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Abstract

One of the main environmental impacts of amine-based carbon capture processes

is the emission of the solvent and degradation products into the atmosphere. To mimic

the mounting importance of intermittent operations of power plants we performed

a stress test in which we measured the amine emissions from a pilot plant that has

been in operation using a mixture of amines (CESAR1) in a slipstream from a coal-fired
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power plant. Understanding how changes in the operation far from the steady-state

of the plant affect the emissions is key to designing emission mitigation strategies.

However, conventional process modelling techniques struggle to capture the full

dynamic, multivariate, and non-linear nature of this data. In this work, we report

how a data-intensive approach can be used to learn the mapping between process

and emissions from data. The resulting model can forecast the emissions, can be

used to analyse the data and also perform in silico stress tests. By doing so, we reveal

that emission mitigation strategies that work well for single component solvents (e.g.

monoethanolamine) need to be revised for a mixture of solvents such as CESAR1. We

expect that the combination of large amounts of data with flexible learning algorithms

will impact the way we design and operate industrial processes, as we can now harvest

information at conditions where conventional approaches fail.

Main

The design, control, and optimisation of industrial processes requires detailed knowl-

edge of how process parameters interact and impact the operation of a plant. Due to the

complexity of such plants, process models typically focus on capturing the steady-state

operation.1 However, there are many cases in which operation beyond the steady-state is

required. For instance, the design and operation of current and future power plants will

need to constantly adapt to the increased share of intermittent renewable energy genera-

tion.2–5 This requires tools that fully capture the dynamic and multivariate behaviour of

the plant away from its steady-state operation. The classical analysis techniques, such as

response function fits,6,7 or chemometrics approaches8 give some insights into the typical

response to the different perturbations. However, these techniques cannot take the full

multivariate, non-linear nature of the time-dependent behaviour of a complex plant into

account. In this work, we show that data science methods that are typically used for

dynamic pattern recognition and predictions of financial data can successfully be adapted
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to forecast the performance of a plant given its current and historic behaviour, even if it is

operated far from its steady-state conditions. These forecasts can subsequently be used to

model scenarios, understand experimental observations, and perform control operations.

Here, we use such data science techniques to understand and forecast amine emissions

from a solvent-based post-combustion carbon capture pilot plant under dynamic operation.

The most well-known and broadly used benchmark solvent is monoethanolamine (MEA).9

Its main disadvantages are that a significant amount of energy is required for its regen-

eration10 and the comparatively high degradation rate. Research has focused on amine

mixtures that have better energy performance, e.g., the CESAR1 solvent, which is a blend of

2-amino-2-methyl-1-propanol (AMP) and piperazine (Pz).11–14 Energy efficiency, however,

is not the only criterion that is important in selecting a solvent for a carbon capture process.

Amine emissions are equally important, as these may require cost-incurring gas treatment

strategies to meet the operational permits and address environmental concerns.15,16 At

present, we do not have a clear understanding of such amine emissions from a capture

plant operating with these new solvent mixtures such as CESAR1.17,18

Stress-test campaign

To mimic the intermittency expected for future power plant operation, we carried out a

stress test on the pilot capture plant at Niederaussem. This plant has been operating on a

slipstream of flue gas from a raw lignite-fired power plant19,20 with the CESAR1 solvent

for over 12 months (see Extended Data Fig. 1 for a schematic flow diagram) and therefore

provides an ideal real-life example of the difficulties of understanding amine emissions.7

This test involved a sequence of eight different scenarios (see Supplementary Note 1 for

more details on the rationale of these scenarios). Extended Data Fig. 2 shows that these

daily scenarios cause significantly higher emissions than with normal operating conditions.

During the stress test, several interventions of the operators were required to ensure the

safe operation of the plant. Such interventions make the subsequent data analysis very

3



challenging as these interventions need to be disentangled from the operational changes

induced by the scenarios. Hence, we have a case in which we have a large amount of

valuable experimental data, but where the complexity of the pilot plant operation does

not afford any other conclusion that these emissions are problematic. In particular, we

cannot draw any statistically relevant conclusions on which countermeasures could be

most effective in reducing emissions. Of course, one can — to analyse the data with

conventional techniques — always reduce the extent of the perturbations and allow for

enough time for the plant to return to steady-state. This would make the campaign

significantly more expensive and is of limited, if any, use to deal with the complexity of

intermittency scenarios. Therefore, from an operational point of view, the lack of reliable

forecasts implies that the de-risking and the permitting of the plant for this novel solvent

would require large “engineering margins”, which would drastically increase the cost of

the plant.

Modelling approach

We can build a forecasting model by representing the time-dependent process and emission

data as an image. This representation allows us to use the most powerful machine-learning

techniques for pattern recognition. In this representation, the state of the plant at a given

time t defines a “state” feature vector with m elements representing the process variables

(e.g., flue gas temperature, water wash temperature). If we take the state vectors of the

plant for t timestamps we have a matrix of t×m entries which can be seen as an “image”

that is connected to a future emission profile. We now have to link the pattern in the image

of the history of the plant that leads to a particular future emission. For this, we have

adapted a convolutional neural network, which is often used for computer vision. The

idea of a convolution neural network is to learn predictive representations from an image

in steps. In the first step we look at correlations between neighbouring parts of the image,

and we then increase the length scale in each step by adding “holes” into the convolutional
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Fig. 1 | Schematic illustration of the modelling approach. a, Mapping of the data of the
plant onto an image; the data set can be thought of an “image” with “width” equal to
length of the input sequence (T ) and “height” equal to the number of parameters, m. We
represent with colours the value of parameter Pj at a time ti. As the predictions should be
invariant to the order of the rows, we only apply the pattern learning via convolutional
filters (light grey) in the time direction, wherefore the image of the plant should be seen
as m one-dimensional images. b, Convolutional kernels are slid over the m images as
part of the pattern recognition algorithm. The weights of the kernels (of the fth filter),
Wf = [wf

−1,w
f
0,w

f
1], are initially set randomly and learned in the training procedure. In the

first layer, the kernel operates on directly neighbouring values. In order to allow for the
model to learn different representations (patterns) we use 128 learnable filters per layer
of the neural network,21,22 i.e., the layer outputs 128 one-dimensional “images”. In total,
we apply eight layers and the output of one layer is fed into the next layer as an input.
c, To allow learning of correlations across large time scales, as they are expected to be
relevant in industrial processes, we add “holes” to the kernels (dilated convolutions) that
operate on the output of preceding convolutional layers. d, The results of all the kernel
operations (after applying operations of the forms of a and b eight times) are all collected
via a “2D” convolution into a predicted emission. From this schematic, it follows that our
output sequence cannot be longer than T , the length of the input sequence. To deal with
the “edges”, we apply (causal) padding with zeros at the front of the input sequence (not
shown in the figure). 5



kernels. As the emissions are independent of the way we order the m process variables,

we apply this method only in the time direction of the image which gives us new time

series in which relevant patterns are highlighted. In Fig. 1 we show how the training of

such a sequence of convolution operations results in a prediction of the emissions.

In Fig. 2 we compare the measured AMP (a) and Pz (b) emissions with the forecasted

emissions. For this figure, we trained the model on the data of the first four days (before

red vertical line) and let the model predict the emissions for the following days together

with the estimate of the uncertainty. We observe that the measured emissions are typically

within our tolerance interval (shaded area) and that our model even correctly captures

the spikes in the emission profile. We provide the predictions for CO2 and NH3 as well as

numerical metrics and learning curves in Supplementary Note 8.

Causal impact analysis

The key motivation for performing our stress test campaign is to understand what changes

to the plant have an impact on the emissions. This understanding is essential to identify

those parameters that need to be tightly monitored and controlled to mitigate emissions.

One of the difficulties of analysing the data is that conventional techniques cannot disen-

tangle the effects of the scenarios from other responses of the plant that one would expect

to happen even without any intervention. In statistics, the gold standard for answering

such a question are control experiments for which we would need to operate a copy of

the power plant. Similar problems exist, for example, in finance where one might want to

measure the impact of some political intervention and where it is equally impossible to

duplicate society for a control experiment. Interestingly, for these problems causal impact

analysis24 can be used to construct a so-called counterfactual baseline of the behaviour

of the system without the intervention. For this, we trained our model on the “baseline”

operation immediately preceding the dynamic experiments to forecast what the behaviour

of the plant would have been without the intervention.
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Fig. 2 | Amine emissions as predicted by the temporal convolutional neural network.
To test the performance of the model for the amine emissions of AMP (a) and Pz (b), we
trained the model on the first part of the data and tested the performance on the subsequent
part. The split is indicated with the red vertical line. The gap without predictions is due to
the fact that the model needs to be initialised with a part (in this case 10 %) of the sequence.
The blue lines show so-called historical forecasts, which can be produced by an expanding
window approach where the model is moved over the time series and the last forecasts
(over 4 min) are used as the inputs of the subsequent ones. Shaded, blue areas indicate
the 95 % tolerance intervals estimated via the standard deviation of 100 Monte-Carlo
dropout23 draws. The solid lines indicate the mean of the Monte-Carlo dropout draws.
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In Fig. 3 we compare the measured emissions for three of the scenarios with the

predicted baseline. We can see the importance of these baselines in Fig. 3 a and b. At the

first black vertical line, the flue gas temperature was increased from 45 °C to 55 °C and

put back to normal at the second vertical line. The measurements (black lines) suggest an

increase in the emissions during and after the intervention. However, we find that this

behaviour is strikingly similar to the prediction without the intervention. Interestingly,

applying the same analysis for those scenarios that involved changes in the water wash

flow rate or the ratio of solvent and water wash temperature (c and d) we observe a

significant effect. In Supplementary Note 9 we show the analysis for all scenarios.

It is interesting that the causal impact analysis reduces this extremely complex emission

behaviour (see Extended Data Fig. 2) into a surprisingly simple conclusion that controlling

the water wash and lean solvent temperature as well as the water wash flow rate are the

most promising handles for emission mitigation. It is important to note that without the

counterfactual baseline, however, we would have concluded that many other interventions

that show a change in emissions during the intervention are also good handles for emission

control.

Emission mitigation

The causal impact analysis can give us insights into the significance and magnitude of

effects for changes we actually performed on the plant. However, many other parameters

were implicitly changed during the stress test. Using our model, we can use this data

to investigate which changes to the operation of the plant would result in lower overall

emissions during the stress test.

Fig. 4 shows the predicted cumulative change in amine emissions over the full campaign

for the two sets of variables that caused some of the largest changes in our in silico

experiments. In these in silico experiments we change the value of two parameters by a

fixed percentage over the entire stress test, keeping also the dynamics unchanged, and
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Fig. 3 | Causal impact analysis for three of our dynamic experiments. In causal impact
analysis we use the machine learning model to predict what the emissions (a, c, e AMP
emissions, and b, d, f Pz) were without intervention (blue). The difference between the
prediction and the actual measurement (black) is the effect size. To avoid that the model is
biased due to signals in covariates that are causally related (p < 0.05) to the intervention
parameter, we automatically excluded all variables to which the intervention parameter
is Granger causally related (see Supplementary Table 4). a, b Shows the measurement
and predictions for the step increase in flue gas temperature. One can observe that also
the counterfactual model forecasts an increase (incr.) in amine emissions. c, d Shows
the effect of the reduction (red.) in water wash flow rate. One can observe that Pz (d),
in contrast to AMP (c), shows a reduction in emission w.r.t. the baseline. e, f Shows the
effect of an increase in water wash and lean solvent temperature. One can observe that
Pz (f), in contrast to AMP (e), shows a reduction in emission w.r.t. the baseline. Shaded
areas indicate the 95 % tolerance intervals estimated via the standard deviation of 100
Monte-Carlo dropout draws. Black vertical lines indicate the start and end of the step
change. Model trained in the period before the step change.
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let our model predict the emissions. The heatmaps then show the difference with the

measured emissions for which reason the centre (0, 0) of the heatmaps is grey.

These figures point to the most important conclusion from our experimental campaign.

Fig. 4a suggests that lower AMP emissions are obtained when operating at a lower water

wash temperature and higher flue gas temperature. However, at these conditions, we

do not have the minimum Pz emissions. On the other hand, minimum Pz emissions

occurred at decreased temperature difference between the flue gas exiting the water wash

section and the top of the absorber and increased low lean solvent temperature — at which

conditions AMP emissions have increased. Similar conclusions can be drawn from the

other scenarios (see Supplementary Note 10). These results suggest that Pz and AMP

have different emission mechanisms. Indeed, from the literature25 it is known that amine

emissions can be volatile or in aerosol form. If one increases the temperature in the water

wash section one would expect an increase in volatile emissions while a decrease in the

lean solvent inlet temperature can create conditions that favour aerosol emissions.18,26

Therefore, we can conclude that in our stress test the aerosol mechanism is more relevant

for Pz than for AMP. Because the two components in the CESAR1 mixture have different

governing emission mechanisms, different mitigation strategies have opposite effects on

the emission of the two components. Therefore, one needs to design the capture plant to

be able to deal with both mechanisms. This is a more challenging task when considering

blended solvents, like CESAR1, than single amine solvents. It is important to include these

additional costs in the current discussion to replace MEA with CESAR1.

Conclusion

Even at steady-state, we would not have been able to develop a conventional process

model to predict amine emissions from the carbon capture plant. For instance, we would

need additional experiments as we lack relevant thermodynamic data of the amines and
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understanding of the emission mechanisms. To make things worse, over the full stress test,

the plant was far from steady-state. The current process models are too simple to deal with

this complexity. In this work, we developed an alternative approach in which we start

with the data and learn the mapping between the process and the emissions directly from

the data. The resulting deep learning model allows us to not only forecast the emissions of

the plant but also to gain insights in which parameters are key for emission mitigation. A

similar approach can be used to forecast and understand other key performance parameters

such as those related to the plant energy requirements.

Amine emissions in a stress test in a carbon capture plant is just one example of an

industrial process for which a better understanding of its operation beyond its steady

state is needed. Another example is the start-up of a plant during which one has to carry

out many tests to identify the safe operational limits. These tests can take many months

before a plant can be put in operation. Typically, during such a start-up phase or any other

change to a new operating regime, there is a lot of data created and collected, but this data

collection has outpaced our ability to sensibly analyse the data, let alone understand it.

Our work shows that we could feed the data into an active learning model to harvest all

the knowledge that has been collected during these experiments. Interrogation of this

model can help us define the next most informative experiments27,28 which we expect to

greatly reduce the time to operability.

Deep learning has the potential to make an even bigger impact in chemical and process

engineering than it did in computer vision. In the case of computer vision, the basic

features of an image that are learned by a model are often closely related to how we

process an image with our eyes and brains. However, in an industrial plant, we often

lack understanding of the relevant features, but with deep learning, we can discover the

underlying rules of the mapping from the parameters to observables.
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Methods

Pilot plant

Extended Data Fig. 1 gives a schematic process flow diagram of the capture plant at

Niederaussem (Germany). The flue gas is supplied by a 965 MWel raw lignite-fired power

plant subjected to a state-of-the-art multistage electrostatic precipitator, a conventional

wet limestone flue gas desulphurisation plant, and a direct contact cooler (DCC) located

upstream of the absorber. The capture plant follows a conventional amine scrubbing

process. The absorber column consists of four beds and is integrated with a flexible

intercooling system and a water wash section. The flexible intercooler, which can be

located either between the bottom and the second packing or between the second and

third packing, controls the temperature rise in the absorber. A water wash section has

been added to the pilot plant to reduce amine emissions to the atmosphere.29,30 The amine

degradation, due to the presence of oxygen and other impurities like nitrogen oxides, as

well as elevated temperatures during solvent regeneration, can result in other gaseous

emissions of degradation compounds such as ammonia.31

The flue gas upstream of the absorber was analysed using a BA5000 Bühler infrared

spectroscope. The CO2-lean flue gas downstream of the water wash outlet was analysed

using a GasMET CX/DX 4000 analyser (i.e., CO2, CO, O2, AMP, Pz, NH3, and H2O).

Stress test: Intermittency scenarios

As the baseline, we assume that the capture plant operates with the power plant at full-load,

but that the intermittency associated with a future increase of renewables will cause regular

changes of the load of the power plant. Variations in this load not only change the amount

of flue gas that the capture plant has to process but can also change the amount of steam

that is available for the capture plant. In the scenarios, we focus on those (combinations

of) changes, of which our previous study on MEA19 has shown that they can impact the
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emissions significantly. The time scale and the magnitude of the changes are based on the

expected intermittency2 and typical requirements of the grid services,5,32,33 respectively.

A more detailed description is given in Supplementary Note 1.

Machine learning

To avoid overfitting and the exploitation of spurious correlations, the models were trained

on a small feature set that was created using manual feature selection and engineering (see

Supplementary Note 6). For all our modelling, we removed deterministic trend compo-

nents from the data using linear regression, removed outliers using a z-score filter (z = 3),

performed exponential window smoothing (window size 16 min) and downsampled the

data to a frequency of 2 min. The impact of the preprocessing is shown in Supplementary

Fig. 5. For use in the models, we also additionally standardised the data using min-max

scaling.

Temporal convolutional neural networks

The most important advantage of using a neural network is that we do not limit our

analysis to some functional form, which may bias the outcomes or might not be flexible

enough. However, this full flexibility has the danger of overfitting the data. This overfitting

is mitigated by using regularization techniques (such as dropout and multioutput training).

To train the model on our dataset, we use a simple sliding window approach, where the

model uses 80 min of data as input and then forecasts the next 4 min. Note that only the

forecasting procedure, not the model architecture, needs to be changed to make forecasts

over longer horizons (or to take correlations across longer times into account). A detailed

description of the model architecture, the feature set, and the forecasting method can

be found in Supplementary Note 8. Note that the forecasting performance decreases for

longer horizons. Also, note that the predictive performance for CO2 and NH3 is worse than

14



for AMP and Pz. Some caveats of the modelling approach are discussed in Supplementary

Note 11.

We used the darts library21 as a high-level wrapper for Pytorch,34 to train temporal

convolutional neural networks in which the convolutional layers are added with residual

connections.21,22,35 We used 8 layers with 128 filters and a kernel size of 3. Between the

layers, we dropout layers with a dropout probability of 0.3.36 Additionally, we employed

weight normalisation.37 We trained the models with a batch size of 32 and a learning rate

of 5× 10−6 for 400 epochs using the Adam optimiser.38

For estimation of epistemic uncertainty, we used the Monte-Carlo dropout scheme

proposed by Gal and Ghahramani, i.e., activated the dropout layers also for inference.23

Our models were trained to predict the emissions two time steps ahead and not re-trained

on the inference dataset. Note that we also attempted the use of recurrent neural networks

but could not achieve convincing forecasting performance. For this work, we trained two

double-headed models: one for the amine emissions and another one for the ammonia

and carbon dioxide emissions. This choice is motivated by the fact that the forecasting

performance degraded when we trained the model to forecast all targets at the same time.

Causal impact analysis

For the causal impact analysis, we removed the features that Granger causal for the in-

tervention variable (p < 0.05, determined using the statsmodels package,39 considering a

maximum lag of 10). This is of paramount importance such that the effect is not underesti-

mated by some change in a covariate that is in causal relation to the intervention variable.

The covariates we considered for the separate analyses as listed in Supplementary Table 4.

Note that this step automatically reduces the learning capacity of the models, i.e., we ex-

pect the forecasts to be less accurate. We trained the TCN models on the baseline operation

before the step change and also use the baseline operation immediately preceding the step

change to start the model. Due to the smaller training set size, we reduced the model size
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for this analysis (input length of 60 min, output length of 4 min), used a dropout rate of

0.3, four layers, 128 filters, kernel size of three (and trained for 200 epochs with a learning

rate of 1× 10−3). We also attempted to use Bayesian structured timeseries models as in

the original implementation of the causal impact analysis technique24 but found much

better predictive performance with TCN models. We also performed the analysis with

the R package and found qualitative agreement, e.g., finding no significant effect for the

change in flue gas temperature but significant effects for the changes in water wash flows

and temperatures.

We made use of the following Python40 libraries: pandas,41 sklearn,42 scipy,43 statsmod-

els,39 matplotlib,44 jupyter,45 numpy,46 pytorch,34 darts,21 lightgbm,47 shap.48
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Extended Data Fig. 1 | Simplified process flow diagram of the PCC pilot plant at
Niederaussem. The position of the process parameters discussed in the main text are
indicated in the figure. A complete P&ID diagram can be found in Supplementary Fig. 2.
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Extended Data Fig. 2 | Amine emissions during, and after the stress test. Time frame of
the stress test highlighted in grey. The power plant was shut down from 25–30 January (red
region), which explains the very low emissions around that time. In this work, we only
used the data generated before the shutdown of the plant. In the period of 6–8 February
(grey region) other experiments were carried out at the pilot plant, but these were not part
of our test. This figure shows that applying the different scenarios cause the plant to emit
much more compared to its steady state operations. A preliminary analysis of the data has
been reported in Charalambous et al. 7
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