used to train two ma-
chine learning classifiers, random forest (RF) (Breiman 2001) and MLP (Gardner and Dorling
1998). The F1 scores of classification as obtained on the feature set corresponding to the test set
for RF and MLP are 0.488 and 0.598 respectively. To improve upon the classification results, a
meta-heuristic optimization algorithm, BRDA (Fathollahi-Fard, Mostafa Hajiaghaei-Keshteli, and
Tavakkoli-Moghaddam 2020), has been deployed on the feature set of the training set. BRDA re-
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duces the size of the feature vector to 6072 features per image. The indices of the features retained
in the optimized feature set corresponding to the training set is used to optimized the feature set
of the test set. Following this feature selection, RF and MLP have been trained on the optimized
feature set of the test set and the F1 scores on the optimized test feature set for RF and MLP are
0.963 and 0.969 respectively. BRDA has been delineated in subsection 2.5.

2.5 Binary Red Deer Algorithm (BRDA)

Red Deer Algorithm (RDA) is a recently proposed nature-inspired meta-heuristic optimization
algorithm (Fazli, Fathollahi-Fard, and Tian 2019) which is derived from the mating behavior of a
sub-species of red deer known as Scottish red deer. During a breeding season, the male red deer
(RD) begin the mating ritual by roaring which attracts the female counterparts called hinds. These
male RDs’ are categorized as commanders, ones having higher roaring intensity, and the rest are
called stags. Every commander forms a harem, a group of hinds that mate with that particular
commander. Harem size depends on the power of the commander defined by its fitness value.
Besides, a commander also can mate with hinds belonging to other harems. Stags, on the other
hand, mate randomly with their nearest hinds. This phenomenon of mating ensures a competitive
evolution at each stage of the algorithm which explores the entire space of RDs’. In this work,
we aim to use a binarized form of RDA called Binary Red Deer Algorithm (BRDA) for feature
selection to choose an optimized subset of features from the whole set of features obtained from
the augmented dataset using InceptionV3. The aim here is to maximize the classification accuracy
simultaneously minimizing the number of features. Therefore, in this work, feature selection is
modeled as a binary optimization problem, where the solutions are limited to {0,1}. In the BRDA,
we first randomly initialize a vector of real numbers called RD of size m, the total number of features
in the feature set.

RD = [X1, X2, X3, ..., Xm] (1)

RD is converted into a binary vector (BRD) comprising only 0 and 1 using the Sigmoid function
shown in Equation 2. Here 1 indicates that the corresponding feature is selected in the feature subset
and vice versa for 0. The real values of RD are converted into binary values using a threshold of
0.5 as expressed in Equation 3.

S(x) =
1

1 + e−x
(2)

Xi =

{
1 if S(Xi) > 0.5

0 if S(Xi) ≤ 0.5
(3)

where i ∈ [1,m]. The quality of the RDs at every iteration of the algorithm is evaluated by a fitness
function as expressed in Equation 12.

2.5.1 Initialization of RD population

At first, an RD population of size N is initialized randomly. Based on fitness values, the top RDs
represent the males (N1), and the rest of the RDs represent the hinds (N2). The fraction of the
RD to be considered as male is a hyperparameter for BRDA and needs to be specified manually.

2.5.2 Roaring male RDs

To successfully roar and attract hinds, the male RDs may change their positions according to
Equation 4. If the fitness value of the male RDs at the new position is better than that in the
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original position, then the position of the RD is updated and roaring is considered to have been
successful. Otherwise, the old position is retained.

new =

{
old+ a1 × ((upper − lower)× a2 + lower) if a3 ≥ 0.5

old− a1 × ((upper − lower)× a2 + lower) if a3 < 0.5
(4)

Here, old is the original position of the male RD whereas new is the position to which a male RD
moves during the roaring procedure. a1, a2 and a3 are randomly generated numbers from a uniform
distribution of 0 and 1 while upper = 1 and lower = −1 are the upper and lower bounds of the
search space of the entire RD population.

2.5.3 Distinguishing Commanders from Stags

Among the male RDs, the top N3 are selected as commanders according to Equation 5

N3 = floor (γ ×N1) (5)

where γ ∈ [0, 1] is a hyperparameter which is to be specified manually. Each of these commanders
competes with the N1−N3 number of stags randomly and two new solutions, New1 and New2 are
generated as expressed in Equation 6 and Equation 7 respectively. The position of the commander
is updated using the solution which results in the best fitness value among the commander, the
stag, and the two new solutions.

New1 =
Commander + Stag

2
+ (b1 × ((upper − lower)× b2) + lower) (6)

New2 =
Commander + Stag

2
− (b1 × ((upper − lower)× b2) + lower) (7)

Commander + Stag represents addition of the two vectors corresponding to commander and stag
respectively. b1 and b2 are generated using a uniform distribution function in [0,1].

2.5.4 Formation of Harems

Since this is a minimization problem, better quality of solution is determined by a lower fitness
value. Therefore, we find the power of each commander according to Equation 8

Pj = F − fj (8)

where Pj and fj are the power and fitness value of the j th commander respectively and j ∈ [1, N3].
F is the sum of fitness values of all commanders. Equation 9 represents the fraction of the total
number of hinds that form a harem with a particular commander.

N4j = floor {Pj ×N2} (9)

where N4j is the number of hinds that belongs to the j th harem.

2.5.5 Mating of Commanders

In each harem, all hinds mate with the respective commander to produce offspring according to
Equation 10.

offspring =
Commander +Hind

2
+ (upper − lower)× c (10)

Here c is a randomly generated number between 0 and 1. Besides, all the commanders can mate
with hinds from all other harems. Consequently, a new population of RDs is generated which are
stored in offspring pool
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2.5.6 Mating of Stags

Each stag mates with its nearest hind irrespective which of harem the hind belongs to. The distance
between a stag and all hinds is calculated by Equation 11.

dk =

√∑
k∈N2

(
stagk − hindjk

)2
(11)

where dk is the distance between a stag and the j th hind. The hind at the minimum distance is
selected for mating, which takes place according to Equation 10, with the stag replacing the male
commander. The offspring formed in this process are added to the offspring pool.

2.5.7 Selection of Next Generation

After the mating process is completed, the offspring from the offspring pool are shuffled with the
original population. The top N RDs are selected according to fitness values as the next generation
and the rest of the solutions are discarded.

2.5.8 Terminating the BRDA

The process is stopped when iter number of iterations are completed. The RD with the best fitness
value in the final generation represents the optimized feature subset which is used to train the RF
and MLP classifiers.

2.5.9 Fitness Evaluation

Fitness quantifies the quality of the BRDA solution. A learning algorithm based on an RF classifier
is used to evaluate the performance of a particular feature subset along with the whole feature set.
The fitness function consists of two components: classification accuracy and the number of features.
Our objective is to achieve the highest classification accuracy minimizing the number of features.
Higher classification accuracy and fewer features imply a low fitness value. The fitness function is
shown in Equation 12.

Fitness = κ× |Selected|
|Total|

+ (1− κ)× ψ (12)

where |Selected| is the number of features in the selected feature subset, |Total| is the total number
of features of the dataset, ψ is the classification error of the feature subset, and κ ∈ [0, 1] indicates
the relative weight assigned to the number of features and the classification error.

The time complexity of BRDA is expressed as O(iter ∗N2∗(t+m)) where t is the time complexity
in calculating the fitness of a particular RD using the RF classifier.

3 Results and Discussion

The code to build the transfer learning and feature engineering-based models have been devel-
oped predominantly by using two Python libraries, TensorFlow Core v2.5.0 and Scikit-Learn

0.24.2. The optimal learning rate for each of the four optimizers: NAG, Adagrad, RMSProp, and
ADAM is determined experimentally on a trial and error basis. Figure 5 shows the variation of
validation accuracy with the learning rate for all four optimizers across all three network architec-
tures as elaborated in subsection 2.3. Using NAG optimizer, the validation accuracies for VGG16

9



Algorithm 1 Algorithm of BRDA

Input: iter, N
Output: Optimized feature set X ′ = (x1, x2, ..., xm)

Initialize RD population
Determine N1 males and N2 hinds based on fitness of RDs
for e1 ← 1 to iter do

for e2 ← 1 to N1 do
Update position of RD if fitness increases

end for
Level stags and commanders
for e2 ← 1 to N3 do

Competition between commander and stag
Update position of the commander

end for
Creation of harems
for e2 ← 1 to N3 do

Mating commander with hinds from its harem
Mating commander with hinds from other harems

end for
for e2 ← 1 to (N1 −N3) do

Select the closest hind from the nearest harem
Mating of stag with the selected hind

end for
Selection of the next generation from offspring pool
Update X ′ if a better solution is encountered

end for
return X ′

and Xception decrease continuously starting from 0.74 and 0.81 respectively whereas the same for
InceptionV3 increases continuously up to 0.77. This shows that the NAG optimizer is most efficient
in the case of Xception. Using Adagrad optimizer, there is a continuous decrease in the validation
accuracies for Xception and vice versa for VGG16 and InceptionV3. But InceptionV3 shows pre-
dominantly higher validation accuracies as compared to VGG16 and Xception particularly when
the learning rate is between 0.02 and 0.42. Using RMSProp optimizer, similar trends are observed
in cases of InceptionV3 and Xception where the validation accuracies increase up to a maximum
value followed by a sharp decrease while a reverse trend is observed in the case of VGG16. How-
ever, InceptionV3 has predominantly had higher validation accuracies as compared to VGG16 and
Xception. Using ADAM optimizer, InceptionV3 and Xception show irregular trends while VGG16
has a parabolic decrement in validation accuracies to the learning rate. However, the maximum
validation accuracies obtained with the ADAM optimizer for all three networks surpasses the max-
imum accuracies obtained with the remaining three optimizers as shown in Figure 6.

Therefore, transfer learning with the proposed network architectures as delineated in subsection 2.3
using the ADAM optimizer provided the best micrograph classification results with validation ac-
curacies equal to 0.8313, 0.8688, and 0.8594 for VGG16, InceptionV3, and Xception respectively
where the learning rates for the ADAM optimizer are 0.027, 0.339 and 0.007 for VGG16, Incep-
tionV3 and Xception respectively. Early stopping has been deployed in the case of training the
pre-trained networks to minimize the number of epochs and obtain the optimum results (Prechelt
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Figure 5: Plots showing the variation of validation accuracy with learning rate using (a) NAG,
(b) Adagrad, (c) RMSProp and (d) ADAM optimizers for all three networks

1998). Consequently, VGG16, Inception3 and Xception were stopped after 35, 37, and 43 epochs,
respectively using the ADAM optimizer where the training failed to reach any maxima beyond this
point. Figure 7 delineates the epoch-wise training accuracies, validation accuracies, CCE training
loss, and CCE validation loss for each of the three networks. Early stopping gives us validation
accuracies of 0.8313, 0.8688 and 0.8594 as shown in Figure 6 and validation losses of 0.3, 0.27 and
0.28 for VGG16, Inception3 and Xception respectively and the corresponding training accuracies
for these networks are 0.9819, 0.9997 and 0.9856 while the training losses are 0.1, 0.04 and 0.045
respectively as shown in Figure 8. These results indicate that even the best combination and frozen
and unfrozen layers fail to provide a generalized binary classifier due to overfitting.

BRDA used for feature optimization has several parameters as shown in Table 1 which need to
be specified at the start of the algorithm. The optimum values of these parameters have been
determined experimentally following a trial and error approach. Each of these parameters has been
plotted to the corresponding accuracies obtained by the RF and MLP classifiers as shown in Fig-
ure 9. From the independent plots, we can determine the optimum values of these parameters.
While determining a particular parameter, the remaining parameters are set to arbitrary values.
This implies that each of these parameters if set to their optimum values, can alone provide a nearly
optimized subset which can lead to accurate classification results which are close to the actual clas-
sification results when all the parameters with their optimum values are combined. Therefore, a
single parameter itself can bring a significant change to the entire model performance and param-
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Figure 6: The maximum validation accuracy and the corresponding learning rate obtained from
using NAG, Adagrad, RMSProp and ADAM optimizers for all three networks

Figure 7: Plots showing the performance of (a) VGG16, (b) InceptionV3 and (c) Xception

networks on the augmented dataset

eter tuning becomes an important step of experimentation.

Without BRDA, RF and MLP give poor classification results with accuracies of 0.4198 and 0.5556,
respectively. As shown in Figure 10, the area under the ROC curves (AUC) for each of these
classifiers without using BRDA are 0.478 and 0.532 respectively. These poor values of classifica-
tion metrics are an indication of improper classification of dendritic and non-dendritic micrographs
which can be seen from the true positive rate (TPR) and false-positive rate (FPR) values as shown
in Figure 11. TPR values are 0.4987 and 0.5073 and those of FPR are 0.775 and 0.8743 for RF
and MLP classifiers respectively without using BRDA. However, after deploying the BRDA feature
optimization algorithm, we note a drastic improvement in the classification results with accuracies
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Figure 8: Comparison between the accuracies and CCE losses for training and validation of
the final pre-trained network architectures

of 0.9735 and 0.9855 and AUC of 0.97 and 0.979 for RF and MLP classifiers respectively. Besides,
the F1 scores for RF and MLP classifiers are 0.963 and 0.969 respectively after the implementation
of BRDA in contrast to the same without BRDA which are 0.488 and 0.598 respectively. On the
contrary, the F1 scores for VGG16, InceptionV3 and Xception network architectures as delineated
in subsection 2.3 are 0.811, 0.835 and 0.8246 respectively using the ADAM optimizer. The F1 scores
indicate that applying BRDA reduces the number of images falsely classified as the other category
significantly. Figure 11 gives a comparative plot depicting the classifier evaluation metrics before
and post-implementation of BRDA. It has been established from the FPR values that the num-
ber of microstructural images which were incorrectly classified without using BRDA has reduced
significantly. FPR post-implementation of BRDA are 0.39 and 0.25 for RF and MLP respectively.
Figure 10 provides a better understanding of the performance of the classifiers with and without
BRDA with the help of ROC curves.

Therefore, feature optimization using BRDA and using classical machine learning classifiers have
proven to be more efficient in characterizing micrographs as dendritic or non-dendritic as compared
to transfer learning. The classification results using BRDA have been compared using standard
feature selection algorithms available in Scikit-Learn 0.24.2 library. We have compared our
results with recursive, L1-based, and tree-based feature selection methods for both RF and MLP
classifiers. Figure 12 shows the variation of F1 scores for RF and MLP classifiers when BRDA and
other feature selection algorithms are deployed. F1 scores obtained by using recursive, L1-based,
and tree-based feature selection algorithms for RF classifiers are 0.763, 0.781, and 0.831 respectively
while the same on MLP classifiers are 0.788, 0.807, and 0.84 respectively. In contrast to the F1 scores
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Figure 9: Experimental determination of the parameters of BRDA (a) RD population (N) (b)
Number of male RDs (N1) (c) Ratio of the number of commanders to total number of male
RDs (γ) and (d) Total number of iterations for which BRDA is executed (iter)

obtained for RF and MLP upon using BRDA which are 0.963 and 0.969 respectively, other feature
selection algorithms have less efficient in classifying micrographs as dendritic or non-dendritic.

4 Conclusion

This work focuses on a comparative study between transfer learning and feature engineering ap-
proaches in the classification of dendritic and non-dendritic microstructural morphologies. Transfer
learning using VGG16, InceptionV3 and Xception fails to provide proper generalization in mi-
crostructural characterization. Consequently, we have utilized a feature engineering approach using
a meta-heuristic optimization algorithm called Binary Red Deer Algorithm which improves the
performances of two machine learning classifiers drastically. Parameter tuning plays an important
role in the optimization of the feature set and therefore impacts the classification results in turn.
This work provides an uncommon example of where feature engineering has outperformed transfer
learning. Besides, BRDA also has better feature selection ability as compared to some standard
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Table 1: Optimal parameter settings of the proposed FS method called BRDA

Parameter Meaning Value

N RD population 260

N1 Number of male RDs 20

γ
Ratio of the number of commanders
to the total number of male RDs

0.57

iter Total number of iterations for which BRDA is executed 120

Figure 10: Performance of (a) RF and (b) MLP classifiers with and without using BRDA

feature selection algorithms available in Scikit-Learn 0.24.2. However, this work is restricted
to 21 different alloys systems. Extending the implementation of BRDA beyond these 21 alloys
systems and even to other materials will be our future aim. BRDA, therefore, brings significant
promise in the field of materials informatics and we will aim to extend its use beyond materials
characterization in future contributions.
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